Least Square for Grassmann-Cayley Agelbra in Homogeneous Coordinates

Abstract : This paper presents some tools for least square computation in Grassmann-Cayley algebra, more specifically for elements expressed in homogeneous coordinates. We show that building objects with the outer product from k-vectors of same grade presents some properties that can be expressed in term of linear algebra and can be treated as a least square problem. This paper mainly focuses on line and plane fitting and intersections computation, largely used in computer vision. We show that these least square problems written in Grassmann-Cayley algebra have a direct reformulation in linear algebra, corresponding to their standard expression in projective geometry and hence can be solved using standard least square tools.
Type de document :
Communication dans un congrès
GCCV 2013, Oct 2013, Guanajuato, Mexico. pp.133 - 144, 2014, PSIVT Workshop on Geometric Computation for Computer Vision. 〈10.1007/978-3-642-53926-8_13〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01510077
Contributeur : Vincent Nozick <>
Soumis le : mercredi 19 avril 2017 - 04:56:32
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23

Fichier

GCCV2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Lesueur, Vincent Nozick. Least Square for Grassmann-Cayley Agelbra in Homogeneous Coordinates. GCCV 2013, Oct 2013, Guanajuato, Mexico. pp.133 - 144, 2014, PSIVT Workshop on Geometric Computation for Computer Vision. 〈10.1007/978-3-642-53926-8_13〉. 〈hal-01510077〉

Partager

Métriques

Consultations de la notice

144

Téléchargements de fichiers

32