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Convergence of the kinetic hydrostatic

reconstruction scheme for the Saint Venant

system with topography

François Bouchut∗, Xavier Lhébrard∗

Abstract

We prove the convergence of the hydrostatic reconstruction scheme
with kinetic numerical flux for the Saint Venant system with continu-
ous topography with locally integrable derivative. We use a recently
derived fully discrete sharp entropy inequality with dissipation, that
enables us to establish an estimate in the inverse of the square root of
the space increment ∆x of the L2 norm of the gradient of approximate
solutions. By Diperna’s method we conclude the strong convergence
towards bounded weak entropy solutions.

Keywords: Saint Venant system with topography, well-balanced scheme,
hydrostatic reconstruction, convergence, entropy inequality, kinetic function.
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1 Introduction and main result

We consider the Saint Venant system

∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + g

h2

2
) + gh∂xz = 0,

(1.1)

for t ≥ 0 and x ∈ R, where the unknowns are h(t, x) ≥ 0 and u(t, x) ∈ R,
g > 0 is the gravity constant, and the topography z(x) is given. The system
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is completed with an entropy (energy) inequality

∂t

(
h
u2

2
+ g

h2

2
+ ghz

)
+ ∂x

((
h
u2

2
+ gh2 + ghz

)
u

)
≤ 0. (1.2)

We shall denote U = (h, hu) with h ≥ 0, and

η(U) = h
u2

2
+ g

h2

2
, G(U) =

(
h
u2

2
+ gh2

)
u, (1.3)

the entropy and entropy fluxes without topography.
Existence and stability results for the shallow water system have been es-

tablished in [27, 21, 23, 28]. Concerning approximation, many schemes have
been proposed, see for example [25, 4, 3, 6, 12, 7, 11, 19, 20]. The hydro-
static reconstruction scheme and its variants [4, 24, 18, 17, 16, 15] is often
used, and it is the subject of the present paper. Some results concerning
consistency, stability and convergence of those schemes have been obtained
in [9, 10, 13, 26, 8, 1, 2].

In this paper we prove the convergence of the hydrostatic reconstruction
scheme [4] with kinetic flux [25].

In order to explain our approach, let us consider first the case without
topography. In the (time and space continuous) kinetic BGK case and with-
out topography, the single energy inequality ensures the convergence [10].
The fully-discrete case (still without topography) is treated in [8] (a related
work is [22]). Without topography the kinetic scheme can be written as a
flux-vector splitting scheme

Un+1
i = Ui −

∆t

∆x

(
F+(Ui) + F−(Ui+1)−

(
F+(Ui−1) + F−(Ui)

))
, (1.4)

where F+, F− are defined in (1.28). The convergence result of [8] for a scheme
of the form (1.4) is established under a dissipation assumption, that F+ or
−F− is strictly η-dissipative. The η-dissipativity has been defined in [13], and
analyzed in the multi-d context in [14]. Unfortunately this property that F+

or −F− is strictly η-dissipative does not hold for the kinetic scheme. Indeed
F+ or −F− suffer from a lack of dissipation when the state corresponds to
negative (respectively positive) kinetic speeds ξ. Nevertheless we are able
to use a weaker property, which is that F+ − F− is strictly η-dissipative.
When making this combination, the strict η-dissipativity corresponds to the
inequality

∫

R

|ξ|
(
H0(M2, ξ)−H0(M1, ξ)− η′(U1)

(
1
ξ

)
(M2 −M1)

)
dξ

≥ α (η(U2)− η(U1)− η′(U1) (U2 − U1)) , (1.5)
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for some α > 0, where H0 is the kinetic entropy (1.12) and Mi = M(Ui, ξ)
withM the Maxwellian equilibrium defined in (1.9). This is rigorously stated
and proved in Lemma A.3 in the appendix. We have to point out however
that this estimate is only valid in a closed bounded convex set which does
not contain vanishing heights, and the constant α is not obtained explicitly.

With the inequality (1.5), the convergence proof without topography is
similar to that in [8], with the additional step that one has to strengthen a
bit (1.5) into an estimate in terms of (M2 −M1)

2, as stated in Lemma A.5.
This estimate is useful to take advantage of the entropy inequality

η(Un+1
i ) ≤ η(Ui)−

∆t

∆x

(
G̃i+1/2 − G̃i−1/2

)

− νβ
∆t

∆x

∫

R

|ξ|g
2π2

6

(
1ξ<0 (Mi+1 +Mi) (Mi+1 −Mi)

2

+ 1ξ>0 (Mi +Mi−1) (Mi −Mi−1)
2
)
dξ, (1.6)

that holds under a CFL condition, where G̃i+1/2 is a numerical entropy flux.
This entropy inequality includes a dissipation term (the integral in ξ) inher-
ited from the kinetic nature of the scheme. This term is nonnegative and
measures the space variation of the unknown Ui since Mi = M(Ui, ξ). In
order to get a priori estimates we sum up over the space and time indices i
and n the previous inequality. Then we are able to use Lemma A.5, and as
a consequence we get gradient estimates of the form

‖∂tU∆‖L2
tx
≤ C√

∆x
, ‖∂xU∆‖L2

tx
≤ C√

∆x
, (1.7)

where U∆ is the numerical approximate solution. We conclude as in [8] by a
compensated compactness argument. Indeed we recall that the compensated
compactness theory [27, 23] gives the compactness of a bounded sequence of
approximate solutions (Uε) which satisfy that

∂tηS(Uε) + ∂xGS(Uε) is compact in H−1
loc , (1.8)

for a sufficiently large family of entropies ηS. According to the classical
DiPerna approach [21], the estimates (1.7) are enough to establish (1.8) for
all entropies.

Then, to include the topography is not an easy task, even if it is Lipschitz
continuous. Indeed a typical error term produced by the scheme, correspond-
ing to the topography term in (1.1), is (hi+1−hi)(zi+1−zi)/∆x. This quantity
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is not small a priori, since h is not continuous. In order to make this small
one would need the compactness of h, that we have to prove. A key point is
to use the dissipation of the discrete form of the entropy inequality (1.2). No-
tice that a discrete entropy inequality that puts the topography as a source
term as formulated in [11] would not be sufficient because of the eventual
presence of shocks.

Our convergence result with topography strongly uses the work [5], which
establishes that the hydrostatic reconstruction scheme, used with the clas-
sical kinetic solver, satisfies a fully discrete entropy inequality (2.16) with
dissipation but with an error term, that generalizes (1.6). However the dissi-
pation in this inequality involves now differences (Mi+1/2+ −Mi+1/2−)

2 that
vanish at the lake at rest steady states, instead of previously (Mi+1 −Mi)

2.
Then one can simply use the triangle inequality and get (Mi+1 −Mi)

2, with
further error terms in (zi+1 − zi)

2. Such error terms can be controled via
Lemma A.1 and in particular (A.3). While doing such estimates one has to
take care not getting cross terms (hi+1 − hi)(zi+1 − zi) as mentioned above,
that would not tend to zero. This is the main difficulty when taking into
account the topography.

1.1 Kinetic Maxwellian equilibrium

We recall here the classical kinetic Maxwellian equilibrium, used in [25] for
example. It is given by

M(U, ξ) =
1

gπ

(
2gh− (ξ − u)2

)1/2
+
, (1.9)

where U = (h, hu), ξ ∈ R and x+ ≡ max(0, x) for any x ∈ R. It satisfies the
moment relations

∫

R

(
1
ξ

)
M(U, ξ)dξ = U,

∫

R

ξ2M(U, ξ)dξ = hu2 + g
h2

2
. (1.10)

The interest of this particular form lies in its compatibility with a kinetic
entropy given by

H(f, ξ, z) =
ξ2

2
f +

g2π2

6
f 3 + gzf, (1.11)

where f ≥ 0, ξ ∈ R and z ∈ R, and its version without topography

H0(f, ξ) =
ξ2

2
f +

g2π2

6
f 3. (1.12)
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Then one can check the relations
∫

R

H(M(U, ξ), ξ, z)dξ = η(U) + ghz, (1.13)
∫

R

ξH(M(U, ξ), ξ, z)dξ = G(U) + ghzu, (1.14)

where η and G are given by (1.3). Moreover, for any function f(ξ) ≥ 0,
setting h =

∫
f(ξ)dξ, hu =

∫
ξf(ξ)dξ (assumed finite), one has the following

entropy minimization principle [5],

η(U) =

∫

R

H0(M(U, ξ), ξ)dξ ≤
∫

R

H0(f(ξ), ξ)dξ. (1.15)

Indeed this inequality is strongly related to the property (see (1.19) in [5])

∂fH0

(
M(U, ξ), ξ

)
=





η′(U)

(
1
ξ

)
if M(U, ξ) > 0,

≥ η′(U)

(
1
ξ

)
if M(U, ξ) = 0.

(1.16)

Here η′(U) denotes the derivative of η with respect to U ,

η′(U) = (gh− u2/2, u). (1.17)

1.2 Hydrostatic reconstruction and kinetic flux

We consider a uniform grid (xi+1/2)i∈Z with space increment ∆x = xi+1/2 −
xi−1/2, and discrete times tn with a constant timestep ∆t, tn+1 − tn = ∆t,
t0 = 0. We consider initial data U0 = (h0, h0u0), h0 ≥ 0, h0, u0 ∈ L∞(R) and
a topography z(x) assumed continuous . We define the discretization of the
initial data as

U0
i =

1

∆x

∫ xi+1/2

xi−1/2

U0(y)dy, (1.18)

and
zi an approximation of z(xi), (1.19)

where xi =
(
xi+1/2 + xi−1/2

)
/2. The hydrostatic reconstruction scheme

writes [4]

Un+1
i = Un

i − ∆t

∆x

(
Fi+1/2− − Fi−1/2+

)
, (1.20)

with
Fi+1/2− = F(Ui+1/2−, Ui+1/2+)− Si+1/2−, (1.21)
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Fi+1/2+ = F(Ui+1/2−, Ui+1/2+) + Si+1/2+, (1.22)

with F is a numerical flux for the system without topography. The source
terms Si+1/2−, Si+1/2+ are defined by

Si+1/2− =

(
0

g
2
h2i+1/2− − g

2
h2i

)
, Si+1/2+ =

(
0

g
2
h2i+1 − g

2
h2i+1/2+

)
. (1.23)

The reconstructed states

Ui+1/2− = (hi+1/2−, hi+1/2−ui), Ui+1/2+ = (hi+1/2+, hi+1/2+ui+1) (1.24)

are defined by

hi+1/2− = (hi + zi − zi+1/2)+, hi+1/2+ = (hi+1 + zi+1 − zi+1/2)+ (1.25)

and
zi+1/2 = max(zi, zi+1). (1.26)

The hydrostatic reconstruction scheme is defined for arbitrary numerical flux
F, but in the present paper we are only able to analyze the kinetic flux vector
splitting given by

F(Ul, Ur) = F+(Ul) + F−(Ur), (1.27)

