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Optimal partition in terms of independent random vectors of any
non-Gaussian vector defined by a set of realizations

C. Soize†

Abstract. We propose a fast algorithm for constructing an optimal partition, in terms of mutually independent random
vectors, of the components of a non-Gaussian random vector that is only defined by a given set of realizations.
The method proposed and its objective are different from theindependent component analysis (ICA) that was
introduced to extract independent source signals from a linear mixture of independent stochastic processes. The
algorithm that is proposed is based on the use of the mutual entropy from information theory and on the use
of graph theory for constructing an optimal partition. The method has especially been developed for random
vectors in high dimension and for which the number of realizations that constitute the data set can be small. The
proposed algorithm allows for improving the identificationof any stochastic model of a non-Gaussian random
vector in high dimension for which a data set is given. Instead of directly constructing a unique stochastic
model for which its stochastic dimension, which is identified by solving a statistical inverse problem, can be
large, the proposed preprocessing of the data set allows forconstructing several mutually independent stochastic
models with smaller stochastic dimensions. Consequently,such a method allows for decreasing the cost of the
identification and/or to make possible an identification fora case that is a priori in high dimension and that could
not be identified through a direct and global approach. The algorithm is completely defined in the paper and can
easily be implemented.
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Notations. The following notations are used:
A lower case letter such asx, η, or u, is a real deterministic variable.
A boldface lower case letter such asx, η, or u is a real deterministic vector.
An upper case letter such asX, H, orU , is a real random variable (except forE,K,S).
A boldface upper case letter,X, H, or U, is a real random vector.
A letter between brackets such as[x], [η], [u] or [C], is a real deterministic matrix.
A boldface upper case letter between brackets such as[X], [H], or [U], is a real random matrix.
n: dimension of the random vectorHν .
m: number of independent groups in the partition ofHν .
E: mathematical expectation.
N : dimension of the random vectorX for which the set of realizations is given.
ν: number of independent realizations ofX.
N: set of all the null and positive integers.
N
∗: set of the positive integers.

R: real line.
R
N : Euclidean vector space of dimensionN .

Mn,N : set of all the(n×N) real matrices.
Mn: Mn,n.
M

S
n: set of all the symmetric(n× n) real matrices.

†Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes,
77454 Marne-la-Vallee, France (christian.soize@univ-paris-est.fr).
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M
+
n : set of all the positive-definite(n× n) real matrices.

(Θ,T ,P): probability space.
L2(Θ,Rn): space of all theRn-valued second-order random variables on(Θ,T ,P).
xT : transpose of the column matrix representing a vectorx in R

N .
[x]kj: entry of matrix[x].
[x]T : transpose of matrix[x].
tr{[x]}: trace of a square matrix[x].
[In]: identity matrix inMn.
‖x‖: Euclidean norm of vectorx.
δij : Kronecker’s symbol such thatδij = 0 if i 6= j and= 1 if i = j.
pdf: probability density function.

1. Introduction. In this introduction, we explain the objective of the paper,we give some ex-
planations concerning the utility of the statistical tool that is proposed, we present a very brief state
of the art, and finally, we give the organization of the paper and we describe the methodology proposed.

(i) Objective. The objective of this paper is to propose an algorithm for constructing an optimal parti-
tion of the components of a non-Gaussian second-order random vectorHν = (Hν

1 , . . .H
ν
n) in terms of

m mutually independent random vectorsYν,1, . . . ,Yν,m with values inRµ1 , . . . ,Rµm , such thatHν =
(Yν,1, . . . ,Yν,m), wherem must be identified as the largest possible integer and whereµ1, . . . , µm

must be identified as the smallest integers greater than or equal to one, such thatµ1 + . . . + µm = n.
For all j = 1, . . . ,m, the componentsY ν,j

1 , . . . , Y ν,j
µj of the R

µj -random vectorYν,j are mutually
dependent. For such a construction, it is assumed that the solely available information is made up of
a given data set made up ofν ”experimental” realizationsηexp,1, . . . ,ηexp,ν of the random vectorHν .
In the method proposed, a probability density functionη 7→ pHν (η) onR

n will be constructed by the
Gaussian kernel estimation method from the set of theν realizations. Then, the random vectorHν

will be defined as the random vector for which its probabilitydistribution will bepHν (η) dη. This
is the reason why the random vector is denoted asHν (and notH) for indicating its dependence on
ν). We are interested in the challenging case for whichn can be big (high dimension) and for which
the numberν of realizations can be small (the statistical estimators can then not be well converged).
Note that the ”experimental” realizations can come from experimental measurements or come from
numerical simulations. Such an objective requiresa priori (i) to construct an adapted criterion for test-
ing the mutual independence of random vectorsYν,1, . . . ,Yν,m in a given approximation (the exact
independence will not be reached due to the fact that the number ν of ”experimental” realizations is
finite, and can be small enough), and (ii) to develop an algorithm that is faster than the one that would
be based on the exploration all the possible partitions of then components ofHν (without repetition of
the indices). The number of possible partitions that shouldbe constructed and tested with the adapted
criterion would then be

∑n−1
j=1 C

j
n with Cj

n = ((n − j + 1) × . . . × n)/j! , which is really too big
for a high value ofn. In this paper, we propose a statistical tool with a fast algorithm for solving this
problem in high dimension and for which the value ofν can be small enough.

(ii) What would be the utility of the statistical tool proposed? For many years, probabilistic and sta-
tistical methodologies and tools have been developed for uncertainty quantification in computational
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sciences and engineering. In particular advanced methodologies and algorithms are necessary for mod-
eling, solving, and analyzing problems in high dimension. Arecent state of the art concerning all these
methodologies can be found in the Handbook of Uncertainty Quantification [26]. The statistical tool
presented in this paper, which consists in constructing an optimal partition of a non-Gaussian random
vector in several mutually independent random vectors, each one having a smaller dimension than the
original random vector, can be used for decreasing the numerical cost of many existing methodologies
devoted to the construction of stochastic models and their identification by solving statistical inverse
problems, both for the uncertain parameters of the computational models and the stochastic represen-
tation of their random responses.
Let us consider, for instance, the case of the polynomial chaos expansion (PCE) of random vectors,
stochastic processes, and random fields, which has been pioneered by Ghanem and Spanos [23] in
the community of computational sciences and engineering, on the basis of the mathematical works
performed by Wiener [57] and Cameron and Martin [9]. This initial work has then been extended by
Ghanem and his co-authors and by many researchers in the community of uncertainty quantification,
concerning the development of many methodologies and tools, and for which numerous applications
have been performed in many fields of science and engineeringwith great success. In the area of the
methodologies, we refer, for instance, to [2, 14, 15, 16, 17, 24, 25, 40, 44, 45, 53, 55] for the spectral
approaches of linear and nonlinear stochastic boundary value problems and some associated statistical
inverse problems; to [18, 41, 51, 56, 58] for the generalized chaos expansions; to [3, 4, 5, 21, 36, 42]
for works devoted to the dimension reduction and to the acceleration of stochastic convergence of the
PCE. If we were interested in the identification of the PCE forthe random vectorHν with values in
R
n, the use of the statistical tool that is proposed in this paper would allow for obtaining a significant

gain if the optimal partition was such that1 ≪ m ≤ n. We briefly explain hereinafter the reason
why. ForNd ≥ 1 (Nd will be the maximum degree of the polynomials) and for1 ≤ Ng ≤ n (Ng

will be the length of the random germ for the polynomial chaos), let α = (α1, . . . , αNg ) ∈ N
Ng be

the multi-index such that0 ≤ α1 + . . . + αNg ≤ Nd. The first1 + K multi-indices are denoted by
α(0), . . . ,α(K) in whichα(0) is the multi-index(0, . . . , 0), and whereK = (Ng +Nd)!/Ng!Nd!−1.
For Ng fixed, let {Ψα(ξ) , α ∈ (α1, . . . , αNg ) ∈ N

Ng} be the family of multivariate orthonormal
polynomials with respect to a given arbitrary probability measurep

Ξ
(ξ) dξ onR

Ng such that, for all
α andβ in N

Ng ,
∫
R
Ng Ψα(ξ)Ψβ(ξ) pΞ

(ξ) dξ = E{Ψα(Ξ)Ψβ(Ξ)} = δαβ. Forα = 0, Ψ0(η) = 1
is the constant normalized polynomial. The second-order random vectorHν can then be expanded in
polynomial chaosΨα asHν = limNg→n,Nd→+∞ Hν,Nd,Ng with convergence in the vector space of

all theR
n-valued second-order random variables, in whichHν,Nd,Ng =

∑K
k=0 h(k)Ψα(k)(Ξ) where

h(0), . . . ,h(K) are the coefficients inRn. The statistical inverse problem consists in estimating inte-
gersNg ≤ n andNd ≥ 1, and the coefficientsh(0), . . . ,h(K) in R

n, by using theν ”experimen-
tal” realizationsηexp,1, . . . ,ηexp,ν in order thatE{‖Hν − Hν,Nd,Ng‖2} ≤ εE{‖Hν‖2}. An adapted
method such as those proposed in [2, 5, 14, 16, 42, 45, 47, 53] can be used for solving this statisti-
cal inverse problem for which the numerical effort is directly related to the value ofNg ≤ n. If an
optimal partitionHν = (Yν,1, . . . ,Yν,m) is constructed withm ≤ n, then the PCE can be identi-

fied for eachRµj -valued random vectorYν,j such thatYν,j,N
(j)
d =

∑Kj

k=0 h(j,k)Ψα(j,k)(Ξj) in which

h(j,0), . . . ,h(j,Kj) are the coefficients inRµj , whereΞj is a random variable with values inRN
(j)
g with

N
(j)
g ≤ µj < n for which its arbitrary probability measurep

Ξj
(ξj) dξj onR

N
(j)
g is given, and where
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Kj = (N
(j)
g +N

(j)
d )!/N

(j)
g !N

(j)
d !− 1. As the random vectorsΞ1, . . . ,Ξm are mutually independent,

if m (with m ≤ n) is big, then the gain obtained is very big, because
∑m

j=1Kj ≪ K.

(iii) Brief state of the art concerning the methodologies for testing independence.
(1) A popular method for testing the statistical independence of theN components of a random vector
from a given set ofν realizations is the use of the frequency distribution [19] coupled with the use
of the Pearson chi-squared (χ2) test [46, 29]. For the high dimension (N big) and for a relatively
small value ofν, such a an approach does not give sufficiently good results. In addition, if this type
of method allows for testing the independence, we always need an additional fast algorithm for con-
structing the optimal partition that we are looking for.
(2) The independent component analysis (ICA) [31, 35, 10, 11, 33, 12, 34, 39, 6], which is also
referred to as the blind source separation, is an efficient method that consists in extracting indepen-
dent source signals from a linear mixture of mutually statistically independent signals, which is used
for source-separation problems, and which is massively used in signal analysis for analyzing, for
instance, financial time series or damage in materials, for image processing, in particular for ana-
lyzing neuroimage data such as electroencephalogram (EEG)images, neuroimaging of the brain in
computational neuroscience, data compression of spectroscopic data sets, etc. The fundamental hy-
pothesis that is introduced in such an ICA methodology is that the observed vector-valued signal is a
linear transformation of statistically independent real-valued signals (that is to say, is a linear trans-
formation of a vector-valued signal whose components are mutually independent) and the objective
of the ICA algorithms is to identify the best linear operator. The ICA method can be formulated
as follows. LetT = {t1, . . . , tNT

} be a finite set (corresponding to a time index or any other in-
dex of interest). For allt in T , let zexp,1(t), . . . , zexp,ν(t) be ν observations (the realizations) of a
time series{Z(t) = (Z1(t), . . . , ZN (t)), t ∈ T} with values inRN . In the ICA methodology, it is
assumed that, for allt in T , the random vectorZ(t) can be modeled as a linear combination of hid-
den mutually independent random variablesY1(t), . . . , Ym(t), with some unknown coefficients[c]ij ,
that is to say,Zi(t) =

∑m
j=1[c]ij Yj(t), or Z(t) = [c]Y(t), for which matrix[c] and the time series

{Y1(t), t ∈ T}, . . . , {Ym(t), t ∈ T}, which are assumed to be mutually independent, must be esti-
mated using only{zexp,1(t), t ∈ T}, . . . , {zexp,ν(t), t ∈ T}.
(3) In this paper, the method proposed and its objective are different from the ICA. The common
building block with the existing methods developed for ICA is the use of the mutual information for
measuring the statistical independence. All the other parts of the methodology presented in this paper
are different and have been constructed in order to obtain a robust construction of an optimal partition
of a non-Gaussian random vector in high dimension, which is defined by a relatively small number of
realizations.

