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Abstract

Characterizing the polynomial chaos expansion (PCE) of a vector-valued ran-
dom variable with probability distribution concentrated on a manifold is a rele-
vant problem in data-driven settings. The probability distribution of such random
vectors is multimodal in general, leading to potentially very slow convergence
of the PCE. In this paper, we build on a recent development for estimating and
sampling from probabilities concentrated on a diffusion manifold. The proposed
methodology constructs a PCE of the random vector together with an associated
generator that samples from the target probability distribution which is estimated
from data concentrated in the neighborhood of the manifold. The method is robust
and remains efficient for high dimension and large datasets. The resulting polyno-
mial chaos construction on manifolds permits the adaptation of many uncertainty
quantification and statistical tools to emerging questions motivated by data-driven
queries.
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An upper case letter such as X , H , or U , is a real random variable.
A boldface upper case letter, X, H, or U, is a real random vector.
A lower case letter between brackets such as [x], [η], or [u]), is a real deterministic
matrix.
A boldface upper case letter between brackets such as [X], [H], or [U], is a real
random matrix.

N = {0, 1, 2, . . .}: set of all the null and positive integers.
R: set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
‖x‖Rn : usual Euclidean norm in Rn.
<x , y>Rn : usual Euclidean inner product in Rn.
‖x‖: represents ‖x‖Rn if no confusion is possible.
<x , y>: represents <x , y>Rn if no confusion is possible.
Mn,N : set of all the (n×N) real matrices.
Mν : set of all the square (ν × ν) real matrices.
[x]kj: entry of matrix [x].
[x]T : transpose of matrix [x].
tr{[x]}: trace of a square matrix [x].
‖[x]‖F : Frobenius norm of matrix [x] such that ‖x‖2F = tr{[x]T [x]}.
[Iν ]: identity matrix in Mν .
δkk′: Kronecker’s symbol such that δkk′ = 0 if k 6= k′ and = 1 if k = k′.
E: Mathematical expectation.
L2(Θ, F ): Hilbert space of all the F -valued second-order random variables de-
fined on (Θ, T ,P).

1. Introduction

This work is a continuation of a recent paper [1] in which a methodology
has been proposed for identifying, from a database made up of N samples of
a Rν-valued random variable (possibly for a high value of ν), its non-Gaussian
probability distribution that is assumed to be unknown and that is concentrated
on an unknown subset Sν of Rν . The method proposes an identification of subset
Sν and the construction of generator of samples, based on an Itô stochastic dif-
ferential equation (ISDE), for the unknown probability distribution that allows for
preserving the concentration on Sν and consequently, avoiding the scattering of
the generated samples. The main contribution of the present paper is to propose a
mathematical formulation and an algorithm for constructing an intrinsic analytical
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representation based on a polynomial chaos representation (PCE) of the database
that is concentrated on subset Sν . The proposed PCE and its associated genera-
tor of samples preserves the concentration over subset Sν . In order to obtain an
efficient algorithm for constructing the PCE in high dimension, a non classical
construction is proposed for which the random germ of the chaos is not consti-
tuted of independent normalized Gaussian random variables but depends on the
correlation structure of the germ used by the ISDE-based generator of samples.
Consequently, the orthonormal multivariate polynomials are constructed with an
efficient algorithm for a multivariate probability density function that is not sepa-
rable with respect to the coordinates.

Constructing the high-dimensional polynomial chaos expansion (PCE) of a
random vector H with values in the Euclidean space Rν remains a challenging
problem when the probability distribution of the random vector is concentrated on
a subset (a manifold) Sν of Rν . In such cases, the probability distribution on Rν is
in general multimodal resulting in a potentially very slow convergence of the PCE.

In a recent paper [1], a new methodology was proposed for constructing a
generator of samples from a given normalized dataset related to a second-order
Rν-valued random variable H = (H1, . . . , Hν) for which the probability density
function (pdf), η 7→ pH(η), with respect to the Lebesgue measure dη on Rν is un-
known and is concentrated on an unknown subset Sν of Rν . The method consists
of first delineating a diffusion manifold for the available data [2], and then devel-
oping a reduced-order Itô stochastic differential equation (ISDE) by the projection
on this manifold of an ISDE that admits pH(η) dη as a unique invariant measure.
Specifically, we first introduce a random matrix [H] = [H1 . . .HN ] with values
in Mν,N , whose columns are independent copies H1, . . . ,HN of random vector H
and for which the number N of columns is equal to the number of independent
data points in an initial dataset. This dataset, suitably normalized, is represented
by a matrix [ηd] given in Mν,N , which is taken as a sample of random matrix [H].
The approach presented in [1] is then summarized using the following steps, with
an expanded summary provided in section 2 below:

• Multidimensional kernel-density estimation methods [3, 4] are used to con-
struct the pdf [η] 7→ p[H]([η]) with respect to the volume element d[η] on
Mν,N of random matrix [H], which is assumed to be a second-order random
variable. This estimate of the pdf is related to the data and can be used for
generating samples of [H]. It should be noted that the method proposed in
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[1] differs from the MCMC methods on Riemann manifolds that have re-
cently been presented in the very good paper [8], for which the manifold is
the locus of density functions and not of the data itself.

• A generator for random matrix [H] is constructed using the approach pro-
posed in [5, 6] belonging to the class of Hamiltonian Monte Carlo meth-
ods [7, 8], which is an MCMC algorithm [9, 10, 11]. These samples are
obtained by solving an ISDE corresponding to a stochastic nonlinear dis-
sipative Hamiltonian dynamical system, for which pH(η) dη is the unique
invariant measure.

