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Abstract. Noise is an intrinsic speci�city of all forms of imaging, and
can be found in various forms in all domains of digital imagery. This
paper o�ers an overall review of digital image noise, from its causes
and models to the degradations it su�ers along the image acquisition
pipeline. We show that by the end of the pipeline, the noise may have
widely di�erent characteristics compared to the raw image, and consider
the consequences in forensic and counter-forensic imagery.
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1 Introduction

From the �lm grain of analogue cameras to the sensor noise of digital cam-
eras, image noise has always been a concern in the history of image acquisition.
Indeed, noise is an unwanted artefact that appears during the image capture pro-
cess and can take various forms depending on the camera model and the lighting
conditions during the image acquisition. For aesthetic reasons or for computer
analysis clues, many studies have been concerned with suppressing this noise
from the \original" signal. This interest is still an active research topic, par-
ticularly considering the increasing number of smartphones equipped with low
quality sensors.

Since the noise problem is far from solved, some digital image forensics meth-
ods attempt to take advantage of this alteration of the signal to detect image
forgeries. Some methods focus on the detection of local noise inconsistencies
when some others attempt to identify the noise �ngerprint of digital cameras.

The purpose of this paper is to outline the alterations of noise character-
istics through the camera pipeline and the usual post-processing, in order to
understand what kind of noise one can expect for image forensics purposes. This
study �rst focuses on digital image noise characterisation and estimation. The
next part deals with noise alteration during the image acquisition and processing
pipeline. We distinguish the processing inherent to the camera pipeline from the
usual post processing available on many software packages. Finally, we present
some image forensics methods that fail when the image is corrupted with arti�-
cial noise.



2 Digital Image Noise

Noise in digital images can come from various sources. Some are physical, linked
to the nature of light and to optical artifacts, and some others are created during
the conversion from electrical signal to digital data. As noise degrades the quality
of an image, various models have been investigated to modelize the image noise
for subsequent reduction or removal, at various steps of the image acquisition
process.

2.1 Noise Sources

The main sources of noise can be divided into two main categories: the physical
noise, linked to physics constraints like the corpuscular nature of light, and the
hardware noise, linked to mechanical issues in the camera. Physical noise notably
includes dark shot noise and photon shot noise[20]. The dark shot noise is created
by electronic uctuations caused by an accumulation of heat-generated electrons
in the sensor. It is related to thermal noise, and can be reduced by cooling down
the sensor. The photon shot noise, also called Poisson noise, is the one caused by
the corpuscular nature of light: as photons arrive irregularly on the photosites,
two adjacent pixels supposed to have a similar value can end up with di�erent
photon counts. As the name indicates, the photons follow a Poisson distribution.
Its e�ect decreases proportionally to exposure time.
The hardware noise includes Fixed Pattern Noise (FPN), Photon Response Non
Uniformity (PRNU) and quanti�cation noise. PRNU and FPN are caused by
imperfections in sensors. For the PRNU, the cause is mainly the inhomogeneity
of silicon wafers and light variations in which individual sensor pixels convert
light to electrical signals. It is most visible in pictures with a long exposure time
and does not follow any particular statistical law. As for the FPN, it is caused by
dark currents. Like photon shot noise, FPN tends to be reduced in long exposure
images. Both of those e�ects increase with light intensity. While the FPN can
be removed by substracting the dark frame, the PRNU is non-linear and as such
is very hard to remove. Quanti�cation noise is caused by the analogic-numeric
converter. It is hard to quantify, because the process is non-linear, though there
are some accepted models. More advanced analysis can be found in [5, 29].