F+(U) =

∫

R

ξ1ξ>0

(
1
ξ

)
M(U, ξ)dξ, (1.28)

F−(U) =

∫

R

ξ1ξ<0

(
1
ξ

)
M(U, ξ)dξ,

with M(U, ξ) defined by (1.9).
We consider a velocity vm ≥ 0 such that for all i,

M(Ui, ξ) > 0 ⇒ |ξ| ≤ vm. (1.29)

This means equivalently that |ui|+
√
2ghi ≤ vm. We consider a CFL condition

strictly less than one,

vm
∆t

∆x
≤ β < 1, (1.30)

where β is a constant.
An estimate that will be useful later on is that with the definitions (1.24)-

(1.26) one has

0 ≤ hi − hi+1/2− ≤ |zi+1 − zi| , (1.31)

0 ≤ hi − hi−1/2+ ≤ |zi − zi−1| . (1.32)
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1.3 Convergence result

Let (Un
i , zi) be defined by the scheme (1.18)-(1.28). We define the approxi-

mate solution by

U∆(t, x)

=
1

∆t

[
Un+1
i+1 − Un+1

i − Un
i+1 + Un

i

∆x
(x− xi) + Un+1

i − Un
i

]
(t− tn)

+
Un
i+1 − Un

i

∆x
(x− xi) + Un

i ,

for xi < x < xi+1 and tn ≤ t < tn+1, (1.33)

and we set

z∆(x) =
zi+1 − zi

∆x
(x− xi) + zi, for xi < x < xi+1. (1.34)

These formulas mean that we take the continuous piecewise affine functions
in space with values Ui (or zi) at xi, and then interpolate similarly in time
between tn and tn+1 to get U∆. In this way U∆ and z∆ are continuous. We
shall assume that z is continuous and bounded with L1

loc derivative, and that
the values zi are well chosen, so that as ∆x → 0

z∆ −→ z locally uniformly in R,
dz∆
dx

−→ dz

dx
in L1

loc(R), (1.35)

and for any bounded interval [a, b],

TV 2[a,b]((zi)) → 0, (1.36)

where TV 2[a,b]((zi)) is defined as

TV 2[a,b]((zi)) ≡
∑

[xi,xi+1]⊂[a,b]

(zi+1 − zi)
2. (1.37)

The properties (1.35) and (1.36) hold in particular for the choice zi = z(xi),
see Lemma A.1.

Moreover, for 0 < hm < hM and uM > 0, we set

Uhm,hM ,uM
= {(h, hu) ∈ R

2, hm ≤ h ≤ hM , |u| ≤ uM}, (1.38)

which is a convex set. We state now the main result of this article, which is the
convergence of the hydrostatic reconstruction scheme with kinetic numerical
flux.
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Theorem 1.1. Let U0 = (h0, h0u0), h0 ≥ 0, h0, u0 ∈ L∞(R), be an initial

data and let z be a continuous and bounded given topography satisfying ∂xz ∈
L1
loc. Define (Un

i , zi) by the scheme (1.18)-(1.28), the approximate solution

U∆ by (1.33) and the approximate topography z∆ by (1.34). We assume that

the values zi are well chosen, i.e. satisfy (1.35), (1.36). Then we assume to

have uniform bounds far from the vacuum,

∀i, n, Un
i ∈ Uhm,hM ,uM

, (1.39)

for some 0 < hm < hM , uM > 0, with Uhm,hM ,uM
defined by (1.38).

Then, under the CFL condition (1.30) and the inverse CFL condition

1 ≤ v∗
∆t

∆x
, (1.40)

for some constant v∗ > 0, we have that up to a subsequence, U∆ → U a.e.

in (0, T ) × R and in Ct([0, T ], L
∞
w∗(R)) as ∆t → 0 and ∆x → 0, where U

is a weak solution to (1.1) with initial data U0, that satisfies the entropy

inequality (1.2), and the family of entropy regularity conditions

∂tηS(U) + ∂xGS(U) ∈ Mloc, (1.41)

for all suitable couples entropy-entropy flux (ηS, GS).

Some comments on this theorem are in order. At first, a main assumption
is the boundedness away from vacuum (1.39). We are not able to treat the
vacuum at the present time. Also, to have L∞ bounds is not guaranteed a
priori, since only L2 type bounds are available, obtained by integration in
time and space of the discrete entropy inequality. Indeed, L∞ bounds can
only be proved in the context of having a large family of entropy inequalities,
as in [9], while here we have only one. Note that the bound (1.29) involving
vm can be seen as a consequence of the upper bounds hM , uM involved in
(1.39). The inverse CFL condition (1.40) is a technical assumption that
ensures the finite speed of propagation: since the information propagates
of at most one cell per timestep, this condition ensures that the domain
of dependency remains bounded as ∆t and ∆x tend to 0. Notice that all
together, the CFL and inverse CFL conditions (1.30), (1.40) can be written

1

v∗
≤ ∆t

∆x
≤ β

vm
,

for some 0 < β < 1 and v∗ > 0. A simple way to achieve this is to take ∆t/∆x
constant, stricly less than 1/vm. Another main assumption is the continuity
of the topography. A discontinuous topography is not allowed, indeed in
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that case it is known that several severe difficulties arise, in particular one
has non-uniqueness of solutions to the Riemann problem. Numerical issues in
this situation of discontinuous topography are studied in [3, 29]. We overall
assume that the topography has a locally integrable derivative, but this is a
minimal assumption that enables to give sense to the product h∂xz in (1.1).

We have to mention that the boundedness away from vacuum assump-
tion (1.39) allows to bound also the reconstructed states Ui+1/2±. Indeed
according to (1.24)-(1.26) one has

hi−(zi+1−zi)+ ≤ hi+1/2− ≤ hi, hi+1−(zi−zi+1)+ ≤ hi+1/2+ ≤ hi+1, (1.42)

thus Ui+1/2± ∈ Uh̃m,hM ,uM
, where h̃m is such that

0 < h̃m ≤ hm − sup
i

|zi+1 − zi|, (1.43)

which is possible since supi |zi+1 − zi| → 0 and thus it is lower than hm for
∆x small enough.

The outline of the remainder of the paper is as follows. In Section 2 we
establish estimates on the gradient of the approximate solution as stated in
(1.7). In Section 3 we prove some interpolation estimates. In Section 4 we fi-
nally prove Theorem 1.1. We obtain (1.8) by combining the gradient estimate
and the interpolation estimate, then we apply compensated compactness. An
appendix is devoted to the proof of various technical lemmas.

2 Estimate of the gradient of the approxi-

mate solution

This section is devoted to the proof of the following estimate on the approx-
imate solution.

Proposition 2.1. With the assumptions of Theorem 1.1, we define for all

U = (h, hu),

|U |2 = h2 +
u2h2

ghM
. (2.1)

Let N ∈ N
∗, T = N∆t, i0, i1 ∈ Z such that i0 ≤ i1. For all i ≤ j ∈ Z, we

define the interval

Iv
∗

i,j = (xi−1/2 − v∗T, xj+1/2 + v∗T ). (2.2)
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Then there exists some constants C1, C2, C3 such that

N∑

n=0

i1−1∑

i=i0

∆t|Un
i+1 − Un

i |2 ≤ C1, (2.3)

N−1∑

n=0

i1∑

i=i0

∆t|Un+1
i − Un

i |2 ≤ C1
∆t2

∆x2
v2m, (2.4)

(∫ T

0

∫ xi1+1/2

xi0−1/2

|∂xU∆|2dxdt
)1/2

≤ C2√
∆x

, (2.5)

(∫ T

0

∫ xi1+1/2

xi0−1/2

|∂tU∆|2dxdt
)1/2

≤ C3√
∆x

. (2.6)

The constants C1, C2, C3 depend only on g, hm, hM , uM , vm, β, the final

time T , ‖z‖L∞, TV 2Iv∗i0,i1

((zi)), ‖η(U0)‖L1(Iv
∗

i0,i1
) and ‖h0‖L1(Iv

∗

i0,i1
).

The proof of this proposition is given below in the remainder of this
section. These estimates on ∂tU∆ and ∂xU∆ use recent results on discrete
kinetic inequalities established in [5]. In Subsection 2.3 we use several tech-
nical lemmas which are put in the appendix for the sake of clarity of the
presentation.

2.1 Estimate of bounded propagation for the space in-

tegral of the height

We here establish some bound on
∑i1

i=i0
∆xhNi . We have

hn+1
i = hni −

∆t

∆x

(
F h
i+1/2 − F h

i−1/2

)
, (2.7)

with

F h
i+1/2 =

∫

R

ξ1ξ>0M(Un
i+1/2−, ξ)dξ +

∫

R

ξ1ξ<0M(Un
i+1/2+, ξ)dξ. (2.8)

We recall that under the CFL condition (1.30) one has hn+1
i ≥ 0, see [5]. We

multiply by ∆x and sum over index i and we obtain

i1∑

i=i0

∆xhn+1
i =

i1∑

i=i0

∆xhni −∆t
(
F h
i1+1/2 − F h

i0−1/2

)
. (2.9)
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Then we notice that with (1.29) and (1.42)

−F h
i1+1/2 ≤ vmh

n
i1+1/2+ ≤ vmh

n
i1+1, F h

i0−1/2 ≤ vmh
n
i0−1/2− ≤ vmh

n
i0−1.

(2.10)
With the CFL condition (1.30) we obtain

i1∑

i=i0

∆xhn+1
i ≤

i1+1∑

i=i0−1

∆xhni . (2.11)

Denoting T = N∆t, using the previous inequality and (1.18) we get

i1∑

i=i0

∆xhNi ≤
i1+N∑

i=i0−N

∆xh0i =

∫ xi1+N+1/2

xi0−N−1/2

h0(x)dx. (2.12)

Moreover we have

xi0−N−1/2 = xi0−1/2 −N∆x = xi0−1/2 − T
∆x

∆t
, (2.13)

xi1+N+1/2 = xi1+1/2 +N∆x = xi1+1/2 + T
∆x

∆t
. (2.14)

Therefore using the inverse CFL condition (1.40) we get

i1∑

i=i0

∆xhNi ≤
∫ xi1+1/2+Tv∗

xi0−1/2−Tv∗
h0(x)dx = ‖h0‖L1(Iv

∗

i0,i1
), (2.15)

with Iv
∗

i0,i1
defined in (2.2).

