]. Q. Li, N. H. Siddaramaiah, G. Kim, J. H. Yoo, and . Lee, Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites, Composites Part B: Engineering, vol.40, issue.3, pp.218-224, 2009.
DOI : 10.1016/j.compositesb.2008.11.002

Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube???polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, vol.35, issue.3, pp.357-401, 2010.
DOI : 10.1016/j.progpolymsci.2009.09.003

O. Park, T. Jeevananda, N. H. Kim, S. Kim, and J. H. Lee, Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites, Scripta Materialia, vol.60, issue.7, pp.551-554, 2009.
DOI : 10.1016/j.scriptamat.2008.12.005

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Composites Science and Technology, vol.67, issue.7-8, pp.1709-1718, 2007.
DOI : 10.1016/j.compscitech.2006.06.015

W. Li, A. Dichiara, and J. Bai, Carbon nanotube???graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites, Composites Science and Technology, vol.74, pp.221-227, 2013.
DOI : 10.1016/j.compscitech.2012.11.015

URL : https://hal.archives-ouvertes.fr/hal-00768859

Y. Xu, Y. Wang, J. Liang, Y. Huang, Y. Ma et al., A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency, Nano Research, vol.2, issue.4, pp.343-348, 2009.
DOI : 10.1007/s12274-009-9032-9

J. Du and H. Cheng, The Fabrication, Properties, and Uses of Graphene/Polymer Composites, Macromolecular Chemistry and Physics, vol.1, issue.10-11, pp.1060-1077, 2012.
DOI : 10.1002/macp.201200029

S. J. Woltornist, J. Y. Carrillo, T. O. Xu, A. V. Dobrynin, and D. H. Adamson, Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams, Macromolecules, vol.48, issue.3, pp.687-693, 2015.
DOI : 10.1021/ma5024236

M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, and O. Regev, Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects, Chemistry of Materials, vol.27, issue.6, pp.2100-2106, 2015.
DOI : 10.1021/cm504550e

H. Zhao and J. Bai, Highly Sensitive Piezo-Resistive Graphite Nanoplatelet???Carbon Nanotube Hybrids/Polydimethylsilicone Composites with Improved Conductive Network Construction, ACS Applied Materials & Interfaces, vol.7, issue.18, pp.9652-9659, 2015.
DOI : 10.1021/acsami.5b01413

URL : https://hal.archives-ouvertes.fr/hal-01221803

T. Wei, G. Luo, Z. Fan, C. Zheng, J. Yan et al., Preparation of graphene nanosheet/polymer composites using in situ reduction???extractive dispersion, Carbon, vol.47, issue.9, pp.2296-2299, 2009.
DOI : 10.1016/j.carbon.2009.04.030

T. Wang, G. Liang, L. Yuan, and A. Gu, Unique hybridized graphene and its high dielectric constant composites with enhanced frequency stability, low dielectric loss and percolation threshold, Carbon, vol.77, pp.920-932, 2014.
DOI : 10.1016/j.carbon.2014.06.006

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, vol.49, issue.1, pp.198-205, 2011.
DOI : 10.1016/j.carbon.2010.09.004

H. Pang, T. Chen, G. Zhang, B. Zeng, and Z. Li, An electrically conducting polymer/graphene composite with a very low percolation threshold, Materials Letters, vol.64, issue.20, pp.2226-2229, 2010.
DOI : 10.1016/j.matlet.2010.07.001

W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology, vol.69, issue.10, pp.1486-1498, 2009.
DOI : 10.1016/j.compscitech.2008.06.018

J. Wang, S. Yu, S. Luo, B. Chu, R. Sun et al., Investigation of nonlinear I???V behavior of CNTs filled polymer composites, Materials Science and Engineering: B, vol.206, pp.55-60, 2016.
DOI : 10.1016/j.mseb.2016.01.004

C. H. Hu, C. H. Liu, L. Z. Chen, Y. C. Peng, and S. S. Fan, Resistancepressure sensitivity and a mechanism study of multiwall carbon nanotube networks/poly(dimethylsiloxane) composites, Applied Physics Letters, vol.93, issue.3

J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, and A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Honour of Ian Ward's 75th Birthday, pp.5893-5899, 2003.
DOI : 10.1016/S0032-3861(03)00539-1

F. He, S. Lau, H. L. Chan, and J. Fan, High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene fluoride) and Exfoliated Graphite Nanoplates, Advanced Materials, vol.92, issue.6, pp.710-715, 2009.
DOI : 10.1002/adma.200801758

A. Allaoui, S. Hoa, and M. Pugh, The electronic transport properties and microstructure of carbon nanofiber/epoxy composites, Composites Science and Technology, vol.68, issue.2, pp.410-416, 2008.
DOI : 10.1016/j.compscitech.2007.06.028

URL : https://hal.archives-ouvertes.fr/hal-00166311

M. Martin-gallego, M. Bernal, M. Hernandez, R. Verdejo, and M. Lopez-manchado, Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites, European Polymer Journal, vol.49, issue.6, pp.1347-1353, 2013.
DOI : 10.1016/j.eurpolymj.2013.02.033

X. Zeng, X. Xu, P. M. Kovalev, C. Baudot, N. Mathews et al., Characteristics of the Electrical Percolation in Carbon Nanotubes/Polymer Nanocomposites, The Journal of Physical Chemistry C, vol.115, issue.44, pp.44-21685, 2011.
DOI : 10.1021/jp207388n