2.2 Noise Model

In the literature, the overall noise produced by a digital sensor is usually consid-
ered as a stationary white additive Gaussian noise. In [9], Faraji et al. justify the
use of the Gaussian model for a speci�c interval of light intensity. However, this
approach tends to overlook several noise components, even if we consider it in a
global perspective. Jezierska et al.[15] present a more robust model which also
considers a Poisson component. Both of those models take a high-level approach,
trying to o�er a simpli�ed overall model. In [14], Irie et al. present another ap-
proach, which consists in modelising the noise step by step to get to a �nal
formula. While this approach gives extremely precise results, it requires some



speci�c data, such as the gain parameter for digital image enhancement, and
thus cannot be used for blind modeling.
In the following parts of this paper, we adopt the Poisson-Gauss model from [15].
This model is applied to all the pixel s of the image with :

I s = �Q s + Ns (1)

where Qs is analogous to a Poisson distributionP(us) of the \clean" signal us

and � 2 R is a scaling parameter corresponding to the strength of the Poisson
component in the noise.Ns is analogous to a Normal distribution N (c; � 2) with
mean c 2 R and standard deviation � > 0.

2.3 Noise Estimation and Denoising

Image denoising is a very active research �eld in the signal and image processing
community. However, most existing denoising methods require noise parameters
estimation before denoising. Hence, some noise parameters estimation studies
have also been proposed. For accuracy purposes, the following overview presents
the methods that can handle both Gaussian and Poisson noise.

Foi et al. [11] present such a method that identi�es the Gaussian and the
Poisson noise. However, this method is subject to an homogeneous image region
search that discards a large part of the pixels of a natural image. Thus it may
sometimes fail on small regions of the image where homogeneous parts are too
small to be considered. Jezierska et al. [15] distinguish pixels that are more
subject to Gaussian or Poisson noise from an iterative Expectation-Maximization
process. Nevertheless, this method is extremely slow, and thus is impracticable
for regular images. Colom and Buades [4] present a PCA noise decomposition
approach which gets fast results and is e�cient on post-CFA images.

It is important to note that the main purpose of noise estimators is to get a
good noise estimation in order to denoise, but not really to get an accurate noise
estimation. Thus, a possible approach for estimating the image noise may consist
of �rst using one of the previously mentioned methods to roughly estimate the
image noise, then to denoise the image and then subtracting the result from the
original noised image. Among the large variety of denoising methods, the Non-
Local Means, proposed by Buades et al. [2], performs well. However our tests
show that the method lacks accuracy in highly textured zones. Moreover, this
method only denoises the Gaussian noise component. Jezierska et al. [16] follows
their previous work [15] and still su�ers from time computation issue. Dabov et
al. [6] introduce the so-called BM3D algorithm that performs a 3D collaborative
�ltering. This technique performs high-quality denoising for both homogeneous
and textured regions, and denoises both the Gaussian and Poisson components.

In this paper, the noise estimation follows the latter approach and the noise
estimation is computed from the provided noise image. The Poisson and Gaus-
sian noise parameters are estimated from the di�erence image between the de-
noised image by BM3D and the original noised image. We �rst divide the pixel
luminance range into n equal intervals I i , i 2 [1; n]. The pixels of the denoised



image with intensity in I i are grouped together to compute a variance� i of
these pixels in the noise image and a mean valuemi in the denoised image. As
speci�ed by [11], the noise that appear in the lower and higher pixel intensities is
not reliable. Thus, these pixels are discarded from the noise estimation process.
The plot of the variance as a function of the mean gives a line which slope cor-
responds to the Poisson noise parameters and they-intercept corresponds to the
Gaussian noise component. An example of this noise estimation is depicted in
Figure 1. The intervals I i are referred to aspixel groupsin the following Figures
of the paper. In the case of a pure Gaussian noise, this line would be horizontal.
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Fig. 1. Pixel group variances according to the group mean. Here, the (�rst) green
channel of the raw image. This image does not use the full intensity range.

3 Noise Alterations Caused by Image Processing

3.1 Noise and Camera Pipeline

The camera pipeline often di�ers from one camera to the next, according to
the sensor quality and the camera brand. Di�erences occur according to the
processing steps and their ordering, however most pipelines include similar steps.
A good description of these steps can be found in [18, chapters 1 and 3]. In this
section, we focus on the processings that a�ect the noise, and show their impact
on a raw image. The tests have been implemented using LibRaw [1] on a set of
15 raw images from various cameras. For clarity purposes, we selected one image
(Figure 2) of the set with representative results for the �gures.

