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Least Square for Grassmann-Cayley Agelbra
in Homogeneous Coordinates

Vincent Lesueur and Vincent Nozick

Gaspard Monge Institute, UMR 8049
Université Paris-Est Marne-la-Vallée, France

Abstract. This paper presents some tools for least square computation
in Grassmann-Cayley algebra, more specifically for elements expressed
in homogeneous coordinates. We show that building objects with the
outer product from k-vectors of same grade presents some properties
that can be expressed in term of linear algebra and can be treated as
a least square problem. This paper mainly focuses on line and plane
fitting and intersections computation, largely used in computer vision.
We show that these least square problems written in Grassmann-Cayley
algebra have a direct reformulation in linear algebra, corresponding to
their standard expression in projective geometry and hence can be solved
using standard least square tools.

Keywords: Grassmann-Cayley algebra, least square, line fitting, plane
fitting, intersection.

1 Introduction

Grassmann-Cayley algebra presents some powerful operators that have direct
applications to computer vision and computer graphics. In computer vision side,
problems are often treated in a 3-steps approach consisting in data measurement,
least square estimation of the considered model and an non-linear refinement.
There already exist many geometric models expressed in Grassmann-Cayley al-
gebra, from elementary such as lines or planes to more complex. However least
square estimation has not been fully investigated. This paper presents an exten-
sion of both outer and regressive products, designed to adapt the grade of an
element being computed to the required grade and not to the expected one. The
proposed method is based on a least square approximation of elements of same
grade wedged together. This paper mainly focuses on line and plane fitting as
well as lines and planes intersection.

1.1 Brief Overview of Grassmann-Cayley Algebra

This section gives a very brief introduction to Grassmann algebra. The central
operation in Grassmann algebra is the outer product (or wedge product) of two
vectors a and b. This product, written a∧b, denotes the oriented surface defined
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by the two vectors. This oriented property involves the anticommutativity of the
wedge product:

a ∧ b = −b ∧ a

and thus, the property:

a ∧ a = 0

Moreover, the wedge product is distributive such that a∧(b+c) = (a∧b)+(a∧c)
and associative. The wedge operation between two vectors generates a bivector.
Wedging three vectors makes a trivector, and so on. In a space of dimension n,
the grade of a k-vector is the number k ≤ n of vectors wedged together to build
the k-vector. Thus, for a p-vector a and a q-vector b, we have:

grade(a ∧ b) = grade(a) + grade(b) = p+ q

Each component of a n-dimensional vector is expressed by the unit vectors
{e1, e2, · · · , en}. The components of a k-vector are expressed by unit k-vectors
that are composed of k ≤ n unit vectors wedged together and abbreviated
ei ∧ · · · ∧ ej = ei···j, e.g. each component of a bivectors of R3 is expressed with
the set of unit bivectors {e12, e13, e23}.

Grassmann-Cayley algebra can also express a k-vector in a dual basis containing
all the unit (n − k)-vectors of Rn that are not used to compose the k-vector
(e.g. e1 = e234 in 4 dimensions). Grassmann-Cayley algebra includes an operator
called regressive product (or anti-wedge product) that operates on dual k-vectors
in a manner symmetric to how the wedge product operates on k-vectors. This
operator, written a ∨ b, affects the grade such that:

grade(a ∨ b) = grade(a) + grade(b)− n

For more details about Grassmann-Cayley algebra, the reader should refer to
Doubliet et al. [1] and Barnabei et al. [2].

1.2 Grassmann-Cayley Algebra and Homogeneous Coordinates

Grassmann-Cayley algebra presents some interesting properties when applied in
projective space, where vectors are expressed in homogeneous coordinates. Some
of these properties have direct applications in computer vision and computer
graphics, especially those related to the computation of lines and planes detailed
in Carlsson [3] and summarized in Table 1. Some additional relationships between
points, lines and planes are summarized in Table 2. All these properties as well
as others relationships such as line parallelism, line orthogonality or identity
between elements are presented in Förstner et al. [4].
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Table 1. Wedge and anti-wedge geometric application on P2 and P3.

Grassmann-Cayley algebra in P2

point ∧ point = line (passing through the two points)

line ∨ line = point (intersection of the two lines)

Grassmann-Cayley algebra in P3

point ∧ point = line (passing through the two points)

point ∧ point ∧ point = plane (containing the three points)

point ∧ line = plane (containing the line and the point)

plane ∨ line = point (intersection of the plane and the line)

plane ∨ plane ∨ plane = point (intersection of the three planes)

plane ∨ plane = line (intersection of the two planes)

Table 2. Relationship between points, lines and planes in P2 and P3.