• A diffusion-map approach [2, 12, 13] is then used to discover and charac-
terize the local geometry structure of the normalized dataset concentrated
in the neighborhood of Sν . The diffusion-map vectors [g] = [g1 . . . gm] ∈
MN,m are thus constructed. They are associated with the first m eigenvalues
of the transition matrix relative to the local geometric structure of the given
normalized dataset.

• A reduced-order representation [H] = [Z] [g]T is constructed on the mani-
fold in which [Z] is a random matrix with values in Mν,m (with m� N ).

• The reduced-order ISDE is obtained by projecting the ISDE from the second
step above onto the diffusion manifold by using the reduced-order basis
represented by matrix [g]T . The constructed reduced-order ISDE is then
used for generating additional samples [z1ar], . . . , [z

nMC
ar ] of random matrix

[Z], and therefore, for deducing the additional samples [η1ar], . . . , [η
nMC
ar ] of

random matrix [H].

A numerical validation of this procedure was obtained through a number of ap-
plications ranging from standard templates to real experimental datasets. These
results show the efficiency and the robustness of the method proposed, which al-
lows for concentrating the additional generated samples in the neighborhood of
subset Sν .

In the present paper, we propose the construction of a polynomial chaos expan-
sion (PCE) of the second-order random matrix [Z], with the associated generator
of samples, which preserves the concentration of the probability measure of the
column H1, . . . ,HN of [H] = [Z] [g]T around Sν . Such a construction will give
an intrinsic analytical representation of random matrix [H] through the polyno-
mial chaos expansion of random matrix [Z], which is very useful, for instance,
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in uncertainty quantification and statistical data analysis, in stochastic modeling
and associated statistical inverse problems for boundary value problems. In par-
ticular, such a representation could be used for response surface methodology, for
computing extreme value statistics, for constructing parameterized reduced-order
models, for accelerating robust updating, robust optimization, and robust design.

A systematic construction of PCE of second-order random fields and their use
for analyzing the uncertainty propagation in boundary value problems was initi-
ated in [14, 15]. Since then, PCE and their use in spectral approaches for solving
linear and nonlinear stochastic boundary value problems, and some associated sta-
tistical inverse problems has rapidly grown [16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33]). Several extensions have been proposed concerning
the generalized chaos expansions, the PCE for an arbitrary probability measure,
and the PCE with random coefficients [34, 35, 36, 37, 38, 39], and recently, the
construction of a basis adaptation in homogeneous chaos spaces [40].

Significant work has also been devoted to the acceleration of stochastic con-
vergence of the PCE [41, 42, 43, 40, 6]. Nevertheless, the construction of a PCE of
a second-order random vector for which the probability measure is concentrated
on a subset Sν of Rν , remains a difficult and challenging problem.

In [1], it has been shown that a direct sampling of H using, for instance, a
nonparametric estimation of the pdf of H constructed with the given normalized
dataset and an MCMC method for generating samples, yields samples that are
not concentrated around subset Sν , but that are scattered. This was indeed the
motivation for the method proposed in [1] using the diffusion maps and summa-
rized above. In order to preserve the concentration of the probability measure for
the analytical representation of the second-order random matrix [H], constraining
associated samples of its columns H1, . . . ,HN to be concentrated in the neighbor-
hood of Sν , the following methodology is proposed.

• The PCE of random Mν,m-valued random variable [Z] is performed with
respect to a MNg ,µ-valued random germ [Ξ], with 1 ≤ Ng ≤ ν and 1 ≤
µ ≤ m. The random germ [Ξ] is constructed as a linear mapping of the
matrix-valued Wiener process that is used in the reduced-order ISDE that
allows the samples of random matrix [Z] to be generated on the manifold.

• The PCE of random matrix [Z] is constructed relative to a basis of multi-
variate polynomials Ψβ([Ξ]) orthonormal with respect to the Gaussian cen-
tered measure of random matrix [Ξ] for which the given covariance tensor

5



depends on the diffusion-map vectors related to the manifold. The quan-
tity Ψβ([Ξ]) is a shortand notation for the non-separable orthonormal mul-
tivariate polynomials Ψβ1,...βµ(Ξ1, . . . ,Ξµ), in which Ξ1, . . . ,Ξµ are the
µ columns of random matrix [Ξ] and are mutually dependent Gaussian
RNg -valued random variables, βα = {βα1 , . . . , βαNg}. Denoting the maxi-
mum degree of the polynomials as Nd (i.e. |β1| + . . . + |βµ| ≤ Nd with
|βα| = βα1 + . . . + βαNg ), we denote the PCE of random matrix [Z] by
[Z(Nd, Ng, µ)].

• Since the germ of the reduced-order ISDE (which allows for generating the
samples for [Z]) is statistically dependent on the germ [Ξ] that is used for
constructing [Z(Nd, Ng, µ)], the coefficients of [Z(Nd, Ng, µ)] can easily be
computed.

• The analytical representation of random matrix [H] with values in Mν,N is
then obtained by replacing [Z] by [Z(Nd, Ng, µ)] in the reduced-order repre-
sentation [H] = [Z] [g]T , for which the germ is the random matrix [Ξ] with
values in MNg ,µ.

• The PCE [Z(Nd, Ng, µ)] of [Z] allows for generating the samples [z1ar], . . . ,
[znMC

ar ] of random matrix [Z] and therefore, for deducing the samples {[η`ar] =
[z`ar] [g]T , ` = 1, . . . , nMC} of [H], whose columns will be concentrated on Sν .

• The Rν-valued random variable H is an application-specific normalization
of a Rn-valued random variable X (with ν ≤ n) for which N samples con-
stitute the given dataset. According to our formulation, these N samples of
X constitute one sample of random matrix [X] with values in Mn,N .