2.2 From kinetic to macroscopic discrete entropy in-

equality

We use the notations introduced in Proposition 2.1. Under the CFL condition
(1.30) we can integrate with respect to ξ the kinetic entropy inequality of [5,
Theorem 3.6] as in [5, Corollary 3.7], and we obtain

η(Un+1
i ) + gzih

n+1
i ≤ η(Ui) + gzihi −

∆t

∆x

(
G̃i+1/2 − G̃i−1/2

)

− νβ
∆t

∆x

∫

R

|ξ|g
2π2

6

(
1ξ<0

(
Mi+1/2+ +Mi+1/2−

)
(Mi+1/2+ −Mi+1/2−)

2

+ 1ξ>0

(
Mi−1/2+ +Mi−1/2−

)
(Mi−1/2+ −Mi−1/2−)

2
)
dξ

+ Cβ

(
∆t

∆x
vm

)2

g
(
|zi+1 − zi|2 + |zi − zi−1|2

)
, (2.16)
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with

G̃i+1/2 =

∫

ξ<0

ξH(Mi+1/2+, ξ, zi+1/2)dξ +

∫

ξ>0

ξH(Mi+1/2−, ξ, zi+1/2)dξ,

(2.17)
νβ > 0 is a dissipation constant depending only on β, and Cβ ≥ 0 is a constant
depending only on β. We use here the shorthand notation Mi ≡ M(Ui, ξ),
Mi+1/2+ ≡M(Ui+1/2+, ξ), Mi+1/2− ≡M(Ui+1/2−, ξ).

Then we follow the computations done on the height in Subsection 2.1.
We multiply by ∆x, take the sum over i and obtain

i1∑

i=i0

∆x
(
η(Un+1

i ) + gzih
n+1
i

)
≤

i1∑

i=i0

∆x (η(Ui) + gzihi)

−∆tG̃i1+1/2 +∆tG̃i0−1/2

− νβ∆t

i1−1∑

i=i0

∫

R

|ξ|g
2π2

6

(
Mi+1/2+ +Mi+1/2−

)
(Mi+1/2+ −Mi+1/2−)

2dξ

− νβ∆t

∫

R

|ξ|g
2π2

6
1ξ<0

(
Mi1+1/2+ +Mi1+1/2−

)
(Mi1+1/2+ −Mi1+1/2−)

2dξ

− νβ∆t

∫

R

|ξ|g
2π2

6
1ξ>0

(
Mi0−1/2+ +Mi0−1/2−

)
(Mi0−1/2+ −Mi0−1/2−)

2dξ

+ 2Cβ
∆t2

∆x
v2mg

i1∑

i=i0−1

|zi+1 − zi|2 . (2.18)

Since z is bounded, adding if necessary a sufficiently large constant to it, we
can assume that z ≥ 0. Then we notice that according to (2.17) we have

−G̃i1+1/2 ≤ vmη(Ui1+1/2+) + vmghi1+1/2+zi1+1/2, (2.19)

and
G̃i0−1/2 ≤ vmη(Ui0−1/2−) + vmghi0−1/2−zi0−1/2. (2.20)

According to the definitions (1.3) of η and (1.24), (1.25) of the reconstructed
states, and to the inequalities (1.42), one has

η(Ui+1/2+) + ghi+1/2+zi+1/2

≤ η(Ui+1) + g
h2i+1/2+

2
− g

h2i+1

2
+ ghi+1/2+zi+1/2

≤ η(Ui+1) + ghi+1zi+1.

(2.21)

Indeed, to get the last inequality, we observe that since hi+1/2+ = (hi+1 +
zi+1− zi+1/2)+, either hi+1+ zi+1− zi+1/2 ≤ 0, which implies that hi+1/2+ = 0

12



and the desired inequality, or hi+1 + zi+1 − zi+1/2 ≥ 0, which implies

g
h2i+1/2+

2
− g

h2i+1

2
+ ghi+1/2+zi+1/2

≤ ghi+1/2+(hi+1/2+ − hi+1 + zi+1/2)
≤ ghi+1zi+1.

(2.22)

Similarly to (2.21) one has

η(Ui−1/2−) + ghi−1/2−zi−1/2 ≤ η(Ui−1) + ghi−1zi−1. (2.23)

Using (2.21), (2.23) in (2.19), (2.20) leads to

−∆tG̃i1+1/2 ≤ ∆tvm
(
η(Ui1+1) + ghi1+1zi1+1

)
, (2.24)

∆tG̃i0−1/2 ≤ ∆tvm
(
η(Ui0−1) + ghi0−1zi0−1

)
. (2.25)

Neglecting in (2.18) the two boundary integrals and using (2.24),(2.25), we
obtain

i1∑

i=i0

∆x
(
η(Un+1

i ) + gzih
n+1
i

)
≤

i1+1∑

i=i0−1

∆x (η(Ui) + gzihi)

− νβ∆t

i1−1∑

i=i0

∫

R

|ξ|g
2π2

6

(
Mi+1/2+ +Mi+1/2−

)
(Mi+1/2+ −Mi+1/2−)

2dξ

+ 2Cβ
∆t2

∆x
v2mg

i1∑

i=i0−1

|zi+1 − zi|2 . (2.26)

Iterating (2.26) from n = N − 1 to n = 0 and using that

N−1∑

n=0

2Cβ
∆t2

∆x
v2mg

i1+N∑

i=i0−N

|zi+1 − zi|2

≤ 2CβT
vm∆t

∆x
vmgTV 2[xi0−N ,xi1+N ]((zi)),

(2.27)

and that according to (1.40) one has N∆x ≤ v∗N∆t = v∗T , we get

i1∑

i=i0

∆x
(
η(UN

i ) + gzih
N
i

)

+ νβ

N−1∑

n=0

∆t

i1−1∑

i=i0

∫

R

|ξ|g
2π2

6

(
Mn

i+1/2+ +Mn
i+1/2−

)
(Mn

i+1/2+ −Mn
i+1/2−)

2dξ

≤
i1+N∑

i=i0−N

∆x
(
η(U0

i ) + gzih
0
i

)
+ C TV 2[xi0

−v∗T,xi1
+v∗T ]((zi)), (2.28)

13



with C depending on g, T , β, vm.
We are going to show next that the integral in the LHS of (2.28) is under-

estimated by a term proportionnal to
∑N−1

n=0

∑i1−1
i=i0

∆t|Un
i+1/2+ − Un

i+1/2−|2.

2.3 Lower estimate of dissipation terms

We first notice that∫

R

|ξ|g
2π2

6

(
Mn

i+1/2+ +Mn
i+1/2−

)
(Mn

i+1/2+ −Mn
i+1/2−)

2dξ

≥ 1

2

∫

R

|ξ|g
2π2

6

(
2Mn

i+1/2+ +Mn
i+1/2−

)
(Mn

i+1/2+ −Mn
i+1/2−)

2dξ. (2.29)

Now according to Lemma A.5, there exists a constant C > 0 depending only
on g, h̃m, hM , uM such that

∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ

≥C
(
g
(h2 − h1)

2

2
+ h̃m

(u2 − u1)
2

2

)
(2.30)

for all U1, U2 ∈ Uh̃m,hM ,uM
, whereM1 =M(U1, ξ),M2 =M(U2, ξ). We notice

that from (1.42), (1.43) we have

Un
i+1/2+, U

n
i+1/2− ∈ Uh̃m,hM ,uM

. (2.31)

Thus from (2.29) and applying the last estimate (2.30) with U1 = Un
i+1/2+

and U2 = Un
i+1/2−, we get

∫

R

|ξ|g
2π2

6

(
Mn

i+1/2+ +Mn
i+1/2−

)
(Mn

i+1/2+ −Mn
i+1/2−)

2dξ

≥ C5|Un
i+1/2+ − Un

i+1/2−|2, (2.32)

where C5 > 0 depends only on g, hm, h̃m, hM , uM , and | · | is defined in (2.1).

2.4 Estimate of the discrete gradient

Now we use (2.32) in (2.28) and get

νβC5

N−1∑

n=0

i1−1∑

i=i0

∆t|Un
i+1/2+ − Un

i+1/2−|2

≤
i1+N∑

i=i0−N

∆x
(
η(U0

i ) + gzih
0
i

)
−

i1∑

i=i0

∆x
(
η(UN

i ) + gzih
N
i

)

+ C TV 2[xi0
−v∗T,xi1

+v∗T ]((zi)),

(2.33)
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with C depending on g, T , β, vm. Next, using (1.18) we have

gzih
0
i ≤

1

∆x

∫ xi+1/2

xi−1/2

g‖z‖∞h0(x) dx, (2.34)

and by convexity of η

η(U0
i ) ≤

1

∆x

∫ xi+1/2

xi−1/2

η(U0(x)) dx. (2.35)

Summing over i we obtain

i1+N∑

i=i0−N

∆x
(
η(U0

i ) + gzih
0
i

)
≤
∫ xi1+N+1/2

xi0−N−1/2

(
η(U0(x)) + g‖z‖∞h0(x)

)
dx.

(2.36)

We notice that xi0−N−1/2 = xi0−1/2 − N∆x = xi0−1/2 − T ∆x
∆t

, and according
to the finite propagation hypothesis (1.40) we deduce that

i1+N∑

i=i0−N

∆x
(
η(U0

i ) + gzih
0
i

)
≤
∫ xi1+1/2+v∗T

xi0−1/2−v∗T

(
η(U0(x)) + g‖z‖∞h0(x)

)
dx

= ‖η(U0)‖L1(Iv
∗

i0,i1
) + g‖z‖∞‖h0‖L1(Iv

∗

i0,i1
), (2.37)

with Iv
∗

i0,i1
defined in (2.2). In addition, according to the preliminary compu-

tation (2.15) we have

−
i1∑

i=i0

∆x gzih
N
i ≤ g‖z‖∞

i1∑

i=i0

∆xhNi ≤ g‖z‖∞‖h0‖L1(Iv
∗

i0,i1
). (2.38)

Using (2.37), (2.38) in (2.33) and noticing that η(UN
i ) ≥ 0, we obtain that

N−1∑

n=0

i1−1∑

i=i0

∆t|Un
i+1/2+ − Un

i+1/2−|2 ≤ C, (2.39)

where C depends on g, hm, h̃m, hM , uM , vm, β, T , ‖z‖L∞ , TV 2Iv∗i0,i1

((zi)),

‖η(U0)‖L1(Iv
∗

i0,i1
) and ‖h0‖L1(Iv

∗

i0,i1
). Moreover using the triangle inequality and

(2.1), (1.24)-(1.26), (1.31), (1.32), we have

|Ui+1 − Ui|2

≤3
(
|Ui+1/2+ − Ui+1/2−|2 + |Ui+1/2+ − Ui+1|2 + |Ui+1/2− − Ui|2

)

≤3
(
|Ui+1/2+ − Ui+1/2−|2 + (1 + u2i+1/ghM)|zi+1 − zi|2

+ (1 + u2i /ghM)|zi − zi−1|2
)
. (2.40)
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With (2.39) we get (2.3) of Proposition 2.1 (apply the inequality to the final
time T + ∆t to get the sum until n = N). Moreover, using (1.20), (A.100),
(A.101) and (2.3), we get (2.4) of Proposition 2.1.