(iv) Organization of the paper and the methodology proposed. The problem related to the construction
of an optimal partition of a non-Gaussian random vector in terms of several mutually independent
random vectors is a difficult problem for a random vector in high dimension.
The given data set is made up ofν realizations of a non-Gaussian second-order random vectorX with
values inRN , for which its probability distribution is unknown.
� In Section2, a principal component analysis ofX is performed and theν realizations of the random
vectorHν with values inRn with n ≤ N is carried out. Then, the random vectorHν is defined by its
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probability distributionpHν (η) dη in which the pdfpHν is constructed by the kernel density estimation
method using theν realizations ofHν .
� Section3 is devoted to the proposed algorithm for constructing an optimal partition of random vector
Hν in terms of mutually independent random vectorsYν,1, . . . ,Yν,m. For testing the mutual indepen-
dence of the random vectorsYν,1, . . . ,Yν,m of a given partition of random vectorHν , a numerical
criterion is defined in coherence with the statistical estimates made with theν realizations. We have
chosen to construct this numerical criterion on the base of the mutual information that is expressed as
a function of the Shannon entropy (instead of using another approach such as the one based on the use
of the conditional pdf). This choice is motivated by the two following reasons:
(i) The entropy of a pdf is expressed as the mathematical expectation of the logarithm of this pdf.
Consequently, for a pdf defined on a high-dimension set (n big), the presence of the logarithm allows
for solving the numerical problems induced by the constant of normalization of the pdf.
(ii) As the entropy is a mathematical expectation, this mathematical expectation can be estimated by
the Monte Carlo method for which the convergence rate is independent of the dimension thanks to the
law of large numbers, a property that is absolutely needed for the high dimensions.
(iii) The criterion that will be constructed by using the Monte Carlo estimation of the entropy will
be coherent with the maximum likelihood method, which is often use for solving statistical inverse
problems (such as the identification of the coefficients of the PCE of the random vector from a set of
realizations).
(iv) We then formulate the problem related to the identification of the optimal partition as an opti-
mization problem. However, the exploration of all the possible partitions that would be necessary
for solving this optimization problem is tricky in high dimension. This optimization problem is then
replaced by an equivalent one that can be solved with a fast algorithm from the graph theory (detailed
in Section3.6).
� Section4 deals with four numerical experiments, which allow for obtaining numerical validations
of the approach proposed.

2. Construction of a non-Gaussian reduced-order statistic al model from a set of
realizations.

2.1. Data description and estimates of the second-order mom ents. LetX = (X1, . . . ,
XN ) be aRN -valued non-Gaussian second-order random vector defined ona probability space(Θ,T ,
P), for which its probability distribution is represented by an unknown pdfx 7→ pX(x) with respect
to the Lebesgue measuredx on R

N . It is assumed thatν (with ν ≫ 1) independent realizations
xexp,1, . . . , xexp,ν of X are given (coming from experimental data or from numerical simulations). Let
m̂ν

X and[Ĉν
X] be the empirical estimates of the mean vectormX = E{X} and of the covariance matrix

[CX] = E{(X − mX) (X − mX)
T }, such that

m̂ν
X =

1

ν

ν∑

ℓ=1

xexp,ℓ , [Ĉν
X] =

1

ν − 1

ν∑

ℓ=1

(xexp,ℓ − m̂ν
X) (x

exp,ℓ − m̂ν
X)

T . (2.1)

We introduce the non-Gaussian second-order random vectorXν with values inRN , defined on(Θ,T ,P),
for which theν independent realizations arexexp,1, . . . , xexp,ν ,

Xν(θℓ) = xexp,ℓ ∈ R
N , θℓ ∈ Θ , ℓ = 1, . . . , ν , (2.2)
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and for which the mean vector and the covariance matrix are exactly m̂ν
X and[Ĉν

X],

E{Xν} = m̂ν
X , E{(Xν − E{Xν}) (Xν −E{Xν})T } = [Ĉν

X] . (2.3)

2.2. Reduced-order statistical model X (n,ν) of Xν . Let n be the reduced-order dimension
such thatn ≤ N , which is defined (see hereinafter) by analyzing the convergence of the principal
component analysis of random vectorXν . The eigenvaluesλ1 ≥ . . . ≥ λN ≥ 0 and the associated
orthonormal eigenvectorsϕ1, . . . ,ϕN , such that(ϕi)T ϕj = δij , are such that[Ĉν

X]ϕ
i = λi ϕ

i. The
principal component analysis allows for constructing a reduced-order statistical modelX(n,ν) of Xν

such that

X(n,ν) = m̂ν
X +

n∑

i=1

√
λiH

ν
i ϕ

i , (2.4)

in which

Hν
i = (Xν − m̂ν

X)
T ϕi/

√
λi , E{Hν

i } = 0 , E{Hν
i H

ν
j } = δij . (2.5)

It should be noted that the second-order random variablesHν
1 , . . . ,H

ν
n are non-Gaussian, centered,

and uncorrelated, but are statistically dependent. Let(n, ν) 7→ err(n, ν) be the error function defined
on{1, . . . , N} × N

∗ such that

err(n, ν) = 1−
∑n

i=1 λi

tr[Ĉν
X]

, (2.6)

in whichλi depends onν. Note thatn 7→ err(n, ν) depends onν, but that err(N, ν) = 0 for all ν. For
givenε > 0 (sufficiently small with respect to1), it is assumed that

∃ νp ∈ N
∗ , ∃n ∈ {1, . . . , N} : ∀ ν ≥ νp , err(n, ν) ≤ ε , (2.7)

in whichn andε are independent ofν (for ν ≥ νp). In the following, it is assumed thatn is fixed such
that (2.7) is verified. Consequently, sinceX(N,ν) = Xν , it can be deduced that

∀ ν ≥ νp , E{‖Xν − X(n,ν)‖2} ≤ ε tr[Ĉν
X] . (2.8)

The left-hand side of (2.8) represents the square of the norm of random vectorXν−X(n,ν) inL2(Θ,RN )
and consequently, allows for measuring the distance between Xν andX(n,ν) in L2(Θ,RN ).
Note that the dimension reduction constructed by using a principal component analysis is not system-
atically mandatory but is either required for constructinga reduced model such as for a random field
or is recommended in order to avoid some possible numerical difficulties that could occur during the
computation of the mutual information for which the Gaussian kernel density estimation method is
used and therefore, introduces the computation of exponentials.

2.3. Probabilistic construction of the random vector H ν . In this section, we give the
probabilistic construction of the non-Gaussian random vector Hν whose components are the coordi-
natesHν

1 , . . . ,H
ν
n introduced in the reduced-order statistical modelX(n,ν) of Xν , defined by (2.4).
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2.3.1. Independent realizations and second-order moments of the random vector
Hν . Let Hν = (Hν

1 , . . . ,H
ν
n) be theRn-valued non-Gaussian second-order random variable defined

on (Θ,T ,P). Theν independent realizations{ηexp,ℓ = (ηexp,ℓ
1 , . . . , ηexp,ℓ

n ) ∈ R
n , ℓ = 1, . . . , ν} of the

R
n-valued random variableHν are computed by

ηexp,ℓ
i =

1√
λi

(xexp,ℓ − m̂ν
X)

T ϕi , ℓ = 1, . . . , ν , i = 1, . . . , n , (2.9)

and depend onν, and for all fixedν,

m̂ν
H =

1

ν

ν∑

ℓ=1

ηexp,ℓ = 0 , [R̂ν
H] =

1

ν − 1

ν∑

ℓ=1

ηexp,ℓ (ηexp,ℓ)T = [ In] . (2.10)

Equations (2.5) and (2.10) show that

E{Hν} = m̂ν
H = 0 , E{Hν(Hν)T } = [R̂ν

H] = [In] . (2.11)

2.3.2. Probability distribution of the non-Gaussian rando m vector H ν . At this step
of the construction of random vectorHν , its ν realizations{ηexp,ℓ , ℓ = 1, . . . , ν} (see (2.9)) and its
second-order moments (see (2.11)) are defined. For completing the probabilistic construction of Hν ,
we define its probability distribution by the pdfη 7→ pHν (η) onR

n that is constructed by the Gaus-
sian kernel density estimation method on the basis of the knowledge of theν independent realizations
ηexp,1, . . . ,ηexp,ν. The modification proposed in [54] of the classical Gaussian kernel density estima-
tion method [8] is used so that, for allν, (2.11) is preserved. The positive valued functionpHν onR

n

is then written as
pHν (η) = cn q

ν(η) , ∀η ∈ R
n , (2.12)

in which the positive constantcn and the positive-valued functionη 7→ qν(η) onR
n are such that

cn =
1

(
√
2π ŝn )n

, qν(η) =
1

ν

ν∑

ℓ=1

exp{− 1

2ŝ 2
n

‖ ŝn
sn

ηexp,ℓ − η‖2} , (2.13)

and where the positive parameterssn andŝn are defined by

sn =

{
4

ν(2 + n)

}1/(n+4)

, ŝn =
sn√

s2n + ν−1
ν

. (2.14)

Parametersn is the usual multidimensional optimal Silverman bandwidth(taking into account that the
standard deviation of each component ofHν is unity) and parameter̂sn has been introduced in order
that the second equation of (2.11) be verified. It should be noted that, forn fixed, parameterssn andŝn
go to0+, andŝn/sn goes to1−, whenν goes to+∞. Using (2.12) to (2.14), it can easily be verified
that

E{Hν} =

∫

Rn

η pHν (η) dη =
ŝn
sn

m̂ν
H = 0 , (2.15)

E{Hν (Hν)T } =

∫

Rn

η ηT pHν (η) dη = ŝ 2
n [In] +

(
ŝn
sn

)2 (ν − 1)

ν
[R̂ν

H] = [ In] . (2.16)
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Remark. By construction ofpHν , the sequence{pHν }ν has a limit, denoted bypH = limν→+∞ pHν ,
in the space of all the integrable positive-valued functions onRn. Consequently, the sequence{Hν}ν
of Rn-valued random variables has a limit, denoted byH = limν→+∞ Hν , in probability distribution.
The probability distribution of theRn-valued random variableH is defined by the pdfpH .

2.3.3. Marginal distribution related to a subset of the comp onents of random vector
Hν . Let j1 < j2 < . . . < jµj

with µj < n be a subset of{1, 2, . . . , n}. LetYν,j = (Hj1 ,Hj2 , . . . ,Hjµj
)

be the random vector with values inRµj and let beηj = (ηj1, . . . , η
j
µj ) ∈ R

µj . From (2.12) and
(2.13), it can easily be deduced that the pdfp

Yν,j
of Yν,j with respect todηj , which is such that

p
Yν,j

(ηj) = p
Hj1

,Hj2
,...,Hjµj

(ηj1, . . . , η
j
µj ), can be written as

p
Yν,j

(ηj) = c̃µj
qνj (η

j) , ∀ηj ∈ R
µj , (2.17)

in which the positive constant̃cµj
and the positive-valued functionηj 7→ qνj (η

j) onR
µj are such that

c̃µj
=

1

(
√
2π ŝn )µj

, qνj (η
j) =

1

ν

ν∑

ℓ=1

exp{− 1

2ŝ 2
n

µj∑

k=1

(
ŝn
sn

ηexp,ℓ
jk

− ηjk)
2} . (2.18)

Note that, in (2.18), sn andŝn must be used and notsµj
andŝµj

.

2.4. Remark concerning convergence aspects. It can be seen that, forν → +∞, the
sequence of random vectors{Xν}ν converges in probability distribution to random vectorX for which
the probability distributionPX(dx) = pX(x) dx on R

N is the limit (in the space of the probability
measures onRN ) of the sequence of the probability distributions{PXν (dx) = pXν (x) dx}ν in which
pXν is the pdf of the random vectorXν = X(N,ν) given by (2.4) with n = N , and where the pdfpHν of
random vectorHν is defined by (2.12). It should be noted that this result holds because it is assumed
thatX is a second-order random vector and that its probability distributionPX(dx) admits a densitypX

with respect todx.