Grassmann-Cayley algebra in P2

point ∈ line point ∧ line = 0 ↔ point ∨ line = 0

Grassmann-Cayley algebra in P3

point ∈ line point ∧ line = 0 ↔ point ∨ line = 0

point ∈ plane point ∧ plane = 0 ↔ point ∨ plane = 0

2 Least Square in Grassmann-Cayley Algebra

2.1 Grade and Least Square

A specific use of the outer product is to wedge a set of p-vectors (with same
grade p) to build a k-vector u:

u
k

= x1
p
∧ x2

p
∧ · · · ∧ xr

p
(1)

with grade(u) = k = rp.

The problem addressed in this paper is how to extend the number of p-vectors
wedged together without changing the grade of u:

u
k
← x1

p
∧ x2

p
∧ · · · ∧ xr

p
∧ · · · ∧ xs

p
(2)



4 Anonymous GCCV’13 Submission

This problem can be seen as a least square problem where u is still of grade
k = rp and each xi (i = 1, ..., r, ..., s) contributes to build u. This operation can
be written in a more compact expression:

u = ∧k{xi}s1
(3)

where k ≤ sp is the expected grade of u and {xi} the set of p-vector to wedge. It
should be noted that the elements of {xi} are not ordered and hence this opera-
tor looses the oriented property of the wedge product. While this operator may
not be of big interest in

∧k Rn (the linear space of k-vectors of Rn), it involves

interesting properties in
∧k Pn where each k-vector is expressed in homogeneous

coordinates. Indeed, as suggested by Table 1, there exist direct applications of
this problem in computer vision, such as line fitting, line intersection, etc.

Some least square applications in geometric algebra has been investigated
by Gebken et al. [5], applied to line and circle fitting in the conformal space of
Euclidean 3D-space, but to our knowledge, nothing has been done concerning
the least square formulation of the wedge product.

2.2 Linear Algebra Reformulation

The construction of a k-vector u as formulated in equation (1) involves:

u ∧ xi = 0 ∀i ∈ 1, ..., r (4)

Each element u ∧ xi is a (k + p)-vector whose components are all zero. Due to
the distributivity of the wedge product, the analytic form of the jth component

of the ith relation u ∧ xi can be formulated as the dot product of RCk
n between

u and a k-vector aji such that equation (4) is equivalent to:

aj>i · u = 0 ∀i ∈ 1, ..., r and ∀j ∈ 1, ..., Ck+p
n (5)

These Ck+p
n equations have the following matrix form:

a1>1
a2>1

...

a
Ck+p

n >
1


︸ ︷︷ ︸

Ai

u =


0
0
...
0

 (6)

Combining all the elements of {xi} together leads to:
A1

A2

...

Ar


︸ ︷︷ ︸

A

u =


0

0
...

0

 (7)
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Hence the k-vector u is the right-nullspace of a matrix A of size
(
r.Ck+p

n × Ck
n

)
build exclusively with the set {xi}.

2.3 Least Square and Wedge Product

The extension of equation (7) to the overdetermined case presented on equa-
tion (2) leads to a similar formulation where we want to minimize the residual
‖Au‖2 in a linear least square sense. This residual corresponds to the L2 norm
of the vector composed by all the components of all vectors u ∧ xi. Again, the
k-vector u is the right-nullspace of the matrix A and can be numerically com-
puted with a Singular Value Decomposition subject to ‖u‖2 = 1, the result
is the right-singular vector associated to the smallest singular value of A. The
constraint ‖u‖2 = 1 is not a problem in

∧k Pn where each element is defined

up to a non-zero scale factor, but would be a problem in
∧k Rn. The form of

the matrix A will be detailed from section 3. Moreover, the size of A becomes(
s.Ck+p

n × Ck
n

)
, however we will see that in lines and planes case, Ck+p

n is often
equal to 1.

3 Line, Plane and Hyper-Plane Fitting

The least square formulation of the wedge product presented in Section 2.3
has a direct application to line fitting in P2, plane fitting in P3 and n-dimensional
hyperplane fitting in Pn. All these problems are solved following the same ap-
proach presented on the next parts.