2.5 End of the proof of Proposition 2.1: estimate of

the gradient of the approximate solution

Now from (1.33) we compute for tn ≤ t < tn+1 and xi < x < xi+1

∂xU∆ =
t− tn
∆t

Un+1
i+1 − Un+1

i − Un
i+1 + Un

i

∆x
+
Un
i+1 − Un

i

∆x
. (2.41)

Thus we get

∫ tn+1

tn

∫ xi+1

xi

|∂xU∆|2dxdt ≤
∆t

∆x

[
|Un+1

i+1 − Un+1
i |2 + |Un

i+1 − Un
i |2
]
. (2.42)

In consequence, by using (2.3) we get (2.5) by summing over i and n. Simi-
larly, from (1.33) we compute for tn ≤ t < tn+1 and xi < x < xi+1

∂tU∆ =
1

∆t

[
Un+1
i+1 − Un+1

i − Un
i+1 + Un

i

∆x
(x− xi) + Un+1

i − Un
i

]
. (2.43)

Thus
∫ tn+1

tn

∫ xi+1

xi

|∂tU∆|2dxdt ≤
∆x

∆t

[
|Un+1

i+1 − Un
i+1|2 + |Un+1

i − Un
i |2
]
. (2.44)

In consequence, by using (2.4) we get (2.6) by summing over i and n. This
concludes the proof of Proposition 2.1.

3 Interpolation estimates

Before going into the proof of Theorem 1.1, we give some interpolation esti-
mates.

3.1 Definition of interpolation functions Ũ∆ and F̃∆

We define Ũ∆(t, x) a piecewise constant function in space by

Ũ∆(t, x) = Un
i − t− tn

∆x

(
Fi+1/2− − Fi−1/2+

)
(3.1)
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for tn ≤ t < tn+1, xi−1/2 < x < xi+1/2, with Fi+1/2−, Fi−1/2+ defined in (1.21),
(1.22). We remark that for xi−1/2 < x < xi+1/2 and n = 0, . . . , N ,

Ũ∆(tn, x) = Un
i , (3.2)

and thus, with (1.20), Ũ∆ is continuous with respect to time. We also define

F̃∆(t, x) for xi−1/2 < x < xi+1/2, tn ≤ t < tn+1, by

F̃∆(t, x) =
x− xi−1/2

∆x

(
F+(Un

i+1/2−) + F−(Un
i+1/2+)

)

+
xi+1/2 − x

∆x

(
F+(Un

i−1/2−) + F−(Un
i−1/2+)

)
, (3.3)

with F+, F− defined in (1.28), Un
i+1/2−, U

n
i+1/2+ defined in (1.24). Then F̃∆

is continuous with respect to x and we have

∀i ∈ Z F̃∆(t, xi+1/2) = F+(Un
i+1/2−) + F−(Un

i+1/2+) = F
(
Un
i+1/2−, U

n
i+1/2+

)
.

(3.4)
Then because of (1.21), (1.22) we have the partial differential equation

∂tŨ∆ + ∂xF̃∆ = S̃∆, (3.5)

with S̃∆ piecewise constant in time and space defined by

S̃∆(t, x) =
1

∆x

(
Si+1/2− + Si−1/2+

)
(3.6)

for tn ≤ t < tn+1 and xi−1/2 < x < xi+1/2, with Si+1/2−, Si+1/2+ defined in
(1.23).

3.2 Estimate of
∫
T

0

∫
xi1+1/2

xi0−1/2
|U∆ − Ũ∆|2 dtdx

Lemma 3.1. With the assumptions of Theorem 1.1, let N ∈ N
∗, T = N∆t,

i0, i1 ∈ Z such that i0 ≤ i1. Let U∆ be the approximate solution (1.33) and

Ũ∆ defined by (3.1). Then

(∫ T

0

∫ xi1+1/2

xi0−1/2

|U∆ − Ũ∆|2 dtdx
)1/2

≤ C
√
∆x, (3.7)

with |·| defined by (2.1). The constant C depends only on g, hm, hM , uM , vm,
β, T , ‖z‖L∞ , TV 2Iv∗i0−1,i1+1

((zi)), ‖η(U0)‖L1(Iv
∗

i0−1,i1+1
) and ‖h0‖L1(Iv

∗

i0−1,i1+1
),

with Iv
∗

i0−1,i1+1 defined in (2.2).
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Proof. We use the definition (1.33) of U∆ and write for all xi < x < xi+1 and
tn ≤ t < tn+1

U∆ − Un
i

=
1

∆t

[
Un+1
i+1 − Un+1

i − Un
i+1 + Un

i

∆x
(x− xi) + Un+1

i − Un
i

]
(t− tn)

+
Un
i+1 − Un

i

∆x
(x− xi). (3.8)

Using the triangle inequality, we obtain

|U∆ − Un
i | ≤ |Un+1

i+1 − Un+1
i |+ |Un

i+1 − Un
i |+ |Un+1

i − Un
i |. (3.9)

It implies also

|U∆ − Un
i+1| ≤ |Un+1

i+1 − Un+1
i |+ 2|Un

i+1 − Un
i |+ |Un+1

i − Un
i |. (3.10)

Thus
∫ tn+1

tn

∫ xi+1

xi

∣∣∣U∆ − (Un
i 1xi<x<xi+1/2

+ Un
i+11xi+1/2<x<xi+1

)
∣∣∣
2

dxdt

≤ 3∆t∆x
(
|Un+1

i+1 − Un+1
i |2 + 4|Un

i+1 − Un
i |2 + |Un+1

i − Un
i |2
)
.

(3.11)

Next, we set
U1
∆(t, x) = Un

i , (3.12)

for xi−1/2 < x < xi+1/2, tn ≤ t < tn+1. Taking the sum over n and i of (3.11)
and doing translations of indices, we get

∫ T

0

∫ xi1+1/2

xi0−1/2

|U∆ − U1
∆|2dxdt ≤ 15∆x

N∑

n=0

i1∑

i=i0−1

∆t|Un
i+1 − Un

i |2

+3∆x
N−1∑

n=0

i1∑

i=i0−1

∆t|Un+1
i − Un

i |2. (3.13)

Then we use the discrete gradient estimates (2.3), (2.4) and the CFL condi-
tion (1.30) to get

∫ T

0

∫ xi1+1/2

xi0−1/2

|U∆ − U1
∆|2dxdt ≤ C2∆x, (3.14)

with C2 a constant depending on g, hm, hM , uM , vm, β, T , ‖z‖L∞ , TV 2Iv∗i0−1,i1+1
((zi)),

‖η(U0)‖L1(Iv
∗

i0−1,i1+1
) and ‖h0‖L1(Iv

∗

i0−1,i1+1
).
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Next we use the definition (3.1) of Ũ∆ and the definitions (1.20)-(1.23)
and get for all xi−1/2 < x < xi+1/2 and tn ≤ t < tn+1

Un
i − Ũ∆

=
t− tn
∆x

(
F+(Un

i+1/2−) + F−(Un
i+1/2+)− F+(Un

i−1/2−)− F−(Un
i−1/2+)

− g

2

(
0

(hni+1/2−)
2 − (hni )

2 + (hni )
2 − (hni−1/2+)

2)

))
, (3.15)

with F+, F− defined in (1.28), Un
i+1/2−, U

n
i+1/2+ defined in (1.24), hni+1/2+,

hni+1/2− defined in (1.25). Then, using that F+ and F− are Lipschitz contin-

uous, see (A.100) and (A.101), with the CFL condition (1.30) we obtain that
there exists C3 > 0, depending on g, hm, hM , uM and vm such that

|Un
i − Ũ∆| ≤C3

(
|Un

i+1/2− − Un
i−1/2−|+ |Un

i+1/2+ − Un
i−1/2+|

+ |hni − hni+1/2−|+ |hni − hni−1/2+|
)
. (3.16)

Then using an estimate similar to (2.40) we obtain

|Un
i − Ũ∆| ≤ C3

(
|Un

i −Un
i−1|+ |Un

i+1−Un
i |+ |zi− zi−1|+ |zi+1− zi|

)
. (3.17)

Thus
∫ tn+1

tn

∫ xi+1/2

xi−1/2

|Un
i − Ũ∆|2dtdx

≤4C2
3∆t∆x

(
|Un

i − Un
i−1|2 + |Un

i+1 − Un
i |2 + |zi − zi−1|2 + |zi+1 − zi|2

)
.

(3.18)

Taking the sum over n and i and doing translations of indices, we get

∫ T

0

∫ xi1+1/2

xi0−1/2

|U1
∆ − Ũ∆|2dxdt

≤8C2
3∆x

(
N−1∑

n=0

i1∑

i=i0−1

∆t|Un
i+1 − Un

i |2 +
N−1∑

n=0

i1∑

i=i0−1

∆t|zi+1 − zi|2
)
, (3.19)
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with U1
∆ defined in (3.12). Next, using the gradient estimate (2.3) we get

∫ T

0

∫ xi1+1/2

xi0−1/2

|U1
∆ − Ũ∆|2dxdt ≤ C2∆x, (3.20)

with C2 a constant depending on g, hm, hM , uM , vm, β, T , ‖z‖L∞ , TV 2Iv∗i0−1,i1+1
((zi)),

‖η(U0)‖L1(Iv
∗

i0−1,i1+1
) and ‖h0‖L1(Iv

∗

i0−1,i1+1
).

Finally, noticing that U∆ − Ũ∆ = (U∆ − U1
∆) + (U1

∆ − Ũ∆), we get

∫ T

0

∫ xi1+1/2

xi0−1/2

|U∆ − Ũ∆|2dtdx

≤ 2

(∫ T

0

∫ xi1+1/2

xi0−1/2

|U∆ − U1
∆|2dtdx+

∫ T

0

∫ xi1+1/2

xi0−1/2

|U1
∆ − Ũ∆|2dtdx

)
.

(3.21)

With (3.14) and (3.20) we get (3.7), which concludes the proof.

3.3 Estimate of
∫
T

0

∫
xi1+1/2

xi0−1/2
|F (U∆)− F̃∆|2 dtdx

We will see later on that in order to prove compactness of the sequence
∂tη(U∆) + ∂xG(U∆) in H

−1
loc , we need an estimate on F (U∆)− F̃∆.

Lemma 3.2. With the assumptions of Theorem 1.1, let N ∈ N
∗, T = N∆t,

i0, i1 ∈ Z such that i0 ≤ i1. Let U∆ be the approximate solution (1.33) and

F̃∆ defined by (3.3). Then

(∫ T

0

∫ xi1+1/2

xi0−1/2

|F (U∆)− F̃∆|2 dtdx
)1/2

≤ C
√
∆x, (3.22)

with |·| defined by (2.1). The constant C depends only on g, hm, hM , uM , vm,
β, T , ‖z‖L∞ , TV 2Iv∗i0−1,i1+1

((zi)), ‖η(U0)‖L1(Iv
∗

i0−1,i1+1
) and ‖h0‖L1(Iv

∗

i0−1,i1+1
),

Iv
∗

i0−1,i1+1 defined in (2.2).