3. An algorithm for constructing an optimal partition of ran dom vector H ν in terms
of mutually independent random vectors Y ν,1, . . . ,Yν,m. For n fixed such thatn ≤ N and
for any ν fixed such thatν ≥ νp, asHν = (Hν

1 , . . . ,H
ν
n) is a normalized random vector (centered

and with a covariance matrix equal to[In], see (2.11)), if Hν was Gaussian, then the components
Hν

1 , . . . ,H
ν
n would be independent. AsHν is assumed to be a non-Gaussian random vector, although

Hν is normalized, its componentsHν
1 , . . . ,H

ν
n are, a priori, mutually dependent (it could also be

non-Gaussian and mutually independent). In this section that is central for this paper, the question
solved is related to the development of an algorithm for constructing an optimal partition ofHν , which
consists in finding the largest valuemmax ≥ 1 of the numberm of random vectorsYν,1, . . . ,Yν,m

made up of the componentsHν
1 , . . . ,H

ν
n, such thatHν can be written asHν = (Yν,1, . . . ,Yν,m) in

which the random vectorsYν,1, . . . ,Yν,m are mutually independent, but for which the components of
each random vectorYν,j are,a priori, mutually dependent. If the largest valuemmax of m is such that

• mmax = 1, then there is only one random vector,Yν,1 = Hν , and all the components ofHν

are mutually dependent and cannot be separated into severalrandom vectors;
• mmax = n, then each random vector of the partition is made up of one component ofHν , which

means that,Y ν,j = Hν
j and all the componentsHν

1 , . . . ,H
ν
n of Hν are mutually independent.
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As we have explained in Section1, for a random vectorHν in high dimension (big value ofn) defined
by a set of realizations, this problem is difficult. An efficient algorithm based on the use of information
theory and of graph theory is proposed hereinafter.

3.1. Defining a partition of H ν in terms of mutually independent random vectors.
Letm be an integer such that

1 ≤ m ≤ n .

A partition of the componentsHν
1 , . . . ,H

ν
n of Hν , denoted byPν(m;µ1, . . . , µm), consists in writing

Hν in terms ofm random vectorsYν,1, . . . ,Yν,m such that

Hν = (Yν,1, . . . ,Yν,m) , (3.1)

in which, for all j in {1, . . . ,m}, µj is an integer such that1 ≤ µj ≤ n andYν,j = (Y ν,j
1 , . . . , Y ν,j

µj )
is aRµj -valued random vector, which is written as

Yν,j = (Hν
rj1
, . . . ,Hν

rjµj
) , 1 ≤ rj1 < rj2 < . . . < rjµj

≤ n , (3.2)

in which the equalityrjµj = n can exist only ifm = 1 (and thusµ1 = n that yieldsYν,1 = Hν). For
fixedν, the integersµ1 ≥ 1, . . . , µm ≥ 1 are such that

∪m
j=1{rj1, . . . , rjµj

} = {1, . . . , n} , ∩m
j=1{rj1, . . . , rjµj

} = {∅} , µ1 + . . .+ µm = n . (3.3)

It should be noted that (3.2) implies that there is no possible repetition of indicesrj1, . . . , r
j
µj and

that no permutation is considered (any permutation would yield the same probability distribution for
Yν,j). If the partitionP

ν(m;µ1, . . . , µm) is made up ofm mutually independent random vectors
Yν,1, . . . ,Yν,m, then the joint pdf(η1, . . . ,ηm) 7→ p

Yν,1,...,Yν,m
(η1, . . . ,ηm) defined onRµ1 × . . . ×

R
µm is such that, for allη = (η1, . . . ,ηm) in R

n = R
µ1 × . . .× R

µm ,

pHν (η) = p
Yν,1,...,Yν,m (η1, . . . ,ηm) = p

Yν,1 (η
1)× . . .× pYν,m(ηm) , (3.4)

where, for allj in {1, . . . ,m}, ηj 7→ p
Yν,j

(ηj) is the pdf onRµj of random vectorYν,j . From (2.12)
and (3.1), it can be deduced that the joint pdfp

Yν,1,...,Yν,m
onR

µ1 × . . . × R
µm of the random vectors

Yν,1, . . . ,Yν,m can be written, for allη = (η1, . . . ,ηm) in R
n = R

µ1 × . . .× R
µm , as

p
Yν,1,...,Yν,m

(η1, . . . ,ηm) = pHν (η) = cn q
ν(η) , (3.5)

in which cn andqν are defined by (2.13).

3.2. Setting the problem for finding an optimal partition P
ν
opt in terms of mutually

independent random vectors. Forn andν fixed such that (2.7) is satisfied, the problem related
to the construction of an optimal partitionPν

opt = P
ν(mmax;µ

opt
1 , . . . , µopt

mmax) in terms of mutually inde-
pendent random vectorsYν,1, . . . ,Yν,mmax consists in finding the largest numbermmax of integerm on
the set of all the possible partitionsPν(m;µ1, . . . , µm). As we will explain later, a numerical criterion
must be constructed for testing the mutual independence of the random vectorsYν,1, . . . ,Yν,m in a
context for which, in general, the numberν of the given realizations ofHν is not sufficiently large so
that the statistical estimators are well converged (negligible statistical fluctuations of the estimates).
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3.3. Construction of a numerical criterion for testing a par tition in terms of mu-
tually independent random vectors. In order to characterize the mutual independence of the
random vectorsYν,1, . . . ,Yν,m of a partitionPν(m;µ1, . . . , µm) of random vectorHν , we need to
introduce a numerical criterion that we propose to construct by using the mutual information [37, 13]),
which is defined as the relative entropy (introduced by Kullback and Leibler [38]) between the joint
pdf of all the random vectorsYν,1, . . . ,Yν,m (that is to say, the pdf ofHν ) and the product of the pdf
of each random vectorYν,j. This mutual information and the relative entropy can be expressed with
the entropy (also called the differential entropy or the Shannon entropy, introduced by Shannon [50])
of the pdf of the random vectors. This choice of constructinga numerical criterion based on the use
of the entropy (instead of using another approach such as theone based on the use of the conditional
pdf) is motivated by the following reasons:

• As it has previously been explained, we recall that the entropy of a pdf is expressed as the
mathematical expectation of the logarithm of this pdf. Consequently, for a pdf whose sup-
port is a set having a high dimension, the presence of the logarithm allows for avoiding the
numerical problems that are induced by the presence of the constant of normalization of the
pdf.

• As the entropy is a mathematical expectation, this mathematical expectation can be estimated
by the Monte Carlo method for which the convergence rate is independent of the dimension
thanks to the law of large numbers (central limit theorem) [27, 48, 49], property that is abso-
lutely needed for the high dimensions.

• The numerical criterion that will be constructed by using the Monte Carlo estimation of the
entropy will be coherent with the maximum likelihood method, which is, for instance (see
Section1), used for the identification of the coefficients of the PCE ofrandom vectorHν by
using the set of realizationsηexp,1, . . . ,ηexp,ν [47, 53].

Nevertheless, a numerical criterion that is based on the useof the mutual information cannot be con-
structed as a direct application of the mutual information,and some additional specific ingredients
must be introduced for obtaining a numerical criterion thatis robust with respect to the statistical
fluctuations induced by a nonperfect convergence of the statistical estimators used, because, for many
applications, the numberν of the available independent realizations of the random vector Hν is not
sufficiently big.

3.3.1. Entropy of the pdfs related to a partition. For allj in {1, . . . ,m}, the entropy of the
pdf p

Yν,j
of theRµj -valued random variableYν,j is S(p

Yν,j
) ∈ R that is defined (using the convention

0 log(0) = 0) by

S(p
Yν,j

) = −E{log(p
Yν,j

(Yν,j))} = −
∫

R
µj

p
Yν,j

(ηj) log(p
Yν,j

(ηj)) dηj , (3.6)

in which pdfp
Yν,j

is defined by (2.17). Similarly, the entropyS(p
Yν,1,...,Yν,m ) ∈ R of the pdfp

Yν,1,...,Yν,m

is defined by
S(p

Yν,1,...,Yν,m
) = −E{log(p

Yν,1,...,Yν,m
(Yν,1, . . . ,Yν,m))} , (3.7)

which can be rewritten (using (3.5)) as

S(p
Yν,1,...,Yν,m ) = S(pHν ) = −E{log(pHν (Hν))} = −

∫

Rn

pHν (η) log(pHν (η)) dη . (3.8)
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3.3.2. Mutual information of the random vectors related to a partition. The mutual
informationi(Yν,1, . . . ,Yν,m) between the random vectorsYν,1, . . . , Yν,m is defined by

i(Yν,1, . . . ,Yν,m) = −E

{
log(

p
Yν,1 (Y

ν,1)× . . . × pYν,m (Yν,m)

p
Yν,1,...,Yν,m

(Yν,1, . . . ,Yν,m)
)

}
, (3.9)

in which the conventions0 log(0/a) = 0 for a ≥ 0 and b log(b/0) = +∞ for b > 0 are used.
The mutual information is related to the relative entropy (Kullback-Leibler divergence) of the pdf
p

Yν,1,...,Yν,m
with respect to the pdfp

Yν,1 ⊗ . . .⊗ pYν,m ,

d(p
Yν,1,...,Yν,m

: p
Yν,1 ⊗ . . . ⊗ pYν,m ) = i(Yν,1, . . . ,Yν,m) . (3.10)

In the following, we will use the mutual information that is equivalent to the Kullback-Leibler diver-
gence. From (3.6) and (3.7), it can be deduced that the mutual information defined by (3.9) can be
written as

i(Yν,1, . . . ,Yν,m) = S(p
Yν,1 ) + . . . + S(pYν,m )− S(p

Yν,1,...,Yν,m
) . (3.11)

3.3.3. Inequalities verified by the mutual information and b y the entropy. We have
the classical important following inequalities that allowfor testing the mutual independence of the
random vectors defined by a partitionPν(m;µ1, . . . , µm):
(i) Using the Jensen inequality, it can be proved [13] that the mutual information is non negative and
can be equal to+∞,

0 ≤ i(Yν,1, . . . ,Yν,m) ≤ +∞ . (3.12)

(ii) From (3.11) and (3.12), it can be deduced that

S(p
Yν,1,...,Yν,m

) ≤ S(p
Yν,1 ) + . . .+ S(pYν,m ) . (3.13)

(iii) If random vectorsYν,1, . . . ,Yν,m are mutually independent, then from (3.4) and (3.9), it can be
deduced that

i(Yν,1, . . . ,Yν,m) = 0 . (3.14)

Therefore, (3.11) and (3.14) yield

S(p
Yν,1,...,Yν,m

) = S(p
Yν,1 ) + . . .+ S(pYν,m ) . (3.15)

3.3.4. Defining a theoretical criterion for testing the mutu al independence of the
random vectors of a partition. Let us assume thatn andν are fixed such that (2.7) is satisfied.
Taking into account the properties of the mutual information, for testing the mutual independence of
random vectorsYν,1, . . . ,Yν,m of a partitionPν(m;µ1, . . . , µm), we choose the mutual information
0 ≤ i(Yν,1, . . . ,Yν,m) ≤ +∞ as the theoretical criterion that is such thati(Yν,1, . . . ,Yν,m) = 0 if
Yν,1, . . . ,Yν,m are mutually independent. Equations (2.13) and (2.18) yield cn = c̃µ1 × . . . × c̃µm .
Consequently, (2.12) and (2.17) show that the mutual informationi(Yν,1, . . . ,Yν,m), which is defined
by (3.11) and deduced from (3.9), is independent of the constants of normalizationcn, c̃µ1 , . . . , c̃µm .
However, such a theoretical criterion cannot directly be used (and will be replaced by a numerical
criterion derived from the theoretical criterion) for the following reasons:
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• The number of realizationsν is fixed and can be relatively small (this means that the asymp-
totic valueν → +∞ is not reached at all for obtaining a good convergence of the statistical
estimators). Consequently, there are statistical fluctuations of the theoretical criterion as a
function of ν, which exclude the possibility for obtaining exactly the value 0 (by superior
values).

• Although the pdfp
Yν,1,...,Yν,m = pHν is explicitly defined by (2.12) and the pdfp

Yν,j
by (2.17),

the entropyS(p
Yν,1,...,Yν,m

) = S(pHν ) and the entropiesS(p
Yν,1 ), . . . , S(pYν,m ) cannot exactly

be calculated. As we have explained before, for the high dimensions, the Monte Carlo method
must be used and, consequently, only a numerical approximation can be obtained. AspHν is
known, a generator of realizations could be used for generating a large number of independent
realizations in order to obtain a very good approximation ofthese entropies. Such a generator
could be constructed by using a Markov Chain Monte Carlo (MCMC) algorithm such as the
popular Metropolis-Hastings algorithm [27, 30, 43], the Gibbs sampling [20], or other algo-
rithms. Nevertheless, in a following section, for estimating these entropies, we will propose
to use only the given set of realizationsηexp,1, . . . ,ηexp,ν without adding some additional re-
alizations computed with an adapted generator. The reason why is we want to use exactly
the same data for testing the independence and for constructing the estimators related to the
identification of the representation ofHν under consideration in order to preserve the same
level of statistical fluctuations in all the estimators used.