Remark on the methodology proposed. Another approach could be envisaged for
generating additional samples without recourse to the reduced-order ISDE. Such
an approach would consist in performing a direct generation of samples of ran-
dom matrix [H] from the multidimensional Gaussian kernel estimation method for
which the concentration would be lost due to unavoidable scattering of the gener-
ated samples. These scattered samples would then be projected on the subspace
spanned by the m� N diffusion-maps vectors represented by matrix [g] in order
to generate the corresponding samples of [Z]. With such an approach, the stochas-
tic germ, which would be used by this Gaussian kernel generator, would not live
on the ”manifold” identified by the diffusion maps. The corresponding generator
would produce samples that would belong to the big set Mν,N , before projecting
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them on the identified ”manifold”. Such an approach has not been investigated
in this work for the following theoretical reason. The proposed method has been
developed with two constraints in mind. The first one concerns the stochastic
germ of the reduced-order ISDE that is used for generating the samples of [Z],
which must live on the ”manifold” identified by the diffusion maps, that is to say,
which must live on a subset of the set Mν,m, which has a small dimension because
m� N . The second criterion requires the samples of [Z] to be directly generated
by the reduced-order ISDE on the ”manifold” which is a subset of Mν,m with a
small dimension. The proposed generator based on a reduced-order ISDE, which
allows these two constraints to be easily implemented. These two constraints are
significant since they allows for constructing the PCE on the ”manifold” without
ambiguity and with a very efficient algorithm, as proposed in the manuscript.

Organization of the paper. The paper is organized as follows. Section 2
is devoted to a brief review of the methodology and algorithm proposed in [1]
for generating samples that follow the pdf of the dataset, in the neighborhood
of Sν . Section 3 deals with the PCE of random matrix [Z], which capitalizes
on the results summarized in Section 2. In Section 4, using the PCE of random
matrix [Z], we present the generation of additional samples of random matrix [X]
for which the dataset constitutes one sample. Finally, Section 5 is devoted to
numerical examples.

2. Short summary of the methodology and algorithm proposed in [1] for a
concentrated probability measure

In this section, we give a brief summary of the methodology presented in [1],
which underlies the proposed PCE construction. Let X = (X1, . . . , Xn) be a ran-
dom vector, defined on a probability space (Θ, T ,P), with values in Rn, for which
the probability density function (pdf) pX on Rn is unknown but is concentrated on
an unknown subset Sn of Rn, and for whichN data points xd,1, . . . , xd,N in Rn cor-
respond to N statistically independent samples of X, which are given and which
are represented by the matrix [xd] = [xd,1 . . . xd,N ] in Mn,N . Only using [xd] as
available information, this method allows for generating samples of random vec-
tor X that are concentrated in the neighborhood of Sn. The steps detailed in [1]
are summarized hereinafter.
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2.1. Scaling and normalizing the given dataset [xd]

From a given unscaled dataset represented by a matrix [xunsd ] in Mn,N , the
(scaled) dataset [xd] in Mn,N is easily deduced from [xunsd ]. The normalization of
X is obtained by a principal component analysis. Introducing the random ma-
trix [X] = [X1, . . . ,XN ] with values in Mn,N , whose columns are N independent
copies of random vector X, we introduce the corresponding normalized random
matrix [H] = [H1, . . . ,HN ] with values in Mν,N , whose columns are N indepen-
dent copies of random vector H, with ν ≤ n, such that

[X] = [x] + [ϕ] [λ]1/2 [H] , (1)

in which [λ] is the (ν × ν) diagonal matrix of the ν positive eigenvalues of the
empirical estimation of the covariance matrix of X, where [ϕ] is the (n×ν) matrix
of the associated eigenvectors such [ϕ]T [ϕ] = [Iν ], and where [x] is the matrix in
Mn,N for which each column is the empirical estimation of the mean value of
random vector X. The sample [ηd] = [ηd,1 . . .ηd,N ] ∈ Mν,N of [H] (associated
with the sample [xd] of [X]) is thus computed by

[ηd] = [λ]−1/2[ϕ]T ([xd]− [x]) . (2)

Consequently, the empirical estimates of the mean value and of the covariance
matrix of random vector H are 0ν and [Iν ], respectively.

2.2. Constructing the diffusion-maps vectors for H
Let kε(η,η′) = exp(− 1

4ε
‖η − η′‖2) be the kernel defined on Rν × Rν , de-

pending on a real smoothing parameter ε > 0. It should be noted that this
kernel could be replaced by another one satisfying the symmetry, the positiv-
ity preserving, and the positive semi-definiteness properties. For m ≤ N , let
[g] = [g1 . . . gm] ∈ MN,m be the ”diffusion-maps basis” associated with kernel kε,
which is defined and constructed in Appendix A (for m = N , [g] is an algebraic
basis of RN ). For α = 1, . . . ,m, the diffusion-maps vector gα ∈ RN is defined
by Eq. (A.3). The subspace of RN spanned by the vector basis {gα}α allows
for characterizing the local geometry structure of the dataset concentrated in the
neighborhood of Sν .