3.1 Line Fitting in P2

Let {xi}i=1,...,m a set of m points of P2 of the form xi = xie1 + yie2 + wie3.
The line l fitting these points is a 2-vector and hence is formulated:

l = l1e12 + l2e13 + l3e23

The distance to minimize between a point xi and the line l is represented by:

l ∧ xi = (wil1 − yil2 + xil3) e123 (8)

Hence, the least square constraint applied on l is:

wil1 − yil2 + xil3 = 0 (9)

Thus, as specified by equation (5), the relation xi ∧ l = 0 can be expressed in
term of a set of dot products a>i · l = 0 with ai = (wi,−yi, xi)>. Here, only a
single dot product is required. The associated system to solve is:

w1 −y1 x1

w2 −y2 x2
...

...
...

wm −ym xm


︸ ︷︷ ︸

A


l1

l2

l3

 =


0

0
...

0


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It is noteworthy to see that equation (8) corresponds to the perpendicular Eu-
clidean distance between xi and l under 2 conditions, namely the line should
be expressed in its normal Hessian form, i.e.

√
l22 + l23 = 1 and the finite point

should be expressed as (xi/wi, yi/wi, 1)>. Numerically, the first constraint is not
satisfied since the SVD involves ‖l‖2 = 1, however this constraint is applied to
all points xi and hence is just a common scale factor to the computed distances
to minimize. Moreover, the SVD minimizes ‖Al‖2, i.e. the square root of a sum of
squared distances, that has the same minimum as the sum of squared distances
which is a standard least square residual.

It is also interesting to see that equation (9) is the homogeneous form of a
line in P2 (up to the order and sign of the components of l) commonly used in
computer vision. A usual precaution is a pre-conditioning of the matrix A before
the numerical computation of its right nullspace. Indeed, the first column of A
is composed of wi = 1 and the two last columns contain xi and yi that can be
much larger than wi, resulting in non-negligible numerical instability. Hartley
and Zisserman [6, p. 107] suggest to perform a data normalization consisting in a
translation of the points so that their centroid is at the origin, followed by scale
so that the average distance from the origin is

√
2, leading to an “average” point

= (1, 1, 1)>. This operation can be performed by the following normalization
matrix T:

T =


1 y
√
2

d −x
√
2

d

0 −
√
2
d 0

0 0
√
2
d


where (x, y, 1)> is the centroid coordinates of the data and d is the average
distance of the points from the centroid:

d =
1

m

m∑
i=1

√
(xi − x)2 + (yi − y)2

The normalized system to solve is ATT−1l = 0. Thus, the normalized data Â is
obtained by Â = AT and the system to solve becomes Â l̂ = 0. Finally, the line
coefficients are given by l = T̂l. Any other conditioning methods also may succeed
to provide correct results. As depicted in Figure 1, the data normalization is not
optional.

3.2 Plane Fitting in P3

Plane fitting from points in P3 is very similar to line fitting in P2. The set
{xi}i=1,...,m is composed of points xi ∈ P3 with xi = xie1 + yie2 + yie3 +wie4.
The plane π is a 3-vector of the form:

π = π1e123 + π2e124 + π3e134 + π4e234

The least square constraint on the xi is:

π ∧ xi = (π1wi − π2zi + π3yi − π4xi) e1234 = 0 e1234
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Fig. 1. Line fitting in P2 on a set of 2d points with Gaussian noise. Blue line: the fitting
line with data normalization. Green line: without normalization. This is a critical situ-
ation where the range of the point distribution is very large compared to the distance
between the line and the origin.

Hence, the system to solve is:
w1 −z1 y1 −x1
w2 −z2 y2 −x2
...

...
...

...

wm −zm ym −xm




π1

π2

π3

π4

 =


0

0
...

0


Again, this is the Hessian form of a plan in P3 and its computation involves
data normalization before solving the system. The normalization of [6] should
be performed with a scaling of

√
3 on x,y and z. Any other conditioning methods

also may succeed to provide correct results.