Remarks concerning the choice of the theoretical criterion. The theoretical criterion consists in
testing the mutual informationi(Yν,1, . . . ,Yν,m) with respect to zero (by superior values) because
i(Yν,1, . . . ,Yν,m) ≥ 0, and the mutual independence is obtained for0. As this type of test (with
respect to0) has no numerical meaning, this theoretical criterion mustbe replaced by a numerical
criterion that will be derived, and which will be presented in Section3.3.5. However, it could be
interesting to examine what could be other choices for defining a theoretical criterion for mutual inde-
pendence. Hereinafter, we examine two possibilities amongothers:
(i) Considering (3.11), (3.13), and (3.14), a first alternative choice would consist in introducing the
quantityS(pHν )/

∑m
j=1 S(pYν,j

) ≤ 1 that is equal to1 whenYν,1, . . . ,Yν,m are mutually indepen-
dent, but which requires us to introduce the hypothesis:

∑m
j=1 S(pYν,j

) > 0. Unfortunately, such a
hypothesis is not satisfied in the general case.
(ii) A second choice could be introduced on the base of the following result. LetGν be the Gaussian
second-order centeredRn-valued random vector for which its covariance matrix is[In]. Consequently,
its components are mutually independent and its entropy isS(pGν ) = n (1 + log(2π))/2 > 1. On
the other hand, it is known (see [13]) that for any non-Gaussian centered random vectorHν with
covariance matrix equal to[In], we haveS(pHν ) ≤ S(pGν ). It should be noted that the equality
S(pHν ) = S(pGν ) is verified only if Hν is Gaussian. The components ofHν can be independent
and not Gaussian, and in such a case, we haveS(pHν ) < S(pGν ). Thus, for all j = 1, . . . ,m,
we haveS(p

Yν,j
) ≤ S(p

Gν,j
) and it can then be deduced that0 ≤ ∑m

j=1 S(pYν,j
) − S(pHν ) ≤∑m

j=1 S(pGν,j
)− S(pHν ) = S(pGν )− S(pHν ). For the non-Gaussian case,S(pGν )− S(pHν ) > 0 and,

consequently, the theoretical criterion0 ≤ {∑m
j=1 S(pYν,j

)−S(pHν )}/{S(pGν )−S(pHν )} ≤ 1 could
be constructed. Unfortunately, such a criterion would be ambiguous because0 (by superior values)
corresponds to the independence of non-Gaussian vectors, but for a small non-Gaussian perturbation
of a Gaussian vector, that is to say ifHν → Gν in probability distribution, thenS(pGν )−S(pHν ) → 0
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(by superior values) and, consequently, an indeterminate form of the criterion is,a priori, obtained.

3.3.5. Numerical criterion for testing the mutual independ ence of the random vec-
tors of a partition. As we have explained in Section3.3.4, the theoretical criterion cannot directly
be used and a numerical criterion must be derived. Let us introduce the positive-valued random vari-
ableZν such that

Zν =
p

Yν,1 (Y
ν,1)× . . .× pYν,m (Yν,m)

p
Yν,1,...,Yν,m

(Yν,1, . . . ,Yν,m)
. (3.16)

The theoretical criterion (mutual information) defined by (3.9) can be rewritten as

i(Yν,1, . . . ,Yν,m) = −E{logZν} . (3.17)

(i) Defining an approximate criterion for testing the mutual independence of the random vectors of
a partition. An approximation of the theoretical criterion defined by (3.9), and rewritten as (3.17),
is constructed by introducing the usual estimator of the mathematical expectation, but, as we have
previously explained, by using only theν independent realizationsηexp,1, . . . ,ηexp,ν of Hν . As η =
(η1, . . . ,ηm) ∈ R

n = R
µ1×. . .×R

µm is the deterministic vector associated with random vectorHν =
(Yν,1, . . . ,Yν,m), for ℓ = 1, . . . , ν, the realizationηexp,ℓ ∈ R

n is rewritten asηexp,ℓ = (η1,exp,ℓ, . . . ,

ηm,exp,ℓ) with ηj,exp,ℓ = (ηj,exp,ℓ
1 , . . . , ηj,exp,ℓ

µj ) = (ηexp,ℓ

rj1
, . . . , ηexp,ℓ

rjµj
) ∈ R

µj . Let Zexp,1, . . . , Zexp,ν

be ν independent copies of random variableZν. The approximate criterion for testing the mutual
independence of random vectorsYν,1, . . . ,Yν,m is defined as the real-valued random variable

Iν(Yν,1, . . . ,Yν,m) = −1

ν

ν∑

ℓ=1

logZexp,ℓ . (3.18)

If the random vectorsYν,1, . . . ,Yν,m are mutually independent, thenIν(Yν,1, . . . ,Yν,m) = 0 almost
surely.

(ii) Computing a realizationiν(Yν,1, . . . ,Yν,m) of the random variableIν(Yν,1, . . . ,Yν,m). The real-
ization ofIν(Yν,1, . . . ,Yν,m) associated with theν independent realizationsηexp,1, . . . ,ηexp,ν of Hν is
denoted byiν(Yν,1, . . . ,Yν,m), which can be written (see (3.6), (3.8), (3.11), and (3.16) to (3.18)) as

iν(Yν,1, . . . ,Yν,m) = sν1 + . . .+ sνm − sν , (3.19)

in which the real numbers{sνj , j = 1, . . . ,m} andsν can be computed with the formulas,

sνj = −1

ν

ν∑

ℓ=1

log(p
Yν,j

(ηj,exp,ℓ)) , j = 1, . . . ,m , (3.20)

sν = −1

ν

ν∑

ℓ=1

log(pHν (η
exp,ℓ)) . (3.21)

If the random vectorsYν,1, . . . ,Yν,m are mutually independent, theniν(Yν,1, . . . ,Yν,m) = 0.
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(iii) Connection with the likelihood function. From (3.20) and (3.21), sνj and sν can be rewritten
with the log likelihood functionsLν

j =
∑ν

ℓ=1 log(pYν,j
(ηj,exp,ℓ)) andLν =

∑ν
ℓ=1 log(pHν (ηexp,ℓ)) as

sνj = −Lν
j /ν andsν = −Lν/ν. The realization of the approximate criterion can then be rewritten as

iν(Yν,1, . . . ,Yν,m) = −(Lν
1 + . . .+ Lν

m − Lν)/ν.

(iv) Random lower bound of the approximate criterionIν(Yν,1, . . . ,Yν,m). As the independent ran-
dom variablesZexp,1, . . . , Zexp,ν are positive almost surely, and as the arithmetic mean(Σν

ℓ=1Z
exp,ℓ)/ν

is greater than or equal to the geometric mean(Πν
ℓ=1Z

exp,ℓ)1/ν , it can be deduced that

log{(Σν
ℓ=1Z

exp,ℓ)/ν} ≥ log{(Πν
ℓ=1Z

exp,ℓ)1/ν} =
1

ν

ν∑

ℓ=1

log(Zexp,ℓ) a.s . (3.22)

Consequently, (3.18) and (3.22) yield the following inequality of real-valued random variables,

Bν ≤ Iν(Yν,1, . . . ,Yν,m) a.s , (3.23)

in which the real-valued random variableBν is written as

Bν = − log(
1

ν

ν∑

ℓ=1

Zexp,ℓ) . (3.24)

If the random vectorsYν,1, . . . ,Yν,m are mutually independent, thenBν = 0 almost surely. Consid-
ering theν independent realizationsηexp,1, . . . ,ηexp,ν of Hν , (3.16) and (3.24) yield the deterministic
inequality

0 ≤ bν ≤ iν(Yν,1, . . . ,Yν,m) , (3.25)

in which the real numberbν is given by

bν = − log

(
1

ν

ν∑

ℓ=1

p
Yν,1 (η

1,exp,ℓ)× . . .× pYν,m (ηm,exp,ℓ)

pHν (ηexp,ℓ)

)
. (3.26)

If the random vectorsYν,1, . . . ,Yν,m are mutually independent, thenbν = 0. It should be noted that
νp is assumed to be such that, for allν ≥ νp, we have effectively0 ≤ bν , which implies that for all
ν ≥ νp, iν(Yν,1, . . . ,Yν,m) ≥ 0. Unfortunately, asν is generally not sufficiently large for getting
good convergence of the estimator of the pdfs in the right-hand side of (3.26), the lower boundbν

cannot directly be used in the algorithm. An adapted numerical criterion is introduced in paragraph
(vi) hereafter.

(v) Convergence analysis. Taking into account (2.7), n is fixed and is independent ofν. From the
remark given in Section2.3.2, the sequence{Hν}ν of random vectors tends in probability distribution
to the random vectorH whenν goes to+∞. The probability distribution ofH is defined by the pdf
pH. Similarly to (3.1), the limit H is written asH = (Y1, . . . ,Ym) in which for all j in {1, . . . ,m},
Yj = (Y j

1 , . . . , Y
j
µj ) is anRµj -valued random vector, where the integersm andµ1, . . . , µm are fixed,

independent ofν, and verify (3.3) (see Section3.1). Consequently, forν → +∞, i(Yν,1, . . . ,Yν,m) →
i(Y1, . . . ,Ym). It is assumed that pdfpH (that is unknown) is such that there existsν0 such that, for
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all ν > ν0, E{(logZν)2} ≤ cZ < +∞ in which the positive constantcZ is independent ofν. For all
ν fixed, it can easily be proved thatmIν = E{Iν(Yν,1, . . . ,Yν,m)} = i(Yν,1, . . . ,Yν,m) andσ2

Iν =
E{(Iν(Yν,1, . . . ,Yν,m) − mIν )

2} = 1
νσ

2
logZν with σ2

logZν = E{(logZν)2} − i(Yν,1, . . . ,Yν,m)2.
Consequently,σ2

Iν → 0 as ν → 0. For all ε > 0, the use of the Chebyshev inequality yields
P{|Iν(Yν,1, . . . ,Yν,m) − i(Yν,1, . . . ,Yν,m)| ≥ ε} ≤ σ2

Iν/ε
2 that allows for obtaining the follow-

ing convergence property in probability,

lim
ν→+∞

Iν(Yν,1, . . . ,Yν,m) = i(Y1, . . . ,Ym) . (3.27)

Equation (3.16) shows thatE{Zν} = 1 and (3.24) shows thatBν tends to− log(1). Consequently,

lim
ν→+∞

Bν = 0 in probability. (3.28)

It should be noted that the mutual information of the random vectorsY1, . . . ,Ym is such that

0 ≤ i(Y1, . . . ,Ym) , (3.29)

and, if the random vectorsY1, . . . ,Ym are independent, theni(Y1, . . . ,Ym) = 0.

(vi) Defining a numerical criterion for testing the mutual independence of the random vectors of a
partition P

ν(m;µ1, . . . , µm). For fixedν, we have proved thatbν ≤ iν(Yν,1, . . . ,Yν,m) and, if
the random vectorsYν,1, . . . ,Yν,m are mutually independent, then0 = bν = iν(Yν,1, . . . ,Yν,m).
Unfortunately, often,ν is not sufficiently large for getting good convergence of theestimator of the
pdfs, and consequently, the mutual informationiν(Yν,1, . . . ,Yν,m) cannot be compared to the value0
for testing the mutual independence. We thus propose to construct a numerical criterion derived from
the approximate criterion in order to test the mutual independence, as explained hereinafter.
Let G = (G1, . . . , Gn) be the Gaussian second-order centeredR

n-valued random vector for which
its covariance matrix is[In]. It is assumed thatG is statistically independent of random vectorHν .
Therefore the componentsG1, . . . , Gn are mutually independent real-valued random variables. Let
{gexp,ℓ, ℓ = 1, . . . , ν} beν independent realizations ofG such thatgexp,ℓ = (gexp,ℓ

1 , . . . , gexp,ℓ
n ) ∈ R

n.
• By applying the partitionPν(m;µ1, . . . , µm) defined by (3.1) to (3.3) to random vectorG,

this vector is rewritten asG = (G1, . . . ,Gm) in which the Gaussian random vectorGj =
(Gj

rj1
, . . . , Gj

rjµj
) has values inRµj , where the indices1 ≤ rj1 < rj2 < . . . < rjµj ≤ n are those

defined in (3.2) and (3.3), and where theν independent realizations ofGj are{gj,exp,ℓ, ℓ =

1, . . . , ν} such thatgj,exp,ℓ = (gj,exp,ℓ
1 , . . . , gj,exp,ℓ

µj ) = (gexp,ℓ

rj1
, . . . , gexp,ℓ

rjµj
) ∈ R

µj .