Proof. We recall here (3.3)

F̃∆(t, x) =
x− xi−1/2

∆x

(
F+(Un

i+1/2−) + F−(Un
i+1/2+)

)

+
xi+1/2 − x

∆x

(
F+(Un

i−1/2−) + F−(Un
i−1/2+)

)
, (3.23)
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for all xi−1/2 < x < xi+1/2 and tn ≤ t < tn+1. Moreover, we have

F (U∆) = F+(U∆) + F−(U∆). (3.24)

Thus, using the triangle inequality, for all xi−1/2 < x < xi+1/2, we get
∣∣F̃∆(t, x)− F (U∆(t, x))

∣∣
≤
∣∣F+(Un

i+1/2−)− F+(U∆)
∣∣+
∣∣F−(Un

i+1/2+)− F−(U∆)
∣∣

+
∣∣F+(Un

i−1/2−)− F+(U∆)
∣∣ +
∣∣F−(Un

i+1/2+)− F−(U∆)
∣∣ . (3.25)

Then, using that F+ and F− are Lipschitz continuous, see (A.100) and
(A.101), we obtain that there exists C > 0, depending on g, hm, hM , uM
and vm such that

|F̃∆(t, x)− F (U∆)|
≤ C

(∣∣Un
i+1/2− − U∆

∣∣+
∣∣Un

i+1/2+ − U∆

∣∣ +
∣∣Un

i−1/2− − U∆

∣∣+
∣∣Un

i−1/2+ − U∆

∣∣) .
(3.26)

Moreover using (1.24)-(1.26), (1.31), (1.32), we get

|F̃∆(t, x)− F (U∆)| ≤C
(
2
∣∣Un

i − U∆

∣∣ +
∣∣Un

i+1 − U∆

∣∣ +
∣∣Un

i−1 − U∆

∣∣

+ 2|zi+1 − zi|+ 2|zi − zi−1|
)
. (3.27)

Thus we get
∫ tn+1

tn

∫ xi+1/2

xi−1/2

|F̃∆(t, x)− F (U∆)|2dtdx

≤C2

∫ tn+1

tn

∫ xi+1/2

xi−1/2

|Un
i − U∆|2 dtdx

+ C2∆t∆x
(∣∣Un

i+1 − Un
i

∣∣2 +
∣∣Un

i−1 − Un
i

∣∣2 + |zi+1 − zi|2 + |zi − zi−1|2
)
.

(3.28)

Taking the sum over n and i and doing translations of indices, we get
∫ T

0

∫ xi1+1/2

xi0−1/2

|F̃∆(t, x)− F (U∆(t, x))|2dxdt ≤ C2

∫ T

0

∫ xi1+1/2

xi0−1/2

|U∆ − U1
∆|2dxdt

+C2∆x

(
N−1∑

n=0

i1∑

i=i0−1

∆t|Un
i+1 − Un

i |2 +
N−1∑

n=0

i1∑

i=i0−1

∆t|zi+1 − zi|2
)
.

(3.29)

Using the previous estimate (3.14) involving U∆ −U1
∆ and the gradient esti-

mate (2.3), we get (3.22), which concludes the proof.
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4 Proof of Theorem 1.1

Using (3.5) we write

∂tU∆ + ∂xF (U∆) = ∂t(U∆ − Ũ∆) + ∂x

(
F (U∆)− F̃∆

)
+ S̃∆, (4.1)

with U∆ defined in (1.33), Ũ∆ defined in (3.1), F̃∆ defined in (3.3), and S̃∆

defined in (3.6). Note that in (4.1) all terms are locally bounded functions.
We multiply (4.1) by η′(U∆) and get, for any entropy-entropy flux (η,G), the
decomposition

∂tη(U∆) + ∂xG(U∆) = η′(U∆) · ∂t(U∆ − Ũ∆)

+ η′(U∆) · ∂x
(
F (U∆)− F̃∆

)
+ η′(U∆) · S̃∆

≡ R1 +M1 +R2 +M2 + η′(U∆) · S̃∆, (4.2)

with

R1 = ∂t

(
η′(U∆) · (U∆ − Ũ∆)

)
,

M1 = −η′′(U∆) · ∂tU∆ ·
(
U∆ − Ũ∆

)
,

R2 = ∂x

(
η′(U∆) ·

(
F (U∆)− F̃∆

))
,

M2 = −η′′(U∆) · ∂xU∆ ·
(
F (U∆)− F̃∆

)
. (4.3)

We have using (3.22)
∫ T

0

∫ R

−R

∣∣∣η′(U∆) ·
(
F (U∆)− F̃∆

)∣∣∣
2

dxdt

≤ ‖η′(U∆)‖2L∞((0,T )×(−R,R))

∫ T

0

∫ R

−R

∣∣∣F (U∆)− F̃∆

∣∣∣
2

dxdt

≤ CR∆x, (4.4)

thus R2 goes to zero in H−1
loc as ∆x → 0. Similarly, using (3.7), R1 goes to

zero in H−1
loc as ∆x → 0. Furthermore, using (2.5) and (3.22), we have

∫ T

0

∫ R

−R

|M2|dxdt

≤‖η′′(U∆)‖L∞

(∫∫
|∂xU∆|2dxdt

)1/2(∫ ∫ ∣∣∣F (U∆)− F̃∆

∣∣∣
2

dxdt

)1/2

≤‖η′′(U∆)‖L∞

C2√
∆x

C
√
∆x

≤ CR. (4.5)
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Thus M2 is bounded in Mloc((0, T )×R). Similarly, using (2.6) and (3.7), M1

is bounded in Mloc((0, T )× R).

Then, the definition (3.6) of S̃∆ and the definitions (1.23) of Si+1/2−,

Si+1/2+ yield with (1.31), (1.32) and the L1
loc condition (1.35) that S̃∆ is

uniformly bounded in L1
loc. According to (4.2) and (4.3) one has

∂tη(U∆) + ∂xG(U∆)−R1 − R2 =M1 +M2 + η′(U∆) · S̃∆. (4.6)

The right-hand side is bounded in Mloc ∩ W−1,p
loc , ∀p, 1 < p < +∞, as a

consequence it is compact in H−1
loc . At this point, we know that R1 +R2 and

M1+M2+η
′(U∆)·S̃∆ are compact in H−1

loc , therefore their sum, which is equal
to ∂tη(U∆)+∂xG(U∆), is compact in H−1

loc . This holds for any couple entropy-
entropy flux (η,G). Furthermore, (U∆)∆>0 is bounded since we assume that
(Un

i )i,n is a bounded sequence. We are now able to apply the compensated
compactness method [23] and we get that up to a subsequence U∆ → U a.e.
and in L1

loc,t,x as ∆t→ 0 and ∆x→ 0.
Moreover, according to Lemma A.8, ∂tU∆ is bounded in L∞

t (D′
x) and

therefore we deduce that U∆ → U in Ct([0, T ], L
∞
x,w∗(Rloc)), by the Arzelà

Ascoli theorem. Then, knowing that U∆ converges in Lp
loc to U , we can apply

Lemma A.9, which concludes the convergence of the approximate source term
S̃∆ to S.

Finally we pass to the limit in (4.1) using (3.7), (3.22), which enables
us to get that the limit U is a weak solution to our system (1.1). Moreover
passing to the limit weakly in (2.16) using (1.36), we get (1.2). Similarly, the
weak limit of (4.6) yields (1.41). This ends the proof of Theorem 1.1.

A Appendix

Appendix: some technical lemmas

We prove here some technical results used throughout the paper. The
notations are introduced in Section 1.

Lemma A.1. Let zi = z(xi) for all i ∈ Z, where z ∈ C(R) satisfies ∂xz ∈
L1
loc(R), and (xi) is a uniform grid of length ∆x. Then for any bounded

interval [a, b],

TV 2[a,b]((zi)) ≡
∑

[xi,xi+1]⊂[a,b]

(zi+1 − zi)
2 (A.1)

verifies

TV 2[a,b]((zi)) ≤
(∫ b

a

|∂xz(x)|dx
)2

, (A.2)
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and

TV 2[a,b]((zi)) → 0 as ∆x → 0. (A.3)

Proof. We have

zi+1 − zi = z(xi+1)− z(xi) =

∫ xi+1

xi

∂xz(x)dx, (A.4)

thus for [xi, xi+1] ⊂ [a, b]

|zi+1 − zi| ≤
∫ xi+1

xi

|∂xz(x)|dx ≤
∫ b

a

|∂xz(x)|dx. (A.5)

It follows that

∑
(zi+1 − zi)

2 ≤
∑∫ xi+1

xi

|∂xz(x)|dx×
∫ b

a

|∂xz(x)|dx

≤
(∫ b

a

|∂xz(x)|dx
)2

,

(A.6)

which proves (A.2). Next, when z is Lipschitz continuous one has |zi+1−zi| ≤
Lip(z)∆x, thus TV 2[a,b]((zi)) ≤ Lip(z)2∆x(b− a) and (A.3) holds. When we
have only ∂xz ∈ L1

loc, for any ε > 0 one can find zε ∈ Lip(R) such that
‖∂xz − ∂xzε‖L1([a,b]) ≤ ε, and if follows that (A.3) also holds.

Lemma A.2. Let Uk = (hk, hkuk) for k = 1, 2 with hk ≥ 0. Then

g2π2

6
(2M1 +M2) (M1 −M2)

2

=H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1)

− 1(ξ−u1)2>2gh1
M2

(
(ξ − u1)

2

2
− gh1

)
, (A.7)

where Mk ≡ Mk(ξ) ≡ M(Uk, ξ) and M(U, ξ) is defined in (1.9), H0(f) ≡
H0(f, ξ) is defined in (1.12).

Proof. This lemma indeed gives the remainder in the inequality (1.16). Using
the identity

b3 − a3 − 3a2(b− a) = (b+ 2a)(b− a)2, (A.8)

one has

g2π2

6
(2M1 +M2) (M1 −M2)

2 = H0(M2)−H0(M1)−H ′
0(M1) (M2 −M1) ,

(A.9)
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where we donote H ′
0(f, ξ) ≡ ∂

∂f
H0(f, ξ). Thus we have to prove that

(
η′(U1)

(
1
ξ

)
−H ′

0(M1)

)
(M2 −M1)

= −1(ξ−u1)2>2gh1
M2

(
(ξ − u1)

2

2
− gh1

)
. (A.10)

On the one hand we compute according to (1.17)

η′(U1)

(
1
ξ

)
= gh1 −

u21
2

+ u1ξ = gh1 +
ξ2

2
− (ξ − u1)

2

2
. (A.11)

On the other hand we have using (1.9)

H ′
0(M1) =

ξ2

2
+
g2π2

2
M2

1 =
ξ2

2
+

(
gh1 −

(ξ − u1)
2

2

)

+

. (A.12)

Subtracting (A.12) to (A.11) it follows that

η′(U1)

(
1
ξ

)
−H ′

0(M1) = −1(ξ−u1)2>2gh1

(
(ξ − u1)

2

2
− gh1

)
, (A.13)

and therefore that
(
η′(U1)

(
1
ξ

)
−H ′

0(M1)

)
(M2 −M1)

=− 1(ξ−u1)2>2gh1

(
(ξ − u1)

2

2
− gh1

)
(M2 −M1). (A.14)

Finally we notice that

(ξ − u1)
2 ≥ 2gh1 ⇐⇒M1 = 0, (A.15)

thus we get (A.10), which concludes the proof.