2.3. Introducing the reduced-order representation of random matrix [H]

The reduced-order representation is obtained in projecting each column of the
MN,ν-valued random matrix [H]T on the subspace of RN , spanned by {g1 . . . gm}.
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Introducing the random matrix [Z] with values in Mν,m, the following reduced-
order representation of [H] is introduced,

[H] = [Z] [g]T . (3)

Since the matrix [g]T [g] ∈ Mm is invertible, Eq. (3) yields the least squares ap-
proximation to Z in the form,

[Z] = [H] [a] , [a] = [g] ([g]T [g])−1 ∈ MN,m . (4)

In particular, matrix [ηd] ∈ Mν,N can be written as [ηd] = [zd] [g]T in which the
matrix [zd] ∈ Mν,m is given by

[zd] = [ηd] [a] ∈ Mν,m . (5)

Consequently, from Eqs. (1) and (4), it can be deduced the following representa-
tion of random matrix [X] as a function of random matrix [Z],

[X] = [x] + [ϕ] [λ]1/2 [Z] [g]T . (6)

2.4. Estimating dimension m of the reduced-order representation of random ma-
trix [Z]

For a given value of integer ζ related to the analysis scale of the local geomet-
ric structure of the dataset (see Eq. (A.3) in Appendix A) and for a given value
of smoothing parameter ε > 0, the decreasing of the graph α 7→ Λα of the pos-
itive eigenvalues of transition matrix [P] (see Appendix A) yields a criterion for
choosing the value of m that allows the local geometric structure of the dataset
represented by [ηd] to be discovered. Nevertheless, this criterion may not be suffi-
cient, and the L2-convergence may need to be enforced by increasing, as required,
the value of m. However, if the value of m is chosen too large, the localization of
the geometric structure of the dataset is lost. Consequently, a compromise must
be reached between the very small value of m given by the decreasing criteria of
the eigenvalues of matrix [P] ∈ MN and a larger value of m which is necessary
for obtaining a reasonable mean-square convergence. A criterion for estimating
an optimal value of m is given in Appendix B.

2.5. Reduced-order ISDE for generating additional samples [z1ar], . . . , [z
nMC
ar ] of

random matrix [Z]

For m, ε, and ζ fixed, we introduce the Markov stochastic process {([Z(r)],
[Y(r)]), r ∈ R+}, defined on (Θ, T ,P), indexed by R+ = [0 ,+∞[, with values in
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Mν,m×Mν,m, which is the unique second-order stationary (for the shift semi-group
on R+) and ergodic diffusion stochastic process, of the following reduced-order
ISDE, for r > 0,

d[Z(r)] = [Y(r)] dr , (7)

d[Y(r)] = [L([Z(r)])] dr − 1

2
f0 [Y(r)] dr +

√
f0 [dW(r)] , (8)

with the initial condition

[Z(0)] = [Hd] [a] , [Y(0)] = [N ] [a] a.s , (9)

in which the random matrices [L([Z(r)])] and [dW(r)] with values in Mν,m are
such that

[L([Z(r)])] = [L([Z(r)] [g]T )] [a] , [dW(r)] = [dW(r)] [a] . (10)

(i) For all [u] = [u1 . . . uN ] in Mν,N with u` = (u`1, . . . , u
`
ν) in Rν , the matrix

[L([u])] in Mν,N is defined, for all k = 1, . . . , ν and for all ` = 1, . . . , N , by

[L([u])]k` =
1

q(u`)
{∇u` q(u`)}k , (11)

q(u`) =
1

N

N∑
j=1

exp{− 1

2ŝ 2
ν

‖ ŝν
sν
ηd,j − u`‖2} , (12)

∇u` q(u`) =
1

ŝ 2
ν

1

N

N∑
j=1

(
ŝν
sν
ηd,j − u`) exp{− 1

2ŝ 2
ν

‖ ŝν
sν
ηd,j − u`‖2} , (13)

sν =

{
4

N(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2ν + N−1
N

. (14)

(ii) The stochastic process {[dW(r)], r ≥ 0} with values in Mν,N is such that
[dW(r)] = [dW1(r) . . . dWN(r)] in which the columns W1, . . . ,WN are N in-
dependent copies of the normalized Wiener process W = (W1, . . . ,Wν) de-
fined on (Θ, T ,P), indexed by R+ with values in Rν . The matrix-valued au-
tocorrelation function [RW(r, r′)] = E{W(r) W(r′)T} of W is then written as
[RW(r, r′)] = min(r, r′) [Iν ].
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(iii) The probability distribution of the random matrix [Hd] with values in Mν,N is
p[H]([η]) d[η]. A known sample of [Hd] is matrix [ηd] defined by Eq. (2). The ran-
dom matrix [N ] with values in Mν,N is written as [N ] = [N 1 . . .NN ] in which
the columns N 1, . . . ,NN are N independent copies of the normalized Gaus-
sian vector N with values in Rν (this means that E{N } = 0 and E{NN T} =
[Iν ]). The random matrices [Hd] and [N ], and the normalized Wiener process
{W(r), r ≥ 0} are assumed to be independent.

(iv) The free parameter f0 > 0 allows the dissipation term of the nonlinear second-
order dynamical system (dissipative Hamiltonian system) to be controlled.

(v) The algorithm for solving Eqs. (7) to (9) is detailed in [1] and is summarized
in Appendix C.

2.6. Generating additional samples [x1ar], . . . , [x
nMC
ar ] of random matrix [X]

For θ fixed in Θ, the deterministic quantities {[W(r; θ)], r ≥ 0}, [Z(0; θ)] =
[ηd] [a], and [Y(0; θ)] = [N (θ)] [a] are independent samples of the stochastic pro-
cess {[W(r)], r ≥ 0}, the random matrix [Z(0)], and the random matrix [Y(0)].
Let {([Z(r; θ)], [Y(r; θ)]), r ∈ R+} be the corresponding sample of the unique
stationary diffusion process {([Z(r)], [Y(r)]), r ∈ R+} of the problem defined by
Eqs. (7) to (9)). For ρ = M0 ∆r, in which ∆r is the sampling step of the con-
tinuous index parameter r used in the integration scheme (see Appendix C), and
where M0 is a positive integer greater or equal to 1 such that M = M0 × nMC, the
additional samples [z̃1ar], . . . , [z̃

nMC
ar ] of random matrix [Z] and the corresponding

samples [η̃1ar], . . . , [η̃
nMC
ar ] of random matrix [H] are given by

[z̃`ar] = [Z(`×ρ ; θ)] , [η̃`ar] = [z̃`ar] [g]T , ` = 1, . . . , nMC . (15)

• If M0 = 1, then ρ = ∆r and the nMC additional samples are dependent,
but the ergodic property of {[Z(r)], r ∈ R+} can be used for obtaining
the convergence of statistics constructed using [z̃1ar], . . . , [z̃

nMC
ar ] for random

matrix [Z] .