3.3 General Form in Pn

The generalization of line fitting in P2 and plane fitting in P3 is n-dimensional
hyperplane fitting in Pn. Let {xi}i=1,...,m be a set of m points of Pn with compo-

nents xi =
∑n+1

j=1 xi,jej. Given an hyperplane h ∈
∧n Pn, each point xi should

satisfy h∧xi =
∑n+1

j=1 (−1)j+1hjxi,n+2−j e123···n+1 = 0 e123···n+1, which is also
a single dot product. The matrix form of the corresponding system is Ah = 0
with:

A =



x1,n+1 −x1,n · · · (−1)j+1x1,j · · · (−1)nx1,1

x2,n+1 −x2,n · · · (−1)j+1x2,j · · · (−1)nx2,1

x3,n+1 −x3,n · · · (−1)j+1x3,j · · · (−1)nx3,1
...

...
...

...
...

...

xm,n+1 −xm,n · · · (−1)j+1xm,j · · · (−1)nxm,1


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Data normalization presented in [6] should include a scaling of
√
n on the com-

ponent xi,j , with j ∈ 1, ..., n with the following normalization matrix T:

T =

√
n

d



d√
n

xn · · · (−1)n−jxj · · · (−1)n−1x1

0 −1 · · · 0 0 0

...
...

. . .
...

...
...

...
...

... (−1)n−j+1
...

...

...
...

...
...

. . .
...

0 0 · · · 0 0 (−1)n


4 Line Fitting in P3

Line fitting in P3 slightly differs from line fitting in P2. Indeed, a line in P3 is a
2-vector with C2

4 = 6 components:

l = l1e12 + l2e13 + l3e14 + l4e23 + l5e24 + l6e34

These 6 components correspond to the Plücker coordinates of a line of P3 in the
following order:

L = {u : v} = {(l3, l5, l6)> : (−l4, l2,−l1)>}

where u and v should satisfy u> · v = 0 and u 6= 0. The vector u is the
tangent vector of the homogeneous line and the vector v is its moment. In
Euclidean space, the line can be defined as the set of points p = m + αu where
m = (v × u,u>.u)> is the nearest point of l from the origin of the referential
frame. Moreover, the perpendicular Euclidean distance between the line l and
a 3D point x = (x, y, z)> is dist(x, l) = ‖(x× u− v,u>.u)>‖2.

A point x = xe1 +ye2 + ze3 +we4 lies on the line l if x∧ l = 0. This expression
can be developed as:

x ∧ l = (xl4 − yl2 + zl1)e123
+ (xl5 − yl3 + wl1)e124
+ (xl6 − zl3 + wl2)e134
+ (yl6 − zl5 + wl4)e234
= 0

As presented in equation (6), this expression can be formulated in a matrix form:


z −y 0 x 0 0
w 0 −y 0 x 0
0 w −z 0 0 x
0 0 0 w −z y



l1
l2
l3
l4
l5
l6

 =


0
0
0
0

 (10)
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Fig. 2. Line fitting in P3 on a set of 3d points with Gaussian noise. Blue line: the fitting
line with data normalization. Green line: without normalization. This is a critical situ-
ation where the range of the point distribution is very large compared to the distance
between the line and the origin.

The three last lines of equation (10) correspond to the three components of
the vector whose norm is dist(x, l). The first line does not have any geometric
meaning (in a Plücker sense) and can be ignored. Hence, a line fitting a set of
m points {xi}i=1,...,m can be computed with the following system:



w1 0 −y1 0 x1 0
0 w1 −z1 0 0 x1
0 0 0 w1 −z1 y1
...

...
...

...
...

...
wm 0 −ym 0 xm 0
0 wm −zm 0 0 xm
0 0 0 wm −zm ym




l1
l2
l3
l4
l5
l6

 =



0
0
0
...
0
0
0


(11)

Each point is expressed as (xi/wi, yi/wi, zi/wi, 1)>. Numerically, equation (11)
minimizes the square root of a sum of squared distances that has the same min-
imum as the sum of squared distances which is a standard least square residual.
This system is solved subject to ‖l‖2 = 1 that is not a normalized Plücker line,
hence all the distances are computed up to a common scale factor however the
final normalized result is not altered.

Data normalization is performed in two steps. First, translate the input points
of t = (−x,−y,−z)> so that their centroid is at the origin. Next, scale the data
with an isotropic scale s so that the average distance between the points and the
origin is

√
3. Then, compute the right nullspace of the matrix of equation (11)

build from the normalized data. Finally, apply the inverse transformation to the



10 Anonymous GCCV’13 Submission

line l. In Plücker coordinates, this inverse transformation is formulated as:

Result of equation (11) : L̂ = {u : v}

Unormalized result : L =
{
u :

v

s
− t× u

‖u‖2

}
As shown in Figure 2, data normalization is not optional.