• The mutual informationiν(G1, . . . ,Gm) of random vectorsG1, . . . ,Gm is calculated by using
(3.19) to (3.21) after replacing random vectorsYν,1, . . . ,Yν,m by the mutually independent
Gaussian random vectorsG1, . . . ,Gm. However, although the values of the pdf,pG(g

exp,ℓ)
andp

Gj
(gj,exp,ℓ)), could be calculated exactly, these quantities are approximated by using the

Gaussian kernel density estimation method as explained in Sections2.3.2and2.3.3(in order
to define a numerical criterion that is coherent from a numerical point of view).

• The Gaussian random vectorsG1, . . . ,Gm are mutually independent. Forν → +∞, bνGauss=
iν(G1, . . . ,Gm) goes to0. Nevertheless, asν is finite (and sometimes small enough), the nu-
merical valueiν(G1, . . . ,Gm)will not be zero, but will be such that0 < bνGauss≤ iν(G1, . . . ,Gm).



16 CHRISTIAN SOIZE

Consequently, forν fixed, the numerical valueiν(G1, . . . ,Gm) is chosen as the lower bound
of the mutual information for testing the mutual independence.

• The random vectorsYν,1, . . . ,Yν,m of the partitionPν(m;µ1, . . . , µm) will be considered as
mutually independentif

0 ≤ iν(Yν,1, . . . ,Yν,m) ≤ iν(G1, . . . ,Gm) , (3.30)

while they will be considered asmutually dependentif

0 ≤ iν(G1, . . . ,Gm) < iν(Yν,1, . . . ,Yν,m) . (3.31)

• Taking into account (3.25), (3.30), and (3.31), for testing the independence of the random
vectorsYν,1, . . . ,Yν,m of partition P

ν(m;µ1, . . . , µm), we introducẽτν(m;µ1, . . . , µm) as
thenumerical criterion, which is defined by

τ̃ν(m;µ1, . . . , µm) = 1− iν(Yν,1, . . . ,Yν,m)

iν(G1, . . . ,Gm)
. (3.32)

This numerical criterion is such that random vectorsYν,1, . . . ,Yν,m will be considered as

mutually independentif 0 ≤ τ̃ν(m;µ1, . . . , µm) ≤ 1 ,

mutually dependentif τ̃ν(m;µ1, . . . , µm) < 0 .

By convention,τ̃ν(m;µ1, . . . , µm) will be taken equal to1 if iν(G1, . . . ,Gm) ≪ 1 with
iν(Yν,1, . . . ,Yν,m) ≤ iν(G1, . . . ,Gm).

The numerical criterion defined by (3.32) has been constructed for analyzing the high-dimension case
(n big) with a number of realizations, which can be relatively small (ν small). Consequently, the esti-
mateiν(Yν,1, . . . ,Yν,m) of the mutual information performed by using the nonparametric statistics is
not sufficiently accurate and there exist statistical fluctuations. In order to increase the robustness of
the prevision of the mutual independence, the theoretical lower bound ”zero” is replaced by the lower
boundbνGauss (that would be equal to zero ifν was equal to infinity), and which is estimated with the
same numberν of realizations as foriν(Yν,1, . . . ,Yν,m), in order to construct a robust numerical cri-
terion that takes into account the statistical fluctuationsof the lower bound and that allows for testing
the mutual independence of the random vectors of a given partition. Finally, it should be noted that the
numerical criterion defined by (3.32) corresponds to a lower boundbνGaussthat depends on the partition
analyzed and, consequently, the numerical criterion changes for every partition, but, this is the effect
that is searched in order to adapt the level of the statistical fluctuations of the numerical criterion to
every partition analyzed.

(vii) Comment about the introduction of random variableBν . It should be noted that the random
variableBν and its estimatebν have been introduced for justifying the introduction of thelower bound
for the Gaussian case, which allows for constructing the numerical criterion defined by (3.32). Conse-
quently,Bν andbν are introduced for a theoretical understanding of the proposed construction, but do
not play any role in the algorithm that will be introduced in Sections3.5and3.6.
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3.4. Optimization problem for finding the optimal partition of the random vector H ν

in terms of mutually independent random vectors. Using the numerical criterion defined by
(3.32), we propose to construct the solution of the problem formulated in Section3.2 by solving the
following optimization problem:

(mmax;µ
opt
1 , . . . , µopt

mmax
) = inf

m
{arg max

1≤m≤n
{ max
(µ1,...,µm)∈Cm

τ̃ν(m;µ1, . . . , µm)}} , (3.33)

in which the admissible setCm ⊂ {1, . . . , n}m is such thatCm = {µ1 ≥ 1, . . . , µm ≥ 1 , µ1 + . . . +
µm = n} and where the notation used in (3.33) is detailed in the fourth paragraph of the following
remarks.

Remarks about the construction proposed.
• The optimal partition that is constructed depends onν. Such a formulation is reasonable

because the available information is only made up of the set of the ν realizations of random
vectorHν .

• The principle that corresponds to the formulation defined by(3.33) consists in finding the
partition in terms of mutually independent vectors for which (3.30) is obtained with the largest
positive value of the differenceiν(G1, . . . ,Gm)− iν(Yν,1, . . . ,Yν,m), that is to say, with the
largest positive value of̃τν(m;µ1, . . . , µm). Such a criterion yields the largest robustness with
respect to the statistical fluctuations induced by the fact thatν can be small enough.

• The mathematical analysis of the optimization problem defined by (3.33) seems difficult
enough and we have not been able to obtain interesting properties in this way, as against
many numerical experiments have confirmed that this choice was efficient with respect to the
problem that we had to solve.

• Formmax ≥ 2, let T = arg max1≤m≤n {max(µ1,...,µm)∈Cm τ̃ν(m;µ1, . . . , µm)} be the set of
all the integersm with 1 ≤ m ≤ n such thatm 7→ max(µ1,...,µm)∈Cm τ̃ν(m;µ1, . . . , µm) is
maximum with respect tom. A priori, setT is not always reduced to a single point. Ifminf

max is
the number of independent random vectors of the optimal partition corresponding toinfm{T}
andmsup

max the one corresponding tosupm{T}, then it can be deduced thatminf
max ≤ msup

max. Al-
though we are interested in identifying the largest value ofm, the most robust solution leads us
to choose the largest number of dependent random vectors forthe identified optimal partition.
Therefore,mmax = minf

max = infm{T} is selected as the maximum number of independent
random vectors for this optimal partition. This is the reason why the inferior value of setT
has been introduced in (3.33).

3.5. Reformulation of the optimization problem for constru cting the optimal parti-
tion of the random vector H ν in terms of mutually independent random vectors. The
reason why a reformulation of the optimization problem defined by (3.33) is necessary is explained
hereinafter, and a new formulation that will be adapted to the development of an algorithm based on
graph theory (presented in Section3.6) is proposed.

3.5.1. Why a reformulation of the optimization problem is ne cessary. The optimiza-
tion problem defined by (3.33) consists in finding the optimal partitionPν

opt = P(mmax;µ
opt
1 , . . . , µopt

mmax)
on the set of all the possible partitions{Pν(m;µ1, . . . , µm), 1 ≤ m ≤ n, µ1 + . . . + µm = n}, for
which µopt

1 + . . . + µopt
mmax = n and wheremmax is the largest value of the numberm of independent
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random vectorsYν,1, . . . ,Yν,m such that, forj = 1, . . . ,m,

Yν,j = (Hν
rj1
, . . . ,Hν

rjµj
) , 1 ≤ rj1 < rj2 < . . . < rjµj

≤ n verifying (3.3) . (3.34)

For solving (3.33), a natural algorithm would consist in computingτ̃ν(m;µ1, . . . , µm) for each parti-
tion P

ν(m;µ1, . . . , µm) among all the possible partitions. However, as the number ofall the possible
partitions is

∑n−1
j=1 C

j
n with Cj

n = ((n− j+1)× . . .×n)/j! , it can be seen that, for a high value ofn,
such a computation would be very tricky. We then propose another algorithm, which is faster than the
natural one. This algorithm will be based on the use of the graph theory. The edges of the graph that
will be constructed are obtained by analyzing the statistical dependence of the components(Hν

r1 ,H
ν
r2),

two by two, for which the indicesr1 andr2 (with r1 6= r2) are taken in the set of the indices of com-
ponentsHν

1 , . . . ,H
ν
n of Hν . Consequently, first, we need to adapt the previous notations relative to

the mutual information for two scalar random components and, second, we need to reformulate the
optimization problem defined by (3.33).

3.5.2. Adapting the notations for the computation of the mut ual information of the
real-valued random variables Hν

r1 and Hν
r2 . Let r1 and r2 be any two integers belonging to

{1, . . . , n} with r1 6= r2. Hereinafter, the results related to the mutual information and to the numer-
ical criterion presented in Section3.3 are adapted for analyzing the independence of the real-valued
random variablesHν

r1 andHν
r2 .

Let iν(Hν
r1 ,H

ν
r2) be the realization of the random mutual informationIν(Hν

r1 ,H
ν
r2), computed by using

the ν independent realizationsηexp,1, . . . ,ηexp,ν of Hν , in which ηexp,ℓ = (ηexp,ℓ
1 , . . . , ηexp,ℓ

n ) ∈ R
n.

From (3.19) to (3.21), it can be deduced that

iν(Hν
r1 ,H

ν
r2) = sν,2r1 + sν,2r2 − sν,2r1,r2 , (3.35)

in which the real numberssν,2r1 , sν,2r2 , andsν,2r1,r2 are computed with the formulas,

sν,2r = −1

ν

ν∑

ℓ=1

log(p
Hν
r
(ηexp,ℓ

r )) , r ∈ {r1, r2} , (3.36)

sν,2r1,r2 = −1

ν

ν∑

ℓ=1

log(p
Hν
r1

,Hν
r2
(ηexp,ℓ

r1 , ηexp,ℓ
r2 )) . (3.37)

From Sections2.3.2and2.3.3, it can be seen that the pdf ofHν
r is written as

p
Hν
r
(ηr) = c̃1 q

ν
r (ηr) , ∀ ηr ∈ R , (3.38)

in which the positive constant̃c1 and the positive-valued functionηr 7→ qνr (ηr) onR are such that

c̃1 =
1√
2π ŝn

, qνr (ηr) =
1

ν

ν∑

ℓ=1

exp{− 1

2ŝ 2
n

(
ŝn
sn

ηexp,ℓ
r − ηr)

2} . (3.39)

The joint pdf of(Hν
r1 ,H

ν
r2) is written as

p
Hν
r1

,Hν
r2
(ηr1 , ηr2) = c̃2 q

ν
r1,r2(ηr1 , ηr2) , ∀ (ηr1 , ηr2) ∈ R

2 , (3.40)
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in which the positive constant̃c2 and the positive-valued function(ηr1 , ηr2) 7→ qνr1,r2(ηr1 , ηr2) onR
2

are such that

c̃2 =
1

(
√
2π ŝn )2

, qνr1,r2(ηr1 , ηr2) =
1

ν

ν∑

ℓ=1

exp{− 1

2ŝ2n

2∑

k=1

(
ŝn
sn

ηexp,ℓ
rk

− ηrk)
2} . (3.41)

In (3.39) and (3.41), the constantssn andŝn are given by (2.14).

3.5.3. Reformulation of the optimization problem. Let iref ≥ 0 be any fixed real value of
the mutual information for two real-valued random variables. Letr1 andr2 be any two integers such
that1 ≤ r1 < r2 ≤ n. The random variablesHν

r1 andHν
r2 will be considered as

dependentif 0 ≤ iref < iν(Hν
r1 ,H

ν
r2) ,

(3.42)

independentif 0 ≤ iν(Hν
r1 ,H

ν
r2) ≤ iref .