Lemma A.3. There exists some constant α > 0, depending only on the

gravity constant g and on the constants hm, hM , uM involved in (1.38), such
that

∫

R

|ξ|
(
H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1)

)
dξ

≥ α (η(U2)− η(U1)− η′(U1) (U2 − U1)) (A.16)

for all U1, U2 ∈ Uhm,hM ,uM
defined by (1.38) and where Mk ≡ Mk(ξ) ≡

M(Uk, ξ), withM(U, ξ) defined in (1.9), H0(f) ≡ H0(f, ξ) is defined in (1.12)
and η(U) is defined in (1.3).

25



Proof. Note that without the factor |ξ| in (A.16), the inequality would be-
come an equality with α = 1. Thus the difficulty is to show that small values
of ξ do not make a significant contribution. The idea is to make a linear
combination in the variable η′(U) as in [14, Lemma 2.3], but the difficulty is
that in this variable, the set where h ≥ 0 is not convex. This is why we have
to be far from vacuum. We set

Ûm =
{
(h, hu) ∈ R

2, h ≥ hm
}
, (A.17)

and we first deal with the case

U1 =

(
h1
h1u1

)
and U2 =

(
h2
h2u2

)
∈ Ûm, such that |u1 − u2| ≤

√
ghm.

(A.18)
In this case we have

∀t ∈ [0, 1], (1− t)η′(U1) + tη′(U2) ∈ η′(Ũm). (A.19)

with

Ũm =

{
(h, hu) ∈ R

2, h ≥ hm
2

}
. (A.20)

Indeed we notice that using (1.17),
(
V1
V2

)
∈ η′(Ũm) ⇐⇒ V1 ≥ g

hm
2

− V 2
2

2
. (A.21)

Thus (A.19) is equivalent to

∀t ∈ [0, 1], ∀h1, h2 ≥ hm, ∀u1, u2 ∈ R, such that |u1 − u2| ≤
√
ghm,

(1− t)

(
gh1 −

u21
2

)
+ t

(
gh2 −

u22
2

)
≥ g

hm
2

− 1

2

(
(1− t)u1 + tu2

)2

.

(A.22)

Thus we have to check that

∀t ∈ [0, 1], ∀u1, u2 ∈ R, such that |u1 − u2| ≤
√
ghm,

(1− t)

(
ghm − u21

2

)
+ t

(
ghm − u22

2

)
≥ g

hm
2

− 1

2

(
(1− t)u1 + tu2

)2

.

(A.23)

This inequality simplifies to

ghm
2

≥ t(1− t)

2
(u1 − u2)

2 , (A.24)

26



which holds true when t ∈ [0, 1] and |u1− u2| ≤ 2
√
ghm. This proves (A.19).

According to the property (A.19) we can now define a path v(t) ∈ Ũm,
for 0 ≤ t ≤ 1, connecting the two states U1, U2 satisfying (A.18), by

η′ (v(t)) = (1− t)η′(U1) + tη′(U2). (A.25)

Such a definition is possible because η′ is a diffeormorphism, see (1.17). It
enables us to set

φ(t) =

∫

R

|ξ|
(
H0(M(v(t), ξ), ξ)−H0(M(U1, ξ), ξ)

− η′(U1)

(
1
ξ

)
(M(v(t), ξ)−M(U1, ξ))

)
dξ

− α (η(v(t))− η(U1)− η′(U1) (v(t)− U1)) . (A.26)

We notice that φ(0) = 0, and the desired inequality (A.16) is equivalent to
φ(1) ≥ 0. Thus it is sufficient to prove that φ is nondecreasing. Using the
fact that

η′(U)

(
1
ξ

)
= H ′

0 (M(U, ξ), ξ) , for all ξ ∈ R such that M(U, ξ) > 0, (A.27)

we can compute

φ′(t) =

∫

R

|ξ| (η′(v(t))− η′(U1))

(
1
ξ

)
M ′(v(t), ξ)v′(t)dξ

− α (η′(v(t))− η′(U1)) v
′(t). (A.28)

Moreover, using that

η′(v(t))− η′(U1) = t(η′(U2)− η′(U1)) = tη′′(v(t))v′(t), (A.29)

we get

φ′(t) = t

∫

R

|ξ|η′′(v(t))v′(t)
(
1
ξ

)
M ′(v(t), ξ)v′(t)dξ

− α t η′′(v(t))v′(t)v′(t). (A.30)

This can be rewritten as

φ′(t) = t

∫

R

|ξ|M ′(v(t), ξ)⊗
(
η′′(v(t))

(
1
ξ

))
· v′(t) · v′(t)dξ

− α t η′′(v(t)) · v′(t) · v′(t). (A.31)
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Thus now it is sufficient for getting (A.16) to prove that

∀U ∈ Ũm, ∀X ∈ R
2

∫

R

|ξ|M ′(U, ξ)⊗
(
η′′(U)

(
1
ξ

))
·X ·Xdξ ≥ α η′′(U) ·X ·X. (A.32)

For all U ∈ Ũm and ξ ∈ R such that M(U, ξ) > 0, we compute

η′(U)

(
1
ξ

)
= H ′

0 (M(U, ξ), ξ) (A.33)

and

η′′(U)

(
1
ξ

)
= H ′′

0 (M(U, ξ), ξ)M ′(U, ξ). (A.34)

Moreover one can check that

H ′′
0 (M(U, ξ)) = g2π2M(U, ξ). (A.35)

Thus we obtain∫

R

|ξ|M ′(U, ξ)⊗
(
η′′(U)

(
1
ξ

))
dξ

=g2π2

∫

M(U,ξ)>0

|ξ| M(U, ξ)M ′(U, ξ)⊗M ′(U, ξ)dξ, (A.36)

and therefore the desired inequality (A.32) can be written

∀U ∈ Ũm, ∀X ∈ R
2

g2π2

∫

M(U,ξ)>0

|ξ| M(U, ξ) (M ′(U, ξ)X)
2
dξ ≥ α η′′(U) ·X ·X. (A.37)

According to (1.17), we have

η′(h, q) =

(
−1

2

q2

h2
+ gh,

q

h

)
, (A.38)

η′′(h, q) =

(
q2

h3 + g − q
h2

− q
h2

1
h

)
=

(
u2

h
+ g −u

h

−u
h

1
h

)
. (A.39)

Denoting X =

(
x1
x2

)
, we get

η′′(U) ·X ·X

=

(
g +

u2

h

)
x21 +

1

h
x22 −

2u

h
x1x2

=gx21 +
1

h
(x2 − ux1)

2

=gx21 + hx23, (A.40)
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where we denote

x3 =
1

h
(x2 − ux1) . (A.41)

In order to computeM ′(U, ξ)X , with (1.9) we compute the partial derivatives
where M(U, ξ) > 0,

∂hM(U, ξ) =
1

2gπ

(
2gh− (ξ − u)2

)−1/2
(
2g − 2

u

h
(ξ − u)

)
, (A.42)

∂huM(U, ξ) =
1

2gπ

(
2gh− (ξ − u)2

)−1/2 2

h
(ξ − u). (A.43)

It leads to the formula (where M(U, ξ) > 0)

M ′(U, ξ)X =
M(U, ξ)−1

g2π2

(
gx1 +

(ξ − u)

h
(x2 − ux1)

)

=
M(U, ξ)−1

g2π2
(gx1 + (ξ − u)x3) . (A.44)

Using (A.44) in the integral of (A.37) we get

g2π2

∫

M(U,ξ)>0

|ξ| M(U, ξ) (M ′(U, ξ)X)
2
dξ

=
1

g2π2

∫

M(U,ξ)>0

|ξ| 1

M(U, ξ)
(gx1 + (ξ − u)x3)

2 dξ

=
1

gπ

∫

(ξ−u)2<2gh

|ξ| 1

(2gh− (ξ − u)2)1/2
(gx1 + (ξ − u)x3)

2 dξ := I. (A.45)

As for (A.16), we notice that without the factor |ξ|, the inequality (A.37)
would become an equality with α = 1 (compute the integral (A.45) without
the factor |ξ|). With the factor |ξ|, we use the substitution v = ξ − u in
(A.45) and the convention that if u = 0 then sgn(u) = 1, to obtain

I ≥ 1

gπ
√
2gh

∫

|v|<
√
2gh

|v + u| (gx1 + vx3)
2 dv

≥ 1

gπ
√
2gh

∫

|v|<
√
2gh,sgn(v)=sgn(u)

(|v|+ |u|) (gx1 + |v| sgn(u)x3)2 dv

≥ 1

gπ
√
2gh

∫ √
2gh

0

v (gx1 + v sgn(u)x3)
2 dv

≥ 1

2gπ

∫ √
2gh

√
2gh
2

(gx1 + v sgn(u)x3)
2 dv

=

√
h√

2gπ

∫ 1

1/2

(
gx1 + ξ

√
2gh sgn(u)x3

)2
dξ. (A.46)
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The last integral is a positive definite quadratic form with respect to y1 = gx1
and y3 =

√
2gh sgn(u)x3. Thus we have for some absolute constant C0 > 0

(one can check that C0 = 1/(8× 13) works)

I ≥ C0

√
h√

2gπ

(
(gx1)

2 + ghx23
)
= C0

√
gh√
2π

(
gx21 + hx23

)
. (A.47)

Therefore by (A.45), (A.47) we get

g2π2

∫

M(U,ξ)>0

|ξ| M(U, ξ) (M ′(U, ξ)X)
2
dξ ≥ C0

√
gh√
2π

(
gx21 + hx23

)
. (A.48)

Because of (A.40), this proves that (A.37) holds with α1 = C0

√
ghm/2π. We

conclude that (A.16) holds for all U1, U2 ∈ Ûm such that |u1 − u2| ≤
√
ghm,

with the constant α1.
Thus, to conclude the lemma it is now sufficient to prove that

∃α2 > 0, ∀U1, U2 ∈ Uhm,hM ,uM
such that |u1 − u2| >

√
ghm,∫

R

|ξ|
(
H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1)

)
dξ ≥ α2. (A.49)

Indeed, when U1, U2 ∈ Uhm,hM ,uM
we have

η(U2)−η(U1)−η′(U1) (U2 − U1) = g
(h2 − h1)

2

2
+h2

(u2 − u1)
2

2
≤ C(g, hM , uM),

(A.50)
thus when (A.49) holds, we deduce (A.16). Proceeding by reductio ad ab-
surdum, let us assume that (A.49) does not hold. Thus

∀n > 0, ∃Un
1 , U

n
2 ∈ Uhm,hM ,uM

, such that

|un1 − un2 | >
√
ghm

and

∫

R

|ξ|
(
H0(M

n
2 )−H0(M

n
1 )− η′(Un

1 )

(
1
ξ

)
(Mn

2 −Mn
1 )

)
dξ ≤ 1

n
,

(A.51)

where Mn
i = M(Un

i , ξ). As Uhm,hM ,uM
is a closed and bounded set, we can

extract a subsequence (that we still denote Un
1 , U

n
2 ) such that

Un
1 → U1 ∈ Uhm,hM ,uM

, Un
2 → U2 ∈ Uhm,hM ,uM

, (A.52)

with
|u1 − u2| ≥

√
ghm. (A.53)
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By Lebesgue’theorem, (A.51) implies that

∫

R

|ξ|
(
H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1)

)
dξ ≤ 0. (A.54)

We also know by (A.7) that

H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1) ≥

g2π2

6
(2M1 +M2) (M1−M2)

2,

(A.55)
and therefore we get that

(2M1 +M2) (M1 −M2)
2 = 0 for almost every ξ. (A.56)

This implies that M1 =M2 a.e. and therefore that U1 = U2, in contradiction
with (A.53). This concludes the proof of Lemma A.3.