• If integer M0 is chosen sufficiently large (such that ρ is much larger than
the relaxation time of the dissipative Hamiltonian dynamical system), then
[z̃1ar], . . . , [z̃

nMC
ar ] can approximatively be considered as independent samples

of random matrix [Z].
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• The representation defined by Eq. (1) has been constructed in order that the
empirical estimates of the mean value and the covariance matrix of random
vector H are 0ν and [Iν ], respectively. As the generator of random matrix
[H] defined by Eqs. (7) to (14) can introduce a bias induced by the inte-
gration scheme defined by Eqs. (C.4) to (C.7) in Appendix C, the samples
{[η̃`ar], ` = 1, . . . nMC} defined by Eq. (15) are re-normalized using the fol-
lowing algorithm:

(i) Computation of the empirical estimate m̃ = (m̃1, . . . , m̃ν) ∈ Rν of the
mean vector of H and of the empirical estimate [ c̃ ] ∈ Mν of the covariance
matrix of H, such that, for all k and k′ in {1, . . . , ν},

m̃k =
1

N×nMC

N∑
j=1

nMC∑
`=1

[η̃`ar]kj , (16)

[ c̃ ]kk′ =
1

N×nMC − 1

N∑
j=1

nMC∑
`=1

([η̃`ar]kj − m̃k)([η̃
`
ar]k′j − m̃k′) . (17)

(ii) Assuming that matrix [ c̃ ] is positive definite, computing the Cholesky
factorization [ c̃ ] = [L̃]T [L̃] and computing the re-normalized samples {[η`ar], ` =
1, . . . nMC} such that, for all ` = 1, ..., nMC, j = 1, . . . , N , and k = 1, . . . , ν,

[η`ar]kj =
ν∑

k′=1

{[L̃]−T}kk′([η̃`ar]k′j − m̃k′) . (18)

Consequently, the empirical estimates of the mean value and covariance ma-
trix performed with the re-normalized samples {[η`ar], ` = 1, . . . nMC} yield
the zero vector and the identity matrix for random vector H, respectively.

• Using Eqs. (4), it is deduced that the samples [z1ar], . . . , [z
nMC
ar ] associated

with the re-normalized samples [η1ar], . . . , [η
nMC
ar ] defined by Eq. (18), can be

computed by
[z`ar] = [η`ar] [a] , ` = 1, . . . nMC . (19)

Using Eq. (6), the additional samples [x1ar], . . . , [x
nMC
ar ] of random matrix [X] can be

generated by

[x`ar] = [x] + [ϕ] [λ]1/2 [z`ar] [g]T , ` = 1, . . . nMC . (20)
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3. Polynomial chaos expansion of random matrix [Z]

3.1. Construction of an adapted Gaussian germ for the PCE on the manifold
In general, Ng ≤ ν and µ ≤ m. However, for explaining the construction of

the Gaussian germ [Ξ] with values in MNg ,µ, we construct the germ [Ξ(ν,m)] with
values in Mν,m and then, forNg < ν and µ < m, the germ [Ξ] with values in MNg ,µ

will be obtained by extracting the block (Ng × µ) from [Ξ(ν,m)].

The idea is to construct a Gaussian random matrix [Ξ(ν,m)], defined on (Θ, T ,P)
with values in Mν,m that is statistically dependent of the Mν,m-valued stochastic
process {[W(r)], r ≥ 0}, in order to perform the computation of the coefficients
of the PCE of random matrix [Z] by a direct use of the projection formula. Nev-
ertheless, in order to avoid potential numerical difficulties for computing the sam-
ples of the PCE with respect to [Ξ], we need to introduce a germ whose statistical
fluctuations have unit variance. Consequently, we will perform the construction
by normalizing {[W(r)], r ≥ 0} for which the statistical fluctuations can have a
variance greater than 1 due to the presence of matrix [a] related to the manifold.

Let {[∆W`′ ], `
′ = 1, . . . ,M} be the sequence of the independent Gaussian cen-

tered random matrices with values in Mν,m, which are defined by Eq. (C.2) of
Appendix C,

[∆W`′ ] = [∆W`′ ] [a] . (21)

Taking into account Eq. (C.3) of Appendix C, it can easily be seen that, for all `′

fixed in {1, . . . ,M}, the fourth-order covariance tensor of random matrix [∆W`′ ],
is independent of `′, and is such that, for all α and α′ in {1, . . . ,m}, and for all k
and k′ in {1, . . . , ν},

E{ [∆W`′ ]kα [∆W`′ ]k′α′} = δkk′ [A]αα′ , (22)

in which the positive-definite matrix [A] is written as

[A] = ∆r [a]T [a] ∈ M+
m . (23)

We then defined the random matrix [Ξ(ν,m)] as the Gaussian, centered, random
matrix with values in Mν,m, for which the fourth-order covariance tensor is such
that, for all k and k′ in {1, . . . , ν} and for all α and α′ in {1, . . . ,m},

E{ [Ξ(ν,m)]kα [Ξ(ν,m)]k′α′} = δkk′
[A]αα′√

[A]αα[A]α′α′
, (24)
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in which the matrix [A] is defined by Eq. (23). By comparing Eq. (22) with
Eq. (24), and in taking ρ and the sample θ in Θ used in Eq. (15), it can be con-
cluded that nMC samples, {[ξ`(ν,m)], ` = 1, . . . , nMC} of random matrix [Ξ(ν,m)]
can be constructed, for ` = 1, . . . , nMC, as