Noise Reduction: It is generally preferable to reduce noise as early as possible
in the chain, before signal ampli�er operations (notably color correction, gamma
correction, edge enhancement and color �lter array demosaicking). Some stan-
dard denoising methods employ wavelet denoising or Fake Before demosaicking
De-noising (FBDD) on each of the four channels (R, G1, B, G2). Figure 3 shows
how a light and a full FBDD a�ect the image noise.



Fig. 2. Input image used for the curves computation. Courtesy of Michel Couprie.

Fig. 3. Comparison of various denoising methods on raw images. For each image, color
�lter array demosaicking was performed after the denoising step.



Color Filter Array: The Color Filter Array (CFA) allows a single color to
be acquired at each pixel. This means that the camera must interpolate the
missing two color values at each pixel. This estimation process is known as
demosaicking, and modi�es the noise properties that could be found on a raw
image. Many demosaicking methods also include edge detection or denoising,
like Paliy et al. [22]. Therefore, the CFA can have a strong e�ect on the noise
structure, as shown in Figure 4, using adaptive homogeneity-directed (AHD)
interpolation algorithms of dcraw.

Fig. 4. This Figure depicts the e�ect of gamma correction, White Balance and CFA
demosaicking on the raw channels of the raw image. The combinaison of these 3 steps
has a strong e�ect on the image noise.

White Balance and contrast: White Balance (WB) as well as a contrast
operation is just a scaling of all the values of a channel. Since the scaling of a
Poisson Gaussian noise remains a Poisson Gaussian noise, the only e�ect of a
WB or a contrast is to enhance or decrease the noise level, however the noise
remains present with similar variations.

Bit Depth: The conversion for raw depth, usually from 10 bits to 14 bits,
to the 8 bits of the usual image �le format is a compression that can have
varying e�ects. Intuitively, we could expect noise levels to be reduced. However,
we typically observed that the noise was either at the same level, or even higher,
after quanti�cation. There are several possible explanations for this phenomenon:



�rst, if the standard deviation is close enough to the conversion quanti�cation
step, results can be unpredictable. Second, the quantization actually removes
most of the low standard deviation noise, which represents most of the noised
pixels, and only leaves the noised pixels with high variations. As a consequence,
the calculated standard deviation is much higher, even though the image may
look less noisy. This phenomenon can be observed in Fig 4.

JPEG Compression: JPEG is a lossy compression method with the lossy part
predominantly in the high frequencies. Hence, it is not surprising that JPEG
compression strongly a�ect the noise, as depicted in Figure 5. However, our
tests show that the global shape of the noise is conserved.

Fig. 5. JPEG compression e�ect on noise. The bold line is the uncompressed 8 bits
image noise and the other curves correspond to the noise after a compression of 95, 80,
70 and 50.

3.2 \Legal" Image Enhancements

This section presents some usual image �lters commonly used to enhance the
visual image quality. These processes usually do not involve image forgery. The
tests were performed on 8 bits digital images extracted from raw images without
a denoising process or lossy compression, i.e. they still contain noise.



Image Interpolation: Image interpolation usually results from image resize,
which is one of the most common image processing operation. Image interpo-
lation can also occur for many other reasons, such as image rotation, image
perspective transformations (e.g. stereoscopic recti�cation [21]), radial distor-
tion and chromatic aberration correction, etc. The tests have been conducted
with bilinear, bicubic, Lanczo and \area" interpolations for both decimation
and zoom. The e�ect on noise is variable according to the interpolation method.
The noise is always decreased but the global noise shape is globally conserved,
as shown on Fig. 6.

Fig. 6. Interpolation e�ect on the image noise.