F. H. Gojny, M. H. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, vol.47, issue.6, pp.2036-2045, 2006.
DOI : 10.1016/j.polymer.2006.01.029

J. Li, P. Ma, W. Chow, C. To, B. Tang et al., Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes, Advanced Functional Materials, vol.72, issue.16, pp.3207-3215, 2007.
DOI : 10.1002/adfm.200700065

F. Du, J. E. Fischer, and K. I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Physical Review B, vol.72, issue.12, p.121404, 2005.
DOI : 10.1103/PhysRevB.72.121404

N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Materialia, vol.56, issue.13, pp.2929-2936, 2008.
DOI : 10.1016/j.actamat.2008.02.030

W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites, Journal of Applied Physics, vol.111, issue.9
DOI : 10.1063/1.4716010

J. G. Simmons, Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film, Journal of Applied Physics, vol.34, issue.9, pp.2581-2590, 1963.
DOI : 10.1063/1.1729774

A. Buldum and J. P. Lu, Contact resistance between carbon nanotubes, Physical Review B, vol.63, issue.16, 2001.
DOI : 10.1103/PhysRevB.63.161403

URL : http://arxiv.org/abs/cond-mat/0005523

Y. Wang, J. W. Shan, and G. J. Weng, Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling, Journal of Applied Physics, vol.118, issue.6
DOI : 10.1063/1.4928293

J. Yvonnet, Q. He, and C. Toulemonde, Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface, Composites Science and Technology, vol.68, issue.13, pp.2818-2825, 2008.
DOI : 10.1016/j.compscitech.2008.06.008

URL : https://hal.archives-ouvertes.fr/hal-00692237

F. T. Hamann, C. Burghardt, and H. , Electrical conduction mechanisms in solids, 1988.

C. Fu-chien, A review on conduction mechanisms in dielectric films, Advances in Materials Science & Engineering, pp.1-18, 2014.

J. G. Simmons, Conduction in thin dielectric films, Journal of Physics D: Applied Physics, vol.4, issue.5, p.613, 1971.
DOI : 10.1088/0022-3727/4/5/202

N. P. Maity, R. Maity, R. Thapa, and S. Baishya, A tunneling current density model for ultra thin HfO2 high-k dielectric material based MOS devices, Superlattices and Microstructures, vol.95, pp.24-32, 2016.
DOI : 10.1016/j.spmi.2016.04.032

S. Krishnan, E. Stefanakos, and S. Bhansali, Effects of dielectric thickness and contact area on current???voltage characteristics of thin film metal???insulator???metal diodes, Thin Solid Films, vol.516, issue.8, pp.2244-2250, 2008.
DOI : 10.1016/j.tsf.2007.08.067

S. Gu and Q. He, Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces, Journal of the Mechanics and Physics of Solids, vol.59, issue.7, pp.1413-1426, 2011.
DOI : 10.1016/j.jmps.2011.04.004

URL : https://hal.archives-ouvertes.fr/hal-00692839

M. Geers, V. Kouznetsova, and W. Brekelmans, Multi-scale computational homogenization: Trends and challenges, Journal of Computational and Applied Mathematics, vol.234, issue.7, pp.2175-2182, 2010.
DOI : 10.1016/j.cam.2009.08.077

URL : http://doi.org/10.1016/j.cam.2009.08.077

M. Geers and J. Yvonnet, Abstract, MRS Bulletin, vol.62, issue.204, pp.610-616, 2016.
DOI : 10.1016/j.cma.2014.03.011

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.1309-1331, 2009.
DOI : 10.1002/nme.2579

S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas1, E. J. Zimney1 et al., Graphene-based composite materials, Graphenebased composite materials, pp.282-286, 2006.
DOI : 10.1038/nature04969

W. Krauth, Statistical mechanics: algorithms and computations, 2006.

R. Rahman and P. Servati, Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films, Nanotechnology, vol.23, issue.5, p.55703, 2012.
DOI : 10.1088/0957-4484/23/5/055703

E. Tkalya, M. Ghislandi, R. Otten, M. Lotya, A. Alekseev et al., Experimental and Theoretical Study of the Influence of the State of Dispersion of Graphene on the Percolation Threshold of Conductive Graphene/Polystyrene Nanocomposites, ACS Applied Materials & Interfaces, vol.6, issue.17, pp.15113-15121, 2014.
DOI : 10.1021/am503238z

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

G. J. Weng, The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds, International Journal of Engineering Science, vol.28, issue.11, pp.1111-1120, 1990.
DOI : 10.1016/0020-7225(90)90111-U

G. J. Weng, Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions, International Journal of Engineering Science, vol.22, issue.7, pp.845-856, 1984.
DOI : 10.1016/0020-7225(84)90033-8

P. P. Castañeda and J. R. Willis, The effect of spatial distribution on the effective behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, vol.43, issue.12, pp.1919-1951, 1995.
DOI : 10.1016/0022-5096(95)00058-Q

Y. Pan, G. Weng, S. Meguid, W. Bao, Z. Zhu et al., Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions, Journal of Applied Physics, vol.110, issue.12, p.123715, 2011.
DOI : 10.1063/1.3671675

G. Lu, Z. Ji, and . Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, Polymer, vol.51, issue.5, pp.1191-1196, 2010.

S. Y. Kim, Y. J. Noh, and J. Yu, Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions, Composites Science and Technology, vol.106, pp.156-162, 2015.
DOI : 10.1016/j.compscitech.2014.11.015

U. Ayachit, The ParaView Guide: A Parallel Visualization Application