[ξ`(ν,m)] = [∆W`×ρ(θ)] [d ] , (25)

in which [d ] is the (m×m) real diagonal positive-definite matrix which is written
as,

[d ]αα′ =
δαα′√
[A]αα

. (26)

For fixed Ng ≤ ν and µ ≤ m, the nMC samples, {[ξ`], ` = 1, . . . , nMC} of random
matrix [Ξ] are then given by extracting, for ` = 1, . . . , nMC, the block (Ng × µ)
from [ξ`(ν,m)],

[ξ`]kα = [ξ`(ν,m)]kα , k = 1, . . . , Ng , α = 1, . . . , µ . (27)

3.2. Orthonormal multivariate polynomials
Definition of the multi-indices for the PCE of [Z] with respect to [Ξ]. Let Ng and
µ be fixed such that 1 ≤ Ng ≤ ν and 1 ≤ µ ≤ m. For α ∈ {1, . . . , µ}, let
βα = (βα1 , . . . , β

α
Ng

) be the multi-index such that βα ∈ NNg and let be |βα| =

βα1 + . . .+βαNg . Relatively to the columns Ξ1, . . . ,Ξµ of matrix [Ξ], we introduce
the multi-index β = (β1, . . . ,βµ) that belongs to NµNg = NNg × . . .× NNg such
that |β| = |β1|+ . . . + |βµ|. For a fixed value of Nd that is the maximum degree
of the orthonormal multivariate polynomials, such that Nd ≥ 1, the following set
BNd,Ng ,µ of multi-indices is introduced,

BNd,Ng ,µ = {β ∈ NµNg | 0 ≤ |β| ≤ Nd} . (28)

The K elements of set BNd,Ng ,µ, which depend on Nd, Nd, and µ (and also written
as K(Nd, Ng, µ)), are denoted by β(1), . . . β(K) in which β(1) is the multi-index
(0, . . . , 0), and where the integer K(Nd, Ng, µ) is such that

K(Nd, Ng, µ) =
(µNg +Nd)!

(µNg)!Nd!
. (29)

Orthonormal multivariate polynomials. Let p[Ξ]([ξ]) d[ξ] be the Gaussian, cen-
tered, probability measure of the random matrix [Ξ] with values in MNg ,µ, for
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which the fourth-order covariance tensor, which is derived from Eq. (24), is writ-
ten, for all k and k′ in {1, . . . , Ng}, and for all α and α′ in {1, . . . , µ}, as

E{ [Ξ]kα [Ξ]k′α′} = δkk′
[A]αα′√

[A]αα[A]α′α′
. (30)

Note that the probability measure p[Ξ]([ξ]) d[ξ] is such that

p[Ξ]([ξ]) d[ξ] = pΞ1,...,Ξµ(ξ1, . . . , ξµ) dξ1 . . . dξµ . (31)

in which ξα ∈ RNg and where dξα is the Lebesgue measure on RNg . For all multi-
indices β ∈ NµNg , we introduce the real-valued multivariate polynomials Ψβ([ξ])
on MNg ,µ, which is defined by

Ψβ([ξ]) = Ψβ1,...,βµ(ξ1, . . . , ξµ) , (32)

in which [ξ] = [ξ1 . . . ξµ]. Let {Ψβ([ξ]),β ∈ NµNg} be the family of real-valued
multivariate polynomials orthonormal with respect to p[Ξ]([ξ]) d[ξ]. For all β and
β′ in NµNg ,∫

MNg,µ
Ψβ([ξ]) Ψβ′([ξ]) p[Ξ]([ξ]) d[ξ] = E{Ψβ([Ξ]) Ψβ′([Ξ])} = δββ′ , (33)

where δββ′ is the Kronecker symbol. By convention, for β = β(1) = (0, . . . , 0),
Ψβ(1)([ξ]) = 1 is the constant normalized multivariate polynomial. Since the
random vectors Ξ1, . . . ,Ξµ are mutually dependent, the probability density func-
tion pΞ1,...,Ξµ(ξ1, . . . , ξµ) is not separable in ξ1, . . . , ξµ and consequently, the or-
thonormal multivariate polynomials Ψβ([ξ]) cannot be written as Ψβ1(ξ1)× . . .×
Ψβµ(ξµ). From a theoretical point of view, the orthonormal multivariate poly-
nomials can be viewed as the result of a Gram-Schmidt orthonormalization al-
gorithm of the multivariate monomials (see Section 3.5) defined, for β ∈ NµNg ,
by

Mβ([ξ]) =Mβ1(ξ1)× . . .×Mβµ(ξµ) , (34)

in which for all α in {1, . . . , µ},

Mβα(ξα) = (ξα1 )β
α
1 × . . .× (ξαNg)

βαNg . (35)
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3.3. Polynomial chaos expansion of random matrix [Z]

In this section, we construct the PCE of random matrix [Z]. Since [Z] is a
second-order random variable with values in Mν,m, random matrix [Z] can be ex-
panded in polynomial chaos by using the classical theory. What is different in
our case, it is the fact that we propose to construct the truncated PCE of random
matrix [Z] with respect to the germ [Ξ] defined in Section 3.2, which is related to
the correlation structure of the germ on the manifold. We then have to analyze the
problem related to the L2 convergence of the truncated PCE of [Z].