Lemma A.4. One has
∫

(ξ−u1)2>2gh1

|ξ|M(U2, ξ)

(
(ξ − u1)

2

2
− gh1

)
dξ

≤4
(
|u2|+

√
2gh2

)

gπ
√
gh2

K
3

2 min(gh2, K), (A.57)

for all U1 = (h1, h1u1), h1 > 0 and U2 = (h2, h2u2), h2 > 0, where M(U, ξ)
is defined in (1.9), and

K = g|h1 − h2|+ (|u2|+
√
2gh2)|u1 − u2|+

1

2
|u21 − u22|. (A.58)

Proof. We notice that for all ξ ∈ supp(M2) one has |ξ| ≤ |u2|+
√
2gh2, thus

we have
∣∣∣∣gh2 −

(ξ − u2)
2

2
−
(
gh1 −

(ξ − u1)
2

2

)∣∣∣∣

=

∣∣∣∣g(h2 − h1) + ξ(u2 − u1)−
1

2
(u22 − u21)

∣∣∣∣
≤ K. (A.59)

Therefore, using that ξ ∈ supp(M1)
c ∩ supp(M2) iff gh2 − (ξ−u2)2

2
≥ 0 and

(ξ−u1)2

2
− gh1 > 0, we get

∣∣∣∣gh2 −
(ξ − u2)

2

2

∣∣∣∣+
∣∣∣∣
(ξ − u1)

2

2
− gh1

∣∣∣∣ ≤ K. (A.60)
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Using (1.9) and (A.60), we get

∫

(ξ−u1)2>2gh1

|ξ|M(U2, ξ)

(
(ξ − u1)

2

2
− gh1

)
dξ

=

√
2

gπ

∫

supp(M1)c∩supp(M2)

|ξ|
(
gh2 −

(ξ − u2)
2

2

)1/2(
(ξ − u1)

2

2
− gh1

)
dξ

≤
√
2

gπ
(|u2|+

√
2gh2) |supp(M1)

c ∩ supp(M2)|K3/2. (A.61)

Thus it is now sufficient for getting (A.57) to prove that

|supp(M1)
c ∩ supp(M2)| ≤

4min(gh2, K)√
2gh2

. (A.62)

We observe from (A.60) that for ξ ∈ supp(M1)
c ∩ supp(M2) one has

P (ξ) ≤ 0, (A.63)

where

P (ξ) ≡ gh2 −
(ξ − u2)

2

2
−K. (A.64)

We notice that when ξ = u2, P reaches a maximum equals to gh2 −K, and
we distinguish two cases:

• If K ≥ gh2 then

|supp(M1)
c ∩ supp(M2)| ≤ |supp(M2)| = 2

√
2gh2, (A.65)

which concludes (A.62).

• If K < gh2, then the maximum of P is positive and using (A.63) we
get that for ξ ∈ supp(M1)

c ∩ supp(M2) we have

ξ ∈
[
u2 −

√
2gh2, r1

]⋃[
r2, u2 +

√
2gh2

]
, (A.66)

with r1 < u2 < r2 are such that P (r1) = P (r2) = 0. We have u2 −√
2gh2 < r1 because P (u2 −

√
2gh2) = −K < 0, and r2 < u2 +

√
2gh2

because P (u2 +
√
2gh2) = −K < 0. This configuration is illustrated

on the following picture.
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ξ

y

gh2 −K

u2 −
√
2gh2

r1

r̃1 r̃2

u2 r2

u2 +
√
2gh2

y = P (ξ)

Graph of ξ 7→ P (ξ) when K < gh2

Thus

|supp(M1)
c ∩ supp(M2)| ≤

∣∣∣r1 −
(
u2 −

√
2gh2

)∣∣∣+
∣∣∣u2 +

√
2gh2 − r2

∣∣∣ .
(A.67)

We set

r̃1 = u2 −
√

2gh2 +
2K√
2gh2

, (A.68)

and we notice that
2K√
2gh2

<
√
2gh2 (A.69)

because of the assumption K < gh2. Thus we obtain that

r̃1 < u2. (A.70)

Moreover

P (r̃1) =gh2 −
(r̃1 − u2)

2

2
−K

=gh2 −
1

2

(
−
√

2gh2 +
2K√
2gh2

)2

−K

=− K2

gh2
+ 2K −K = K

(
1− K

gh2

)
> 0. (A.71)

With (A.70) we deduce that

r1 < r̃1 < u2. (A.72)
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Similarly we set

r̃2 = u2 +
√
2gh2 −

2K√
2gh2

, (A.73)

and by the same arguments we obtain that

u2 < r̃2 < r2. (A.74)

Putting together (A.72) and (A.74), we get
∣∣∣r1 −

(
u2 −

√
2gh2

)∣∣∣+
∣∣∣u2 +

√
2gh2 − r2

∣∣∣

≤
∣∣∣r̃1 −

(
u2 −

√
2gh2

)∣∣∣+
∣∣∣u2 +

√
2gh2 − r̃2

∣∣∣

=
4K√
2gh2

. (A.75)

With (A.67) we get (A.62) in the case K < gh2, and this concludes the
proof of Lemma A.4.

Lemma A.5. There exists some C > 0 depending only on g, hm, hM , uM
such that

∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ

≥C
(
g
(h2 − h1)

2

2
+ hm

(u2 − u1)
2

2

)
, (A.76)

for all U1, U2 ∈ Uhm,hM ,uM
defined by (1.38) and where Mk ≡ Mk(ξ) ≡

M(Uk, ξ), with M(U, ξ) defined by (1.9).

Proof. Let U1, U2 ∈ Uhm,hM ,uM
. According to Lemma A.2 we have

∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ

=

∫

R

|ξ|
(
H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1)

)
dξ

−
∫

(ξ−u1)2>2gh1

|ξ|M2

(
(ξ − u1)

2

2
− gh1

)
dξ. (A.77)

Let us first consider the case of data

U1, U2 such that |h1 − h2| ≤
1

4C̃2
1

and |u1 − u2| ≤
1

4C̃2
2

, (A.78)
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for some positive constants C̃1, C̃2 depending on g, hm, hM , uM such that
4C̃2

2 ≥ 1√
ghm

. These constants will be chosen further on.

For data satisfying (A.78), we are going to estimate the right-hand side
of (A.77). On the one hand, in order to estimate the first term in the RHS

of (A.77), we apply Lemma A.3. Since 4C̃2
2 ≥ 1√

ghm
we are in the case (A.18)

and we get
∫

R

|ξ|
(
H0(M2)−H0(M1)− η′(U1)

(
1
ξ

)
(M2 −M1)

)
dξ

≥α1 (η(U2)− η(U1)− η′(U1) (U2 − U1))

=α1

(
g
(h2 − h1)

2

2
+ h2

(u2 − u1)
2

2

)

≥α1

(
g
(h2 − h1)

2

2
+ hm

(u2 − u1)
2

2

)
, (A.79)

with α1 = C0

√
ghm/2π and C0 > 0 is and absolute constant. On the other

hand, in order to estimate the second term in the RHS of (A.77), we apply
Lemma A.4 and obtain
∫

(ξ−u1)2>2gh1

|ξ|M(U2, ξ)

(
(ξ − u1)

2

2
− gh1

)
dξ

≤ 4
(
|u2|+

√
2gh2

)

gπ
√
gh2

(
g|h1 − h2|+ (|u2|+

√
2gh2)|u1 − u2|+

1

2
|u21 − u22|

) 5
2

≤ C1(g, hm, hM , uM) (g|h1 − h2|+ C2(g, hm, hM , uM)|u1 − u2|)
5

2 , (A.80)

with

C1(g, hm, hM , uM) =
4
(
uM +

√
2ghM

)

gπ
√
ghm

, (A.81)

C2(g, hm, hM , uM) = 2uM +
√

2ghM . (A.82)

Using the Jensen inequality we have for a, b ≥ 0,

(a+ b)5/2 = 25/2
(
a+ b

2

)5/2

≤ 25/2
a5/2 + b5/2

2
, (A.83)

we get
∫

(ξ−u1)2>2gh1

|ξ|M(U2, ξ)

(
(ξ − u1)

2

2
− gh1

)
dξ

≤ 23/2C1(g, hm, hM , uM)
(
g

5

2 |h1 − h2|
5

2 + C2(g, hm, hM , uM)
5

2 |u1 − u2|
5

2

)
.

(A.84)
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Thus, using the estimates (A.79) and (A.84) in the RHS of (A.77), we get

∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ

≥ α1

(
g
(h2 − h1)

2

2
+ hm

(u2 − u1)
2

2

)

− 23/2C1

(
g

5
2 |h1 − h2|

5
2 + C

5
2

2 |u1 − u2|
5
2

)

= α1
g(h2 − h1)

2

2

(
1− C̃1|h1 − h2|

1

2

)

+ α1
hm(u2 − u1)

2

2

(
1− C̃2|u1 − u2|

1
2

)
, (A.85)

with

C̃1 =
23/2+1C1g

5

2

α1g
, C̃2 =

23/2+1C1C
5
2

2

α1hm
. (A.86)

One can check that C̃2 > (ghm)
−1/4/2. From (A.85), since we are dealing

with U1, U2 satisfying (A.78), we get

∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ

≥ α1

2

(
g
(h2 − h1)

2

2
+ hm

(u2 − u1)
2

2

)
. (A.87)

At this point we have the result (A.76) for all U1, U2 ∈ Uhm,hM ,uM
satisfying

(A.78). Thus, since the right-hand side of (A.76) is bounded, it is now
sufficient to prove that

∃α3 > 0, ∀U1, U2 ∈ Uhm,hM ,uM
such that

|h1 − h2| >
1

4C̃2
1

or |u1 − u2| >
1

4C̃2
2

,

we have

∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ ≥ α3. (A.88)

Using a reductio ad absurdum as in the proof of Lemma A.3, we suppose
that (A.88) does not hold. Thus

∀n > 0, ∃Un
1 , U

n
2 ∈ Uhm,hM ,uM

, such that

4C̃2
1 |hn1 − hn2 |+ 4C̃2

2 |un1 − un2 | > 1

and

∫

R

|ξ|g
2π2

6
(2Mn

1 +Mn
2 ) (M

n
1 −Mn

2 )
2dξ ≤ 1

n
, (A.89)
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where Mn
k = M(Un

k , ξ). As Uhm,hM ,uM
is a closed and bounded set, we can

extract a subsequence such that

Un
1 → U1 ∈ Uhm,hM ,uM

, Un
2 → U2 ∈ Uhm,hM ,uM

(A.90)

with
4C̃2

1 |h1 − h2|+ 4C̃2
2 |u1 − u2| ≥ 1, (A.91)

and by Lebesgue’s theorem
∫

R

|ξ|g
2π2

6
(2M1 +M2) (M1 −M2)

2dξ = 0. (A.92)

Therefore we get

(2M1 +M2) (M1 −M2)
2 = 0 for almost all ξ, (A.93)

itself implying that M1 = M2 a.e. and therefore U1 = U2, in contradiction
with (A.91). This concludes the proof of Lemma A.5.