Others: We tested some others images transformations with potential e�ects on
images noise, without signi�cant results. The image saturation process, where
colors channels are be mixed together, does not signi�cantly alter the noise.
Brightness transformation will just translate the noise to higher pixel intensity
levels. Contrast will increase or decrease the noise, but the noise shape remains
the same. Image crop will just limit the image surface used for the noise estima-
tion.

3.3 Noise and Strong Image Forgeries

This section aims at comparing image noise characteristics after a standard
\legal" image enhancement and after a stronger image forgery. The questions
are how far the transformed images are from the original in term of noise, and



if the noise of a strong forgery still makes sens to study. In addition, we denoise
the strongly falsi�ed image and renoised it with a light arti�cial noise.

Figure 7 illustrates one of these experiments with the original image, this
image with standard image processing (like non-linear histogram manipulations)
and the initial image with strong forgeries. Figure 8 shows that both soft and
strong image forgeries signi�cantly impact the noise. More important, this �gure
demonstrates how an image with arti�cial noise may exhibit statistics similar to
the initial image.

(a) Input image. (b) image with \legal" modi�cations.

(c) image with strong forgery and virtual noise.

Fig. 7. 7(a): The input image used for the tests. 7(b): The input image with some
\legal" transformations such resize, color enhancement, contrast, ... 7(c) Input image
with a strong forgery. This image has been denoised and renoised with virtual noise.
Courtesy of Michel Couprie and Warren Miconi.



Fig. 8. Image noise curves for \legal" vs. strong image manipulation and for a renoised
strong forgery (with an additional contrast modi�cation).

4 Noise and Forensics Detection

This section outlines some digital forensic methods based on noise analysis.

Noise Inconsistencies. Mahdian and Saic [19] present a blind method to
detect splicing from an image to the other by detecting the noise inconsistencies
in the falsi�ed image. The authors �rst perform a one-level wavelet analysis of
the image and then divide the image into a grid to estimate the noise block per
block. The authors use white Gaussian noise model. Finally, they merge blocks
with similar noise estimation and generate a set of partitions with homogenous
noise levels. Pan et al. [23] perform a similar image partition using the kurtosis
values of natural images in band-pass �ltered domains.

The device sensor �ngerprint. The device sensor �ngerprint is a sensor
pattern noise that can be extracted from the PRNU of a set of images from the
same camera. Chen et al. [3], Fridrich [12] and many others like [25, 17] use these
�ngerprints for device identi�cation. Experiments reported in [3] show promising
results even for JPEG compressed images down to a quality factor of 75.

Computer Graphics. Some image forgeries can include some Computer Graph-
ics (CG) parts when splicing is not possible. These CG image areas may have
unusual noise, or no noise. Dehnie et al. [7] look for traces of PRNU in the image
and consider the areas with singular PRNU as forgeries.



Color forgery. Hou et aL. [13] detect hue modi�cation by analysing the corre-
lation of the PRNU from each color channel.

5 Adding Arti�cial Noise

Adding arti�cial noise can serve several purposes: used on arti�cial images, it
can help to test noise models and algorithms. On natural images, it can be used
as a kind of �lter, to imprint an image with an old-fashioned grainy feel, or,
sometimes, to camouage an alteration. For our tests, we use the C++11 random
number distributions to generate our Poisson and Gaussian distributions.

5.1 Arti�cial Images

Arti�cial images are ideal to test noise addition models, as they come free of
any noise. We have used them to test and con�rm the noise model proposed in
Eq. (1) for raw images. They also allow to check the consistency of the noise
model throughout various intensities and bit depth.