(i) Truncated PCE and convergence. For Ng ≤ ν, µ ≤ m, and for Nd > 1 fixed,
the truncated PCE denoted by [Z(Nd, Ng, µ)] of random matrix [Z] with values in
Mν,m, with respect to random matrix [Ξ] with values in MNg ,µ, is written as

[Z(Nd, Ng, µ)] =

K(Nd,Ng ,µ)∑
κ=1

[y(κ)] Ψβ(κ)([Ξ]) , [y(κ)] ∈ Mν,m , (36)

in which the integer K(Nd, Ng, µ) and the multi-indices β(κ) are defined in Sec-
tion 3.2 and where Ψβ([ξ]) is defined by Eq. (32). The family {[y(κ)]}κ of the PCE
coefficients are matrices in Mν,m, which are computed by using the formula,

[y(κ)] = E{[Z] Ψβ(κ)([Ξ])} . (37)

The L2-convergence,

[Z] = lim
µ→m
Ng→ν

Nd→+∞

[Z(Nd, Ng, µ)] , (38)

is analyzed in paragraph (ii) below.

It should be noted that the statistical dependence between random matrix [Ξ]
and random matrix [Z] allows the development of very efficient algorithms for
computing the coefficients [y(κ)] of the PCE of [Z] using Eq. (37). Indeed, if [Ξ]
had been chosen as an independent random matrix of [Z], then Eq. (37) would
give [y(κ)] = [0] for all κ, because E{[Z]} = [0], and consequently, could not
be used. The maximum likelihood method should then be used for identifying
the K(Nd, Ng, µ) matrix-valued coefficients. This would entail an optimization
problem with ν×µ×K(Nd, Ng, µ) variables, which would quickly become com-
putationally prohibitive.
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(ii) Comments about the L2- convergence of the truncated PCE of [Z] when the
germ is chosen as [Ξ].

(ii-1) As ν and m are finite, for Ng = ν and µ = m, the L2-convergence of
the sequence {[Z(Nd, ν,m)]}Nd of random matrices can be proved as follows.
Let [Ξ(ν,m)] be the Gaussian random matrix with values in Mν,m defined in
Section 3.2. From the construction of the Mν,m-valued random matrix [Z] pre-
sented in Section 2.5, [Z] can be written as [Z] = f (ν,m)([Ξ(ν,m)]) in which
[ξ] 7→ f (ν,m)([ξ]) is a measurable mapping from Mν,m into Mν,m. As [Z] is a
second-order random variable, we have∫

Mν,m
‖f (ν,m)([ξ])‖2F p[Ξ]([ξ]) d[ξ] < +∞ ,

in which ‖ · ‖F is the Frobenius norm and where p[Ξ] is defined by Eq. (31). On
the other hand, it can easily be seen that, for any multi-index β(κ) with κ in N, the
multivariate monomialMβ(κ)([ξ]) defined by Eq. (34) is such that∫

Mν,m
|Mβ(κ)([ξ])| p[Ξ]([ξ]) d[ξ] < +∞ .

Consequently, the mathematical results proved in [35] allow us to conclude that
the sequence {[Z(Nd, ν,m)]}Nd is convergent in L2 to [Z] = f (ν,m)([Ξ(ν,m)])
when Nd → +∞, that is to say,

[Z] = lim
Nd→+∞

[Z(Nd, ν,m)] . (39)

(ii-2) The correlation structure that we have retained (see Eq. (30) deduced
from Eq. (24)) for [Ξ] shows that the components (Ξα

1 , . . . ,Ξ
α
Ng

) of each column
Ξα with values in RNg of random matrix [Ξ] are mutually independent (Gaussian,
centered, and not correlated), but the columns Ξ1 . . .Ξµ are mutually dependent
Gaussian vectors. Consequently, for µ = m, the truncated PCE [Z(Nd, Ng,m)]
of [Z] with respect to [Ξ] yields a corresponding truncated PCE Zα(Nd, Ng,m)
of each column Zα of [Z] that depends on [Ξ] = [Ξ1 . . .Ξm]. In particular, the
truncated PCE Zα(Nd, Ng,m) of column Zα with values in Rν depends on Ξα

with values in RNg , for which all the components (Ξα
1 , . . . ,Ξ

α
Ng

) are independent
(because Zα depends on Ξ1, . . . ,Ξµ and consequently, depends on Ξα). This
property and Eq. (39) guarantee that such a truncated PCE Zα(Nd, Ng,m) of Zα

with values in Rν is convergent in L2 when Ng → ν and Nd → +∞. Conse-
quently, if [Z(Nd, Ng, µ)] denotes the truncated PCE of random matrix [Z], it can
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be deduced that, for µ = m, we have the following L2-convergence,

[Z] = lim
Ng→ν

Nd→+∞

[Z(Nd, Ng,m)] . (40)

(ii-3) However, for µ fixed such that µ < m, due to the dependence of the
Gaussian random vectors Ξ1, . . . ,Ξµ, Eqs. (39) and (40) do not prove the con-
vergence in L2 of the truncated PCE [Z(Nd, Ng, µ)] of [Z] when Ng → ν and
Nd → +∞. As the explicit expression of the probability distribution of random
matrix [Z] is unknown, it seems difficult to prove such a convergence. In this case
we settle for a numerical exploration using an adapted criterion such that the one
defined by Eq. (50)) below. Nevertheless, due to Eq. (40), for µ = m, the given
theoretical proof ensures convergence.

3.4. Estimation of the matrix-valued coefficients
In this section, integers nMC, Ng, µ, and Nd are fixed. The construction of the

truncated PCE [Z(Nd, Ng, µ)] of random matrix [Z] requires two steps. The first
one is the numerical calculation of the samples of the polynomial chaos. The sec-
ond one is the computation of the PCE coefficients of random matrix [Z]. These
steps are detailed next and for simplifying the notation, K(Nd, Ng, µ) is some-
times simply written as K.