We then introduce the following rule given by the probability theory: Ifr1, r2, andr3 are three indices
such that1 ≤ r1 < r2 < r3 ≤ n, then

• if Hν
r1 is dependent onHν

r2 and ifHν
r1 is dependent onHν

r3 , thenHν
r1 ,Hν

r2 , andHν
r3 are mutually

dependent;
• if Hν

r1 is dependent onHν
r2 and ifHν

r2 is dependent onHν
r3 , thenHν

r1 ,Hν
r2 , andHν

r3 are mutually
dependent.

From (3.42) and this rule, it can be deduced that,
• wheniref = 0, if 0 < iν(Hν

r1 ,H
ν
r2) for all 1 ≤ r1 < r2 < r3 ≤ n, then all the components

Hν
1 , . . . ,H

ν
n of Hν are considered as mutually dependent and, consequently,m = 1 (there is

only one subset in the partition, which coincides withHν);
• wheniref > max1≤r1<r2≤n i

ν(Hν
r1 ,H

ν
r2), if iν(Hν

r1 ,H
ν
r2) ≤ iref for all 1 ≤ r1 < r2 < r3 ≤ n,

then all the componentsHν
1 , . . . ,H

ν
n of Hν are considered as independent and consequently,

m = n (there aren independent subsets in the partition);
• wheniref is such that0 < iref < max1≤r1<r2≤n i

ν(Hν
r1 ,H

ν
r2), the construction of the partition

P
ν
iref
(m;µ1, . . . , µm) of Hν in terms of random vectorsYν,1, . . . ,Yν,m considered as indepen-

dent for the given leveliref, is deduced from the previous rule and from graph theory [7]. The
set of nodes of the graph isI = {1, . . . , n}. Let [N ] be the symmetric adjacency(n × n)
matrix made up of0 and1, for which all its diagonal entries are0 and such that, for all integers
r1 andr2 verifying 1 ≤ r1 < r2 ≤ n,

[N ]r1r2 = [N ]r2r1 = 0 if iν(Hν
r1 ,H

ν
r2) ≤ iref ,

(3.43)

[N ]r1r2 = [N ]r2r1 = 1 if iref < iν(Hν
r1 ,H

ν
r2) .

For such a given leveliref and from the knowledge of adjacency matrix[N ], the algorithm
presented in Section3.6allows for constructing the unique partitionPν

iref
(m;µ1, . . . , µm) as-

sociated withiref and then for computing the numerical criterionτ̃ν(m;µ1, . . . , µm), defined
by (3.32), which is rewritten asτν(iref),

τν(iref) = 1− iν(Yν,1, . . . ,Yν,m)

iν(G1, . . . ,Gm)
. (3.44)
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Consequently, the optimization problem defined by (3.33) can be rewritten as the following one,

P
ν(mmax;µ

opt
1 , . . . , µopt

mmax
) = P

ν

i
opt
ref

(m;µ1, . . . , µm) , (3.45)

in which the optimal leveliopt
ref of iref is given by

iopt
ref = inf

iref
{ arg max

iref≥0
τν(iref)} . (3.46)

Remarks.
• In (3.46), the inf operator is introduced for the same reason as the one given for justifying

(3.33). Let T = argmax τν(iref) be the set of all theiref ≥ 0 such thatτν(iref) is maximum.
The numerical experiments have shown that setT is not always reduced to a single point. The
solution is thus chosen asiopt

ref = inf{T}.
• If for all iref > 0, we haveτν(iref) ≤ τ(iopt

ref ) < 0 with |τ(iopt
ref )| ≤ ǫ ≪ 1 (for instance,

ǫ = 10−3), then all the componentsHν
1 , . . . ,H

ν
n of Hν are Gaussian and independent.

• The algorithm used for solving the optimization problem defined by (3.46) is the trial method.
• Equation (3.45) means that, once the optimal valueiopt

ref of the leveliref has been estimated by
(3.46), then the partitionPν

i
opt
ref

(m;µ1, . . . , µm) of Hν in terms of random vectorsYν,1, . . . ,Yν,m

that are assumed to be mutually independent for this optimalvalueiopt
ref of iref, is calculated and,

consequently, the optimal valuesmmax andµopt
1 , . . . , µopt

mmax such thatµopt
1 + . . . + µopt

mmax = n
are deduced.

3.6. Algorithm for constructing the partition P
ν
iref
(m;µ1, . . . , µm) of Hν in terms of

random vectors considered as independent for a given level iref. For iref such that0 <
iref < max1≤r1<r2≤n i

ν(Hν
r1 ,H

ν
r2), an algorithm using the graph theory is proposed for constructing

the partitionPν
iref
(m;µ1, . . . , µm) of Hν in terms of random vectorsYν,1, . . . ,Yν,m considered as in-

dependent for the given leveliref. This algorithm, written using the Matlab language, is detailed in
Algorithm 1 given in Appendix A, for which it is assumed that the symmetric adjacency(n× n) ma-
trix [N ] has previously been calculated using (3.43). The proposed algorithm uses notions of graph
theory, such as the ”nodes” and the ”symmetric adjacency” for which the definition can be found in
[7]. The algorithm that is detailed in Appendix A has especially been developed for constructing the
partition by following the development presented in Section 3.5.3.
The CPU time generated by the proposed algorithm is totally due to the construction of the symmetric
adjacency matrix[N ], which requires the calculation of (3.35) to (3.41) (use of the classical Gaus-
sian kernel density estimation method for computing a realization of the random mutual information).
Consequently, the CPU time is proportional ton × ν × n(n + 1)/2 (dimension of the random vec-
tor) × (number of realizations)× (number of entries in the symmetric adjacency matrix) and tothe
number of constructions of matrix[N ]. The CPU time generated by the graph algorithm detailed in
Appendix A is completely negligible. It should be noted thatthe sequences that generate the CPU
time can easily be parallelized due to the algebraic structure of (3.39) and (3.41), and due to the fact
that the computation of the entries of matrix[N ] can also easily be parallelized.

4. Numerical experiments and numerical validation. Four numerical experiments are
presented. For the first three, the construction of each numerical experiment is performed in order that



PARTITION IN INDEPENDENT RANDOM VECTORS 21

the optimal partition in terms of mutually independent random vectors is knowna priori. Therefore,
these numerical experiments yield a validation of the method proposed. For the last numerical exper-
iment (the fourth), the optimal partition is unknown. Consequently, this numerical experiment does
not directly contribute to the validation, but this examplethat is relative to a non-GaussianM+

6 -valued
random field indexed byR3, allows for testing the capability of the method proposed toidentify an
optimal partition for a case in high dimension.

4.1. Numerical experiment 1. The generation of the set of realizations and the results are
presented below.

(i) Generation of the set of realizations. This numerical experiment consists in analyzing a very simple
case of ”almost” independent uniform real-valued random variables.

• ForN = 10, let W = (W1, . . . ,WN ) be the random vector, defined on the probability space
(Θ,T ,P), whose components are written asW =

√
3 (2U − 1) in which the components

U1, . . . , UN of random vectorU areN mutually independent uniform random variables on
[0 , 1]. For ν = 100, let {U(θℓ), ℓ = 1, . . . , ν} be ν independent realizations ofU with
θℓ ∈ Θ. Let W(θℓ) =

√
3 (2U(θℓ)− 1) be the corresponding realizations ofW.

• We now defined theRN -valued random vectorXν from the set of itsν independent realiza-
tions{xexp,ℓ, ℓ = 1, . . . , ν} as explained in Section2.1, such thatxexp,ℓ = W(θℓ).

• The reduced-order statistical model defined in Section2.2and the probabilistic construction of
the random vectorHν given in Section2.3are applied in takingn = N (thus err(n, ν) = 0),
which allows for constructing theν independent realizations{ηexp,ℓ, ℓ = 1, . . . , ν} of the
R
n-valued random vectorHν such that (2.15) and (2.16) are verified.

It should be noted that, ifν went to+∞, then the components ofHν would be mutually independent.
However, since the value100 for ν is not sufficiently large, the components ofHν are not exactly
mutually independent. The test for the validation of the method that is proposed is to evaluate its
capability to find the mutual independence of all the components ofHν for ν = 100. As an illustration,
Figure4.1(left) shows the graph of the pdf of the random variableHν

3 , computed by using (3.38) with
(3.39), which is compared to a Gaussian pdf with the same empiricalmean value and the same standard
deviation. Figure4.1 (right) displays the graph of the joint pdf of the random variables(Hν

1 ,H
ν
3)

computed by using (3.40) with (3.41).

(ii) Results. The graph of functioniref 7→ τν(iref), defined by (3.44) is displayed in Figure4.2 (left).
The optimal leveliopt

ref of iref, defined by (3.46), is iopt
ref = 0.02. Figure4.2 (right) displays the graph

p = (r1, r2) 7→ iν(Hν
r1 ,H

ν
r2) defined by (3.35) and the horizontal line corresponding to the ordinate

iopt
ref = 0.02. The notationp = (r1, r2) means thatp is the integer belonging to{1, . . . , n(n − 1)/2},

which is associated with the pair(r1, r2) whenr1 andr2 run through the ensemble{1 ≤ r1 < r2 ≤ n}.
The multi-indices(r1, r2) are ordered such that forr1 given by increasing value in1 ≤ r1 ≤ n − 1,
r2 is ordered by increasing value such thatr1 + 1 ≤ r2 ≤ n. This order is also used in the similar
figures later in the paper. For instance, in Figure4.2(right), p = 1 corresponds tor1 = 1 andr2 = 2;
p = 9, to r1 = 1 and r2 = 10; p = 10 to r1 = 2 and r2 = 3, etc. It can be seen that all the
values ofiν(Hν

r1 ,H
ν
r2) are smaller thaniopt

ref and therefore, taking into account (3.42), there are no
dependent random variablesHν

r1 with Hν
r2 for all 1 ≤ r1 < r2 ≤ n. We then obtained an optimal

partitionP
ν
opt = P(mmax;µ

opt
1 , . . . , µopt

mmax) with mmax = n = N = 10 andµopt
1 = . . . = µopt

mmax = 1.
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Figure 4.1. Numerical experiment 1. Graph ofη3 7→ pHν
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Consequently, the optimal partition identified corresponds ton = 10 mutually independent real-valued
random variablesY ν,1, . . . , Y ν,m with Y ν,j = Hν

j , that is to say, all the components of random vector
Hν are found as mutually independent forν = 100 (that was expected). For this optimal partition, the
criterion defined by (3.30) is verified withiν(Y ν,1, . . . , Y ν,mmax) = 4.83 andiν(G1, . . . , Gm

max) = 5.29.
The total CPU time for obtaining the results with a laptop computer is7 seconds.

4.2. Numerical experiment 2. For this numerical experiment, we test the capability of the
method proposed to identify an optimal partition of a randomvector having78 non-Gaussian compo-
nents, in terms of12 mutually independent non-Gaussian random vectors of different lengths.

(i) Generation of the set of realizations. For this numerical example, we consider a random vector with
N = 78 components, which is constituted ofm = 12 independent random vectors with lengthµj = j
for j = 1, . . . ,m. The generation is performed as follows.

• LetΞ1, . . . ,Ξm bem mutually independent real-valued random variables (the random germs)
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such thatΞj = (2Uj − 1)/4 in which U1, . . . , Um arem mutually independent uniform
random variables on[0 , 1], defined on the probability space(Θ,T ,P). The number of inde-
pendent realizations in the set that we are constructing isν = 100. Forℓ = 1, . . . , ν, theℓ-th
independent realization of{Ξ1, . . . ,Ξm} is denoted by{ξℓ1, . . . , ξℓm}.

• Forj fixed in{1, . . . ,m}, we define the random vectorZj = (Zj
1 , . . . , Z

j
µj ) with µj = j such

that, for allk = 1, . . . , µj , Z
j
k =

∑k
i=0

√
i! (Ξj)

i. Let m̂j
Z ∈ R

µj and [Ĉj
Z] ∈ Mµj

be the
empirical estimates of the mean value and of the covariance matrix of Zj, computed by using
theν independent realizationsξ1j , . . . , ξ

ν
j of Ξj. Let [Lj

Z] be the upper triangular matrix such

that [Ĉj
Z] = [Lj

Z]
T [Lj

Z].
• We introduce the normalizedRµj -random vectorWj such thatWj = [Lj

Z]
−T (Zj − m̂j

Z) for
which we compute theν independent realizations{wj,ℓ ∈ R

µj , ℓ = 1, . . . , ν}. The empirical
estimates of the mean valuêmj

W ∈ R
µj and of the covariance matrix[Ĉj

W] ∈ Mµj
of random

vectorWj , computed by using{wj,ℓ, ℓ = 1, . . . , ν} are such that̂mj
W = 0µj

and[Ĉj
W] = [Iµj

].
• We now introduce theRN -random vectorW = (W1, . . . ,Wm) and we denote by{wℓ, ℓ =

1, . . . , ν} its ν independent realizationswℓ = (w1,ℓ, . . . ,wm,ℓ) ∈ R
N .