5 Intersections

This section presents the computation of intersection between lines in P2 and P3,
planes in P3 and hyperplanes in Pn. Intersection computation is the dual problem
of data fitting presented in section 3 and 4 and hence introduces the dual operator
of equation (3), that is u = ∨k{xi}s1

. However line intersection is known to be

difficult since the cost function under L2-norm related to the least square method
is not convex. The following methods will provide a good estimation of the
intersection, but for an optimal solution, the reader should refer to methods such
as Lu and Hartley [7] who introduce a practical method to solve this problem
with the L2-norm. Kanatani et al. [8] propose an alternative method that can
be applied to both line fitting and line intersection problems. Dorst et al. [9,
equation 11.20] as well as Valkenburg and Alwesh in [10, chapter 7] present a
closed form of this problem using geometric algebra.

5.1 Intersection of Lines in P2, Planes in P3 and n-Dimensional
Hyperplane in Pn

This section is a generalization of the least square intersection of lines in P2 and
planes in P3 to n-dimensional hyperplane in Pn. Let {πi}i=1,...,m be a set of m
hyperplanes of Pn such that πi =

∑n
j=1 πi,jen−j+1. The intersection of these

hyperplanes in a least square sense is the point x =
∑n+1

i=1 xi. The least square
constraint on the system is:

πi ∨ x =
n+1∑
i=1

(−1)i,j+1πn+2−jxj e123···n+1 = 0 e123···n+1

The matrix form of the corresponding system is:

−π1,n+1 π1,n · · · (−1)jπ1,n+2−j · · · (−1)n+1π1,1

−π2,n+1 π2,n · · · (−1)jπ2,n+2−j · · · (−1)n+1π2,1

−π3,n+1 π3,n · · · (−1)jπ3,n+2−j · · · (−1)n+1π3,1
...

...
...

...
...

...

−πm,n+1 πm,n · · · (−1)jπm,n+2−j · · · (−1)n+1πm,1





x1

x2

x3
...

xn+1


=



0

0

0
...

0


where the hyperplanes should be expressed in the Hessian normal form, i.e.
‖(x1, · · · , xn)>‖2 = 1.
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5.2 Line Intersection in P3

Let {li}i=1,...,m be a set of m lines of the form li = li,1e12 + li,2e13 + li,3e14 +
li,4e23 + li,5e24 + li,6e34. A point x ∈ P3 that lies on the line li satisfies:

li ∧ x = (−xli,4 + yli,2 − zli,1)e123
+ (−xli,5 + yli,3 − wli,1)e124
+ (−xli,6 + zli,3 − wli,2)e134
+ (−yli,6 + zli,5 − wli,4)e234
= 0

Like for equation (10), the element in e123 component can be ignored, such that
the extension to the set of lines of this equation takes the following matrix form:

−l1,5 l1,3 0 −l1,1
−l1,6 0 l1,3 −l1,2

0 −l1,6 l1,5 −l1,4
...

...
...

...
−lm,5 lm,3 0 −lm,1

−lm,6 0 lm,3 −lm,2

0 −lm,6 lm,5 −lm,4




x
y
z
w

 =



0
0
0
...
0
0
0


A good data normalization would be to translate the lines such their intersection
is at the origin, however since this is specifically this intersection we are looking
for, this approach is not possible in practice. A good numerical alternative is to
scale the lines with a “relatively small” scale factor s so that the intersection is
near the origin. Then, the intersection found should be scaled back by the scale
factor 1/s. In Plücker coordinates, the scale of factor s of a line is formulated as:

Input line : L = {u : v}

Scaled line : L̂ = {u : sv}

This intersection estimation is specially interesting to compute the intersection
of 2 lines of P3 since there is no native operator in Grassmann-Cayley algebra
for this purpose.

6 Conclusion

This paper presents an extension of the wedge and anti-wedge products of
Grassmann-Cayley algebra that reduces the grade of a k-vector in a least square
sense. These two new operators, applied on vectors expressed in homogeneous
coordinates, have direct applications to line, plane and hyperplane fitting and
intersection. We show that all of these problems have a direct reformulation in
linear algebra that corresponds to their original formulation in projective geom-
etry. These two operators also open some new perspectives on methods where
decreasing the grade of an object may have some applications.
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