Lemma A.6. Let Uk = (hk, hkuk), k = 1, 2 with hk ≥ 0. Then
∫

R

|M(U1, ξ)−M(U2, ξ)| dξ

≤ 2
√
3√
g

(
g(h2 − h1)

2 +min(h1, h2)(u2 − u1)
2
) 1

2 , (A.94)

with M(U, ξ) defined by (1.9).

Proof. Let us recall that from [5, Lemma 3.11] one has
∫

R

M(U1, ξ) (M(U1, ξ)−M(U2, ξ))
2 dξ

≤ 3

g2π2

(
g(h2 − h1)

2 +min(h1, h2)(u2 − u1)
2
)
. (A.95)

Then using the Cauchy-Schwarz inequality,
∫

R

|M(U1, ξ)−M(U2, ξ)| dξ

≤
∫

M1>0

|M1 −M2| dξ +
∫

M2>0

|M1 −M2| dξ

≤
(∫

M1>0

1

M1
dξ

)1/2(∫

M1>0

M1 (M1 −M2)
2 dξ

)1/2

+

(∫

M2>0

1

M2
dξ

)1/2(∫

M2>0

M2 (M1 −M2)
2 dξ

)1/2

. (A.96)
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Using the substitution v = ξ−u√
2gh

we get

∫

M(U,ξ)>0

1

M(U, ξ)
dξ =

∫ u+
√
2gh

u−
√
2gh

gπ

(2gh− (ξ − u)2)1/2
dξ

=

∫ 1

−1

gπ
√
2gh

√
2gh (1− v2)1/2

dv = gπ
[
arcsin(v)

]1
−1

= gπ2. (A.97)

Now from (A.96), using (A.95) and (A.97) we get (A.94), which concludes
the proof.

Lemma A.7. Let Uk = (hk, hkuk), k = 1, 2 with hk ≥ 0, and set

C4 = max
v∈{|u1|+

√
2gh1,|u2|+

√
2gh2}

|v|
(
1 + ν2v2

) 1

2 , (A.98)

for some given ν > 0. Then one has denoting ‖|(x1, x2)‖|2 = x21 + ν2x22,

‖|F (U1)− F (U2)‖| ≤
2
√
3√
g
C4

(
g(h2 − h1)

2 +min(h1, h2)(u2 − u1)
2
) 1

2 ,

(A.99)

‖|F+(U1)− F+(U2)‖| ≤
2
√
3√
g
C4

(
g(h2 − h1)

2 +min(h1, h2)(u2 − u1)
2
) 1

2 ,

(A.100)

‖|F−(U1)− F−(U2)‖| ≤
2
√
3√
g
C4

(
g(h2 − h1)

2 +min(h1, h2)(u2 − u1)
2
) 1

2 .

(A.101)

Proof. We recall that from (1.28),

F+(U) =

∫

R

ξ1ξ>0

(
1
ξ

)
M(U, ξ)dξ,

F−(U) =

∫

R

ξ1ξ<0

(
1
ξ

)
M(U, ξ)dξ,

and F (U) = F+(U) + F−(U) =

∫

R

ξ

(
1
ξ

)
M(U, ξ)dξ. (A.102)

Thus the result is an immediate consequence of Lemma A.6 and of the fact
that

∀ξ ∈ suppM1 ∪ suppM2, ‖|ξ
(
1
ξ

)
‖| ≤ C4. (A.103)
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Lemma A.8. With the assumptions of Theorem 1.1, let U∆ be the approxi-

mate solution (1.33) and φ ∈ D(R). Then there exists some C > 0 depending

only on the available bounds and on φ such that

∀t ∈ [0, T ], < ∂tU∆(t, ·), φ >≤ C. (A.104)

Proof. Using (2.43) we get for any tn ≤ t < tn+1

< ∂tU∆, φ >= A+B, (A.105)

with

A =
∑

i

1

∆t

[
Un+1
i+1 − Un+1

i − Un
i+1 + Un

i

∆x

] ∫ xi+1

xi

(x− xi)φ(x)dx (A.106)

and

B =
∑

i

1

∆t

[
Un+1
i − Un

i

] ∫ xi+1

xi

φ(x)dx. (A.107)

First we notice that
∫ xi+1

xi

(x− xi)φ(x)dx = ∆xψ(xi+1)−
∫ xi+1

xi

ψ(x)dx, (A.108)

where ψ is an antiderivative of φ. Thus we get

A =
∑

i

1

∆t

[
Un+1
i+1 − Un+1

i − Un
i+1 + Un

i

∆x

]
∆x∆ψi+1/2, (A.109)

with ∆ψi+1/2 := ψ(xi+1)− 1
∆x

∫ xi+1

xi
ψ(x)dx. Moreover, by doing translations

of indices we get

A =
∑

i

1

∆t

[
Un+1
i − Un

i

] [
∆ψi−1/2 −∆ψi+1/2

]
. (A.110)

Next, using that Un
i is bounded we get from (1.20) that

|Un+1
i − Un

i | ≤ 2
∆t

∆x

(
‖F+(U)‖∞ + ‖F−(U)‖∞ + ‖gh2‖∞

)
. (A.111)

Moreover we notice that
∣∣∆ψi−1/2 −∆ψi+1/2

∣∣ ≤ ∆x2Lip(φ), (A.112)

which enables us to get

|A| ≤ 2C∆xLip(φ)
∑

i

1dist(xi,suppφ)≤∆x
≤ C ′, (A.113)
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with C ′ > 0 a constant depending on φ. Next, from (A.107), we use (1.20)
and get

B = −
∑

i

1

∆x

[
Fi+1/2− − Fi−1/2+

]
∆xφi+1/2, (A.114)

with φi+1/2 :=
1
∆x

∫ xi+1

xi
φ(x)dx. Using (1.21)-(1.23) we get

B = −
∑

i

[
Fi+1/2 − Fi−1/2

]
φi+1/2 −

∑

i

[
−Si+1/2− − Si−1/2+

]
φi+1/2

= −
∑

i

Fi+1/2

[
φi+1/2 − φi+3/2

]
+
∑

i

[
Si+1/2− + Si−1/2+

]
φi+1/2.

(A.115)

We have
|φi+1/2 − φi+3/2| ≤ ∆xLip(φ), (A.116)

and
|Si+1/2− + Si−1/2+| ≤ v2m(|zi+1 − zi|+ |zi − zi−1|). (A.117)

We thus conclude that B is also bounded since ∂xz∆ is bounded in L1
loc.

Lemma A.9. With the assumptions of Theorem 1.1, let U∆ = (h∆, h∆u∆)

be the approximate solution (1.33), and S̃∆ be the approximate source defined

by (3.6). We assume that there exists U such that U∆ tends to U a.e. as

∆x,∆t → 0. Then

∀φ(t, x) ∈ D(R2),

∫∫
S̃∆(t, x)φ(t, x) dtdx −→

∆x,∆t→0

∫∫
S(t, x)φ(t, x) dtdx,

(A.118)

with S(t, x) =

(
0

−gh∂xz

)
.

Proof. Let φ(t, x) ∈ D(R2). We compute the integral
∫∫

S̃∆(t, x)φ(t, x) dtdx =

∞∑

n=0

∞∑

i=−∞
∆t
(
Si+1/2− + Si−1/2+

)
φn
i ,

with φn
i =

1

∆t

1

∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

φ(t, x)dtdx. Then we perform a translation

of the index i and get
∑

n

∑

i

∆t
(
Si+1/2− + Si−1/2+

)
φn
i

=
∑

n

∆t
∑

i

Si+1/2−φ
n
i +

∑

n

∆t
∑

i

Si+1/2+φ
n
i+1.
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Then we notice that |φn
i+1 − φn

i | ≤ Lip(φ)∆x and we obtain that
∫∫

S̃∆φ dtdx−
∑

n

∑

i

∆t
(
Si+1/2− + Si+1/2+

)
φn
i → 0. (A.119)

Next, for ∆x, |zi+1 − zi| small enough, we have on the one hand using (1.43)

Shu
i+1/2− =g

h2i+1/2−
2

− g
h2i
2

=g
(hi + zi − zi+1/2)

2

2
− g

h2i
2

=g(zi − zi+1/2)

(
hi +

zi − zi+1/2

2

)
. (A.120)

On the other hand, we have similarly

Shu
i+1/2+ =g

h2i+1

2
− g

h2i+1/2+

2
= −g(zi+1 − zi+1/2)

(
hi+1 +

zi+1 − zi+1/2

2

)
.

(A.121)

Moreover noticing that hi+1 = hi + (hi+1 − hi), with (A.120), (A.121) we get
∑

n

∑

i

∆t
(
Shu
i+1/2− + Shu

i+1/2+

)
φn
i

= −
∑

n

∑

i

∆t g(zi+1 − zi)h
n
i φ

n
i +

∑

n

∑

i

∆t∆xRn
i φ

n
i , (A.122)

with

∆xRn
i = −g(zi+1 − zi+1/2)

(
hni+1 − hni

)
+ g

(zi − zi+1/2)
2

2
−g (zi+1 − zi+1/2)

2

2
.

(A.123)

The last term in the RHS of (A.122) tends to 0 because of (1.36), the Cauchy
Schwarz inequality and the bound (2.3). The first term in the RHS of (A.122)
converges to the source term since

−
∑

n

∑

i

∆tg(zi+1 − zi)h
n
i φ

n
i

≃
∫∫

−gdz∆(x)
dx

h∆(t, x)φ(t, x) dtdx→
∫∫

−gdz(x)
dx

h(t, x)φ(t, x) dtdx.

The convergence holds because we supposed h∆ → h a.e., and dz∆
dx

→ dz
dx

in
L1
loc. This concludes the proof of the lemma.
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