• TheRN -valued random vectorXν is now defined by itsν independent realizations{xexp,ℓ, ℓ =
1, . . . , ν} as explained in Section2.1such thatxexp,ℓ = wℓ.

• Let m̂ν
X ∈ R

N and [Ĉν
X] ∈ MN be the empirical estimates of the mean value and of the

covariance matrix ofXν , computed by using{xexp,ℓ, ℓ = 1, . . . , ν} (see (2.1)). We thus have
m̂ν

X = 0N , but although[Ĉj
W] = [Iµj

] for all j = 1, . . . ,m, since the value100 of ν is not

very big, the statistical estimate[Ĉν
X] of the covariance matrix ofXν is not equal to the identity

matrix and we have only[Ĉν
X] ≃ [IN ] (the diagonal blocks are effectively[Iµ1 ], . . . , [Iµm ], but

the entries of the extra-diagonal blocks are not exactly zero).
• Despite the fact that[Ĉν

X] is not exactly equal to[IN ], in order to preserve the mutual indepen-
dence for them random vectors that we are generating, the reduced-order statistical model
defined in Section2.2 is not applied and we define the random vectorHν such thatHν = Xν

with n = N , and therefore, theν independent realizations{ηexp,ℓ ∈ R
n, ℓ = 1, . . . , ν} of Hν

are such that such that (2.15) is verified but (2.16) is approximatively verified.

As an illustration, Figure4.3 shows the graph of the pdf for two components ofHν , computed by
using (3.38) with (3.39), which is compared to a Gaussian pdf with the same empiricalmean value
and with the same standard deviation. Figure4.4 displays the graph of the joint pdf of the random
variables(Hν

r1 ,H
ν
r2) for two pairs of indices, computed by using (3.40) with (3.41). Note that the

first one (left figure) corresponds to two dependent components belonging to subsetj = 6 while the
second pair corresponds to two independent components thatbelong to subsetsj = 9 andj = 11
(see (4.1)). Therefore, the construction proposed allows for writing the following partitionHν =
(Yν,1, . . . ,Yν,m) in whichYν,j is a random vector with values inRµj with µj = j. Theν independent
realizations ofYν,j are{ηj,exp,ℓ, ℓ = 1, . . . , ν} such thatηexp,ℓ = (η1,exp,ℓ, . . . ,ηm,exp,ℓ) with ηj,exp,ℓ =

(ηj,exp,ℓ
1 , . . . , ηj,exp,ℓ

µj ) = (ηexp,ℓ

rj1
, . . . , ηexp,ℓ

rjµj
) ∈ R

µj . With the construction proposed, ifν was sufficiently

big, then the number of mutually independent random vectorswould be surelym = 12 and, for
j = 1, . . . ,m, the number of components ofYν,j = (Hν

rj1
, . . . ,Hν

rjµj
) would be surelyµj = j. Let

{[S]jk}jk be the(m ×m) matrix of integers for which only the entries1 ≤ j ≤ k ≤ m are defined
and such that[S]jk = rjk whererj1, . . . , r

j
µj are the indices of the mutually dependent components
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Figure 4.3. Numerical experiment 2. Graph ofηj 7→ pHν
j
(ηj) (thick line) compared to the graph of a Gaussian pdf

with the same empirical mean value and with the same standarddeviation asHν
j (thin line), for j = 17 (left figure) and

j = 57 (right figure).
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Figure 4.4. Numerical experiment 2. Graph of the joint pdf(ηr1 , ηr2) 7→ pHν
r1

,Hν
r2
(ηr1 , ηr2) for r1 = 17 and

r2 = 19 (left figure),r1 = 38 andr2 = 56 (right figure).

Hν
rj1
, . . . ,Hν

rjµj
of Hν . The generation proposed yields (ifν is sufficiently large) the following mutually

independent random vectorsYν,1, . . . ,Yν,m. Forj = 1, . . . ,m, thej-th row in (4.1) yields the indices
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of the dependent random variablesHν
rj1
, . . . ,Hν

rjµj
that are the components ofYν,j,

[S] =




1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66
67 68 69 70 71 72 73 74 75 76 77 78




. (4.1)

For instance, forj = 4, the indices ofHν that constitute the components ofY4,ν are7, 8, 9, and10,
which means thatY4,ν = (Hν

7 ,H
ν
8 ,H

ν
9 ,H

ν
10). As previously commented, It should be noted that, if

ν was sufficiently big, then we should find as the optimal partition of Hν , the one defined by (4.1).
Nevertheless, as the value100 for ν is not sufficiently big, the random vectorsYν,1, . . . ,Yν,m defined
above are not exactly mutually independent. In the framework of the validation of the method pro-
posed, this numerical experiment consists in evaluating the capability of the method to identify the
optimal partition defined by (4.1) with a small value ofν (ν = 100). Note that the[S] matrix obtained
with the optimal partitioning using the proposed algorithmis exactly the one defined by (4.1).
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Figure 4.5. Numerical experiment 2. Graph of functioniref 7→ τν(iref) (left figure) and graph ofp = (r1, r2) 7→
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) (symbols) and value ofiopt

ref (horizontal line) (right figure).

(ii) Results. The graph of functioniref 7→ τν(iref), defined by (3.44), is displayed in Figure4.5 (left).
The optimal leveliopt

ref of iref, defined by (3.46), is iopt
ref = 0.07. Figure4.5 (right) displays the graph

p = (r1, r2) 7→ iν(Hν
r1 ,H

ν
r2) defined by (3.35) and the horizontal line corresponds to the ordinate

iopt
ref = 0.07. The optimal partitionPν

opt = P(mmax;µ
opt
1 , . . . , µopt

mmax) that is identified with the method
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proposed yieldsmmax = 12 andµopt
j = j with j = 1, . . . , 12. Consequently, the partition defined

by (4.1) is identified by the method proposed forν = 100 (as expected). For this optimal partition,
the criterion defined by (3.30) is verified withiν(Yν,1, . . . ,Yν,mmax) = 23.87 andiν(G1, . . . ,Gm

max) =
37.02. The total CPU time for obtaining the results with a laptop computer is105 seconds.

4.3. Numerical experiment 3. This numerical experiment is the same as numerical experi-
ment 2, except that the uniform random germ is replaced by a Gaussian random germ, but, obviously,
random vectorHν is not Gaussian. This experiment is carried out in order to analyze the sensitivity
of the method proposed with respect to the probability distribution of the random vector defined by
the set of realizations. The reader will see that the graph ofthe functioniref 7→ τν(iref), the graph of
the functionp = (r1, r2) 7→ iν(Hν

r1 ,H
ν
r2), and the valueiopt

ref are different from the results obtained
with the numerical experiment 2 (that is normal because the probability distribution is not the same)
but, however, the method proposed gives the solution, whichis the same as the one for numerical
experiment 2.
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Figure 4.6. Numerical experiment 3. Graph ofηj 7→ pHν
j
(ηj) (thick line) compared to the graph of a Gaussian pdf

with the same empirical mean value and with the same standarddeviation asHν
j (thin line), for j = 57 (left figure) and

j = 59 (right figure).

(i) Generation of the set of realizations. For this numerical example, we consider the generation
presented in Section4.2 for which Ξ1, . . . ,Ξm arem mutually independent real-valued normalized
Gaussian random variables (centered and unit variance). All the other parameters are those of numer-
ical experiment 2. As an illustration, Figure4.6 displays the graph of the pdf for two components of
Hν , computed by using (3.38) with (3.39), which is compared to a Gaussian pdf with the same empir-
ical mean value and with the same standard deviation. Figure4.7displays the graph of the joint pdf of
the random variables(Hν

r1 ,H
ν
r2) for two pairs of indices, computed by using (3.40) with (3.41). Note

that the first one (left figure) corresponds to two dependent components belonging to subsetj = 11
while the second pair corresponds to two independent components that belong to subsetsj = 5 and
j = 8 (see (4.1)).

(ii) Results. The graph of functioniref 7→ τν(iref), defined by (3.44), is displayed in Figure4.8 (left).
The optimal leveliopt

ref of iref, defined by (3.46), is iopt
ref = 0.13. Figure4.8 (right) displays the graph
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p = (r1, r2) 7→ iν(Hν
r1 ,H

ν
r2) defined by (3.35) and the horizontal line corresponding to the ordinate

iopt
ref = 0.13. The optimal partitionPν

opt = P(mmax;µ
opt
1 , . . . , µopt

mmax) that is identified with the method
proposed yieldsmmax = 12 andµopt

j = j with j = 1, . . . , 12. Consequently, the partition defined by
(4.1) is identified by the method proposed forν = 100 (as expected). For this optimal partition, the
criterion defined by (3.30) is verified withiν(Yν,1, . . . ,b fY

ν,mmax) = 19.55 andiν(G1, . . . ,Gm
max) =

37.02. The total CPU time for obtaining the results with a laptop computer is140 seconds.

4.4. Numerical experiment 4. For this numerical experiment, there are no references thatal-
low for validating the optimal partition identified by the method proposed, but the example is in high
dimension. The data set, which defines the random vectorXν that hasN = 27, 951 components, is
constituted ofν = 1, 000 independent realizations{xexp,ℓ, ℓ = 1, . . . , ν} with xexp,ℓ ∈ R

N . This ran-
dom vector is generated as the spatial discretization of a non-Gaussian positive-definite matrix-valued
random field.
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(i) Generation of the set of realizations. We begin by defining the stochastic model of the random field
and then we explain how the set of realizations is constructed.

• Let {[G(ζ)], ζ ∈ R
3} be the non-Gaussian second-order random field, defined on theprob-

ability space(Θ,T ,P), indexed byR3, with values inM+
6 , which is completely defined in

[52] (in this reference, this field[G] is denoted as[Gn]). The stochastic model of this field
depends on hyperparameters that are (1) a dispersion parameter δ that allows for controlling
the level of statistical fluctuations of the random field, and(2) three lengthsL1, L2, andL3

that allow for controlling the three spatial correlation lengths of the random field, associated
with the three coordinatesζ1, ζ2, ζ3 of ζ. In the present numerical experiment,δ = 0.7 and
L1 = L2 = L3 = Lcorr for which three valuesLcorr = 0.2, 0.5, and1.0 will be considered.

• Let {[Glog(ζ)], ζ ∈ R
3} be the non-Gaussian second-order random field, indexed byR

3, with
values inMS

6 , such that, for allζ in R
3, [Glog(ζ)] = logM([G(ζ)]) in which logM, which

is defined onM+
6 with values inMS

6 , is the reciprocity mapping of the exponential mapping
expM from M

S
6 into M

+
6 .

• Let Ω be the open bounded domain ofR
3 defined byΩ = (]0, 1[)3. We consider a regular

Cartesian grid ofΩ made up ofNp = 11×11×11 = 1, 331 nodes with constant steps for each
one of the three coordinates. Letζ1, . . . , ζNp be theNp points inR3 defining the nodes of this
grid. Fornp = 1, . . . , Np, the21 entries{[Glog(ζnp)]kk′ , 1 ≤ k ≤ k′ ≤ 6} are reshaped in
aR21-valued random vectorGlog

resh(ζ
np). LetN = Np × 21 = 27, 951. We then introduce the

R
N -valued random vectorGlog

resh such thatGlog
resh = (Glog

resh(ζ
1), . . . ,Glog

resh(ζ
Np)). The random

generator presented in [52] allows for constructing theν = 1, 000 independent realizations
{gℓ, ℓ = 1, . . . , ν} with gℓ ∈ R

N of the non-Gaussian random vectorGlog
resh.

• Let m̂ν
G be the empirical mean value ofGlog

resh computed by using{gℓ, ℓ = 1, . . . , ν}. We then
introduced theν centered realizations{xexp,ℓ, ℓ = 1, . . . , ν} such thatxexp,ℓ = gℓ − m̂ν

G. We
now defined theRN -valued random vectorXν from the set of theν independent realizations
{xexp,ℓ, ℓ = 1, . . . , ν} as explained in Section2.1, such that its independent realizations are
Xν(θℓ) = xexp,ℓ. Note that the empirical mean value ofXν is 0N .