5.2 Natural Images

In the case of noise addition in natural images, the questions depend on the
objective. If the noise addition is for a purely esthetical value, then the simple
addition of a white Gaussian noise is enough. However, if the purpose is to cover
other alterations, then a few parallel considerations have to be given thought.
First, it is necessary to simulate some FPN, especially if there are several images
coming from a single source being altered. Second, the added noise has to be
coherent with the type of the image. The type of noise will be di�erent, Gaussian
for an 8-bit image and Poisson-Gaussian for a 16 bits one. In this second case,
the noised value at pixels is obtained with Q and N from Eq. (1):

I noised s = �Q s

� 1
�

� I
�

+ Ns

The last thing to consider is the necessity or not to denoise the image before
adding noise. In the case of a splicing, for example, it is necessary to denoise
beforehand: indeed, the spliced section may have di�erent noise characteristics
than the rest of the image, adding overall noise won't camouage the di�erence.
A preliminary denoising will help reduce this discrepancy.

6 Noise and Anti-Forensics

The objective of this section is to point out some forensics methods that fails to
detect digital image forgeries if some arti�cial noise is added on the falsi�ed im-
ages. Indeed, adding arti�cial noise may a�ect forgery detection method dealing
with noise (Section 4) but also some methods where the pixel values distribu-
tion are important. On the following tests, arti�cial noise is added following the
indications of section 5, with a very light Gaussian noise with� = 2 :5, meaning
that about 30% of the pixels are not modi�ed, due to quantization.



Double JPEG Compression. The double JPEG detection method introduced
by Popescu and Farid [24] is based on an e�ect of the quantization step of the
JPEG compression. Adding some noise on the falsi�ed image will remove the
quantization artefact and thus strongly decreases the double JPEG detection
rate. Figure 9 shows the Fourier analysis of the �rst DCT coe�cient for an
image saved in JPEG, then saved again and �nally arti�cially noised and saved
in JPEG. The double JPEG artefact are much reduced, and so considerably
more di�cult to detect.

Fig. 9. These graphics correspond to single JPEG (top), double JPEG (middle), and
double JPEG + arti�cial noise + JPEG (bottom). For each image, the upper part is
the histogram of the �rst DCT coe�cient and the lower part to its Fourier transform,
where the peaks reveal a double JPEG.

JPEG Ghost. The jpeg Ghost method presented by Farid [10] is an extension
of the double jpeg that handle local properties of the image. Surprisingly, the
method is not altered by noise, unless it is implausibly high. Figure 10 shows
the result of this method on a random image with the middle part previously
saved in another jpeg quality than the overall image. Note that Stamm et al. [27]
successfully disguise the JPEG compression history of an image by adding noise
directly on its JPEG DCT coe�cients. However, this process leaves slight image
alterations that can be detected by [28]. Some recent methods can overcome this
alterations issue [8].

Histogram based methods. Some histogram-based methods are used to de-
tect global pixel intensity modi�cations, typically from Lookup-tables (LUT).
Stamm et al. [26] detects the residual peaks of the image histogram resulting
from such transformation, by analysing the frequency spectrum of the histogram.



Fig. 10. JPEG ghost [10]: (Left) 64 levels on a random image. (Middle) the 64 levels
on the random image where the middle square part is previously saved in another jpeg
quality than the overall image. (Right) Same as middle, but with arti�cial noise before
the last JPEG saving.

Adding some noise on the modi�ed image will strongly a�ect the LUT modi�-
cation, as depicted in Figure 11.

Fig. 11. These graphics correspond to an original image (left), a modi�ed image by
applying a LUT, here contrast and brightness (middle), and the middle image with
arti�cial noise (right). For each graphic, the upper part is the histogram of green
component of the image and the lower part to its Fourier transform, where the peaks
reveal the LUT operation.

7 Conclusion

In this article, we have detailed the various sources and models of noise in digital
images. Then we have explored a large panel of noise alterations, related to
both the acquisition pipeline and the post-processing. We have shown how these
alterations a�ect the quality and intensity of the noise, and study the precise
impact of each of those alterations. A major observation we have made is that, by
the time we get to a JPEG image, even a high-quality one, the noise is extremely
di�erent from its original form in the raw image and is strongly a�ected by the
successive image processing operations. From a statistics point of view, it seems
extremely challenging to use this �nal noise for forgeries detection. Finally, we
have looked at the consequences for image forensics and anti-forensics based on
noise analysis.
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