• For each value ofLcorr, a reduced-order statistical modelX(n,ν) of Xν is carried out as ex-
plained in Section2.2. Taking into account the dimensionN , the empirical covariance matrix
[Ĉν

X] defined by (2.1) with m̂ν
X = 0N is not computed and the reduced-statistical model is con-

structed by using the method derived from [1, 22, 32], which is based on a ”thin SVD” [28]
of the rectangular(N × ν) matrix [xexp,1 . . . xexp,ν]. For the three values ofLcorr, Figure4.9
(left) displays the graph of the functionn 7→ err(n, ν) defined by (2.6). The valuen of the
reduced-order statistical model is chosen in order that therelative error err(n, ν) is equal to
0.99, which yieldsn = 706, 245, and77 for Lcorr = 0.2, 0.5, and1.0, respectively.

As an illustration, forLcorr = 1.0, Figure4.9 (central and right) displays the graph of the pdf for two
components ofHν , computed by using (3.38) with (3.39), which is compared to a Gaussian pdf with
the same empirical mean value and the same standard deviation. Figure4.10 displays the graph of
the joint pdf of the random variables(Hν

r1 ,H
ν
r2) for two pairs of indices, computed by using (3.40)

with (3.41). The optimal partition obtained, for which the results arepresented hereinafter, shows that
the first one (left figure) corresponds to two dependent componentsHν

17 andHν
33 that belong to subset

j = 14 while the second pair corresponds to two independent componentsHν
48 andHν

56 that belong to
subsetsj = 34 andj = 3 (see figure4.12-right).
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Figure 4.9. Numerical experiment 4. Graph of the relative error function n 7→ err(n, ν) defined by(2.6) for the three
values ofLcorr (left figure): 0.2 (blue thin line),0.5 (black thin line), and1.0 (thick blue line). ForLcorr = 1.0, graph of
ηj 7→ pHν

j
(ηj) (thick line) compared to the graph of a Gaussian pdf with the same empirical mean value and with the same

standard deviation asHν
j (thin line), forj = 33 (central figure) andj = 48 (right figure).

(ii) Results. ForLcorr = 0.2, 0.5, and1.0, figure4.11(left) displays the graph of the functioniref 7→
τν(iref), defined by (3.44). As an illustration, forLcorr = 1.0, Figure4.11 (right) displays the graph
p = (r1, r2) 7→ iν(Hν

r1 ,H
ν
r2) defined by (3.35) and the horizontal line corresponding to the ordinate

iopt
ref = 0.0095. For each one of the value ofLcorr ∈ {0.2, 0.5, 1.0}, we have
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Figure 4.10. Numerical experiment 4. ForLcorr = 1.0, graph of the joint pdf(ηr1 , ηr2) 7→ pHν
r1

,Hν
r2
(ηr1 , ηr2) for

r1 = 17 andr2 = 33 (left figure) andr1 = 48 andr2 = 56 (right figure).

Table 4.1
Results obtained for numerical experiment 4

Lcorr n iopt
ref mmax r iν(Yν,1, . . . ,Yν,mmax) iν(G1, . . . ,Gmmax)

0.2 706 0.0084 563 0.7975 521.04 521.71
0.5 245 0.0082 187 0.7633 183.54 183.86
1.0 77 0.0095 51 0.6623 56.05 56.31

• Table 4.1 yields the dimensionn of Hν , the optimal leveliopt
ref of iref, defined by (3.46),

the numbermmax of mutually independent random vectors for the optimal partition P
ν
opt =

P(mmax;µ
opt
1 , . . . , µopt

mmax), the rater of mutually independent random vectors defined asr =
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mmax/n, and for the optimal partition, the values ofiν(Yν,1, . . . ,Yν,mmax) andiν(G1, . . . ,Gmmax)
that are used for the criterion defined by (3.30). It can be seen that rater of independent ran-
dom vectors increases when the correlation lengthLcorr decreases, which is physically coher-
ent;

• the optimal partition defined by Figure4.12that displays the graphj 7→ {[S]jk = rjk , 1 ≤
k ≤ µopt

j } in whichrj1, . . . , r
j

µopt
j

are the indices of the mutually dependent componentsHν
rj1
, . . . ,

Hν
rj
µ

opt
j

of Hν , which belong to the subsetj (see (3.2)).

ForLcorr = 0.2, for whichn = 706 andν = 1000, the CPU time with one core for constructing one
symmetric adjacency matrix is about500 minutes, but as explained in Section3.6, with J cores, the
elapsed time would be500/J minutes (for the presented applications, the computation has be carried
out withJ = 12).

The results presented in table4.1and in figure4.12show that a very important gain would be obtained
for the construction of a stochastic representation of sucha non-Gaussian tensor-valued random field
for which a set of its realizations would be given. For instance, instead of directly identifying the
coefficients of its PCE from the set{ηexp,ℓ ∈ R

n , ℓ = 1, . . . , ν} of its realizations, this preprocessing
of the data set allows for identifying, independently, for eachj fixed in {1, . . . ,m}, the coefficients
of the polynomial chaos expansion of the random vectorYν,j with values inRµj for whichµj < n,
using solely its realizations{ηj,exp,ℓ ∈ R

µj , ℓ = 1, . . . , ν} that are directly extracted from the set
{ηexp,ℓ ∈ R

n , ℓ = 1, . . . , ν} as soon as the optimal partition ofHν has been identified with the
algorithm presented. Consequently, the methods proposed,for instance in [2, 5, 47, 53], could be
reused with a larger efficiency.

i
ref

×10-3
5 6 7 8 9 10 11 12

τ
ν
 (

i re
f)

×10-3

-1

0

1

2

3

4

5

Graph of i
ref

 →  τ
ν
 (i

ref
)

pair p=(r
1
,r

2
)

0 500 1000 1500 2000 2500 3000

iν
(H

ν r 1,H
ν r 2)

0

0.005

0.01

0.015

(r
1
,r

2
) →  iν(Hν

r
1

,Hν

r
2

) and value of iopt
ref

Figure 4.11. Numerical experiment 4. Graph of functioniref 7→ τν(iref) (left figure) forLcorr = 0.2 (blue thin line),
= 0.5 (black thin line),= 1.0 (blue thick line) and, forLcorr = 1.0, graph ofp = (r1, r2) 7→ iν(Hν

r1
,Hν

r2
) (symbols) and

value ofiopt
ref (horizontal line) (right figure).

Note that the partition that is constructed is relative to vector Hν , for which the components are non-
Gaussian, centered, and uncorrelated (but statistically dependent) random variables that are related
to the representation of theMS

6 -valued random field[Glog] such that[Glog(ζ)] = logM([G(ζ)]), and
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Figure 4.12. Numerical experiment 4. Graph ofj 7→ {[S ]jk = r
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j } corresponding to the optimal

partition for Lcorr = 0.2 (left figure),Lcorr = 0.5 (central figure),Lcorr = 1.0 (right figure).

not related to theM+
6 -valued random field[G] such that[G(ζ)] = expM([Glog(ζ)]) and which is a

strongly non-GaussianM+
6 -valued random field (see [52]). This means that, even if all the uncorrelated

random components ofHν were mutually independent (and consequently,Hν would be a Gaussian
random vector), the components of the non-Gaussian random vector Xν related to theM+

6 -valued
random field[G] would be dependent. As shown in Figure4.9 (central and right) and in Figure4.10,
some components of random vectorHν are relatively close to Gaussian random variables but are not
Gaussian. This is a reasonable explanation for justifying the relatively large values of parameterr
given in Table4.1, but again, it should be noted the coherence of the results obtained, becauser
decreases when the spatial correlation length of the randomfield increases.

5. Conclusions. In this paper, we have proposed a fast algorithm based on the use of mutual
entropy from information theory and on the use of graph theory for constructing an optimal partition, in
terms of mutually independent random vectors, of the components of a non-Gaussian random vector
that is only defined by a given set of realizations. The methodhas especially been developed for
random vectors in high dimension and for which the number of realizations that constitute the data set
can be small. The method proposed and its objective are different from the ICA that was introduced to
extract independent source signals from a linear mixture ofindependent stochastic processes, which
is used for source-separation problems. The statistical tool that is proposed allows for improving the
identification of any stochastic model of a random vector in high dimension for which a data set of
realizations is given. Instead of directly constructing a unique stochastic model for which its stochastic
dimension, which is identified by solving a statistical inverse problem, can be large, the proposed
preprocessing of the data set allows for constructing several mutually independent stochastic models
with smaller stochastic dimensions. Consequently, such a method allows for decreasing the cost of
the identification and/or to make possible an identificationfor a case that is a priori in high dimension
and that could not be identified through a direct and global approach. For instance, instead of directly
identifying the coefficients of a PCE for a random vector froma given set of its realizations, the
preprocessing of the data set allows for identifying the coefficients of several PCEs for several random
vectors that have smaller dimensions. The random vector defined by the given data set can come from
the discretization of a stochastic process or of a random field for which the set of realizations come
from experimental measurements or computational simulations. The algorithm is completely defined
in the paper, which can easily be implemented. Three numerical experiments have been proposed
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to validate the proposed approach. Clearly, many other cases could be analyzed. A non-Gaussian
matrix-valued random field has been analyzed and the resultsobtained show that a very important
gain can be obtained for the construction of a stochastic representation of this random field. Finally,
it should be noted that the sole information that is supposedto be available for the random vector
considered, is a limited set of its realizations that come, for example, from experimental measurements,
and for which one seeks to build a stochastic representationby solving for example, a statistical inverse
problem. It is assumed that no further information is available. So if a stochastic model is identified to
represent this random vector, it will depend solely on this limited number of realizations. It is therefore
consistent, in such a construction process, to use the same limited set of data to separate its components
as an ensemble of several mutually independent random vectors that have smaller dimensions, before
discussing the construction of a stochastic model for its representation.

Appendix A. Algorithm 1.
In this appendix, we give Algorithm 1 that allows for constructing the partitionPν

iref
(m;µ1, . . . , µm)

of Hν in terms of random vectors that are considered as independent for a given leveliref. This
basic algorithm is derived from the graph theory and uses thesymmetric adjacency matrix[N ]. The
algorithm is described using the Matlab language.
- The input variables are:n and, foriref given, the(n × n) symmetric adjacency matrix[N ].
- The output variables are:m, them-column matrixM such thatM(j) = µj for j = 1, . . . ,m, and
the(m×maxj µj)-matrix [S] such that thej-th row of [S] is made up of the indices[rj1 . . . r

j
µj ] of the

random vectorHν such thatYν,j = (Hν
rj1
, . . . ,Hν

rjµj
).
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Algorithm 1

j = 0; %
M = zeros(n, 1); S = zeros(n, n); %M(j) = µj; S(j, k) = rjk (see (3.2)).
U = zeros(n, 1); %U(r) = 0, noder not treated and = 1, treated.
while isempty(find(U == 0)) == 0 % do: there are nodes that have not been treated.
U = find(U == 0); % nodes that have not been treated.
x = U(1); % node used for starting a new subset.
P = [ ]; % initializing the list of the nodes to be analyzed.
V = [ ]; % initializing the list of nodes already analyzed.
R = [x]; %R contains the nodes of the present subset.
j = j + 1; % increasing the present number of subsets.
P = union(P, x); % union of the nodes with no repetitions.
while isempty(P ) == 0 % P not emptydo.
y = P (1);P (1) = [ ]; % load a node and unstackP .
V = union(V, y); % union of the nodes with no repetitions.
for z = 1 : n % exploring all nodesz such thatN (y, z) = 1

W = find(union(P, V ) == z); % andz /∈ {P ∪ V }.
if N (y, z) == 1& isempty(W ) == 1 %
P = union(P, z); % stack(P, z).
R = union(R, z); % y belongs to the subset.

end % end if.
end % end for.

end % end while.
µj = size(R, 2); M(j) = µj ; S(j, 1 : µj) = R; %
U(R) = 1; % all nodes inR have then been treated.
N (R,R) = 0; % setting to zero the nodes in subsetj.

end % end while.
m = j; % loading the numberm of independent subsets.
if m < n % adjusting the size of the matrices.
M(m+1:n) = [ ]; % adjusting the length ofM .
S(m+1:n, :) = [ ]; % adjusting the number of rows of[S].
S(:,max(M)+1:n) = [ ]; % adjusting the number of columns of[S].

end % end if.
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