(i) Samples of the polynomial chaos for the computation of the PCE coefficients.
Let Ψ([Ξ]) = (Ψβ(1)([Ξ]), . . . ,Ψβ(K)([Ξ])) be the random vector with values in
RK . The nMC samples of the K multivariate polynomials are represented by the
matrix [Ψ] ∈ MK,nMC such that

[Ψ]κ` = Ψβ(κ)([ξ`]) , κ = 1, . . . , K , ` = 1, . . . , nMC , (41)

where [ξ`] is defined by Eq. (27) (because we are computing the coefficients
{[y(κ)]}κ). Due to Eq. (33), matrix [Ψ] must be such that

lim
nMC→+∞

1

(nMC − 1)
[Ψ] [Ψ]T = [IK ] . (42)

(ii) Computation of the coefficients. From Eqs. (37), (41), and (42), it can be
deduced that, for nMC sufficiently large (greater than K), the entries [y(κ)]kα of an
estimation of matrix-valued coefficient [y[κ)], can be written, for κ = 1, . . . , K,
for k = 1, . . . , ν, and for α = 1, . . . ,m, as

[y(κ)]kα = [ŷα]kκ , (43)
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[ŷα] ' 1

(nMC − 1)
[ẑ αar ] [Ψ]T . (44)

In Eq. (44), the matrix [ẑ αar ] ∈ Mν,nMC is defined by

[ẑ αar ]k` = [z`ar]kα , ` = 1, . . . , nMC , (45)

in which [z1ar], . . . , [z
nMC
ar ] are the samples of random matrix [Z], computed with

Eq. (19).

3.5. Computation of matrix [Ψ]

For the reasons detailed in [44], matrix [Ψ] is computed with the algorithm
based on the Cholesky factorization proposed in [39] (we refer the reader to [44]
for a method involving the singular value decomposition and to [45] for a method
involving the QR factorization). This algorithm preserves the orthogonality prop-
erty defined by Eq. (42) for the high dimensions and requires that nMC > K.

Let [M] be the (K × nMC) real matrix of samples of the monomials defined by
Eq. (34) such that

[M]κ` =Mβ(κ)([ξ`]) , κ = 1 . . . , K , ` = 1, . . . , nMC , (46)

in which [ξ`] is defined by Eq. (27) and whereMβ(κ)([ξ`]) is computed by using
Eqs. (34) and (35). The algorithm is then as follows:

• Compute matrix [M] defined by Eq. (46), and then compute the (K×K) real
matrix [F] = 1

nMC−1 [M] [M]T . Since nMC > K, then matrix [F] to be positive
definite.

• Compute the lower triangular (K × K) real matrix [L] from the Cholesky
decomposition [L] [L]T of positive-definite symmetric matrix [F].

• Compute the (K × nMC) real matrix [Ψ] as the solution of the linear matrix
equation [L] [Ψ] = [M].

It should be noted that, when the rank of matrix [M] is greater or equal toK(Nd, Ng, µ),
which corresponds to nMC > K, the proposed algorithm shows that the constructed
polynomials are exactly orthonormal.
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3.6. Computation of nMC samples of [Z] using its PCE
Let Nmax

d ≥ 1 be the greatest value of Nd, which is considered for performing
the L2-convergence analysis of the PCE of [Z]. We thus consider Nd, Ng, and
µ fixed such that 1 ≤ Nd ≤ Nmax

d , 1 ≤ Ng ≤ ν, and 1 ≤ µ ≤ m (see Sec-
tion 3.3-(i)). We are thus interested in computing nMC samples [z1PCE], . . . , [z

nMC
PCE ] of

the random matrix [Z(Nd, Ng, µ)] such that, for ` = 1, . . . , nMC,

[z`PCE]kα = [ẑ αPCE]k` , k = 1, . . . , ν , α = 1, . . . ,m , (47)

in which, for α = 1, . . . ,m, the matrix [ẑ αPCE] ∈ Mν,nMC is computed by

[ẑ αPCE] = [ŷα] [Ψ] . (48)

The matrix [ŷα] ∈ Mm,K is given by

[ŷα]kκ = [y(κ)]kα , k = 1, . . . , ν , κ = 1, . . . , K , (49)

in which matrix [y(κ)] ∈ Mν,m has been computed by using Eqs. (43) to (45) and
where The matrix [Ψ] ∈ MK,nMC has been computed by using Eq. (41).

3.7. Quantification of the L2-convergence
The quantification of the L2-convergence of the sequence of random matrices

{[Z(Nd, Ng, µ)]}Nd,Ng ,µ towards [Z] (see Eq. (38)) is performed by constructing
the error function (Nd, Ng, µ) 7→ error[Z](Nd, Ng, µ) defined on [1, Nmax

d ]×[1, ν]×
[1,m] by

error[Z](Nd, Ng, µ) =

√∑nMC

`=1 ‖[z`ar]− [z`PCE]‖2F∑nMC

`=1 ‖[z`ar]‖2F
. (50)

4. Generating additional samples of random vector X using its analytical
representation and L2-error

For Nd, Ng, and µ fixed to the values identified by the analysis of the error
function (Nd, Ng, µ) 7→ error[Z](Nd, Ng, µ) defined by Eq. (50), the number K =
K(Nd, Ng, µ) of coefficients is known. For a given number nsim of additional
samples, the methodology consists of

• computing nsim samples of the analytical representation X(Nd, Ng, µ) of
random vector X by using Eq. (6) and the PCE [Z(Nd, Ng, µ)] of random
matrix [Z];

• estimating the L2-error for X(Nd, Ng, µ) with respect to random vector X.
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4.1. Algorithm for computing samples of random vector X using the PCE of ran-
dom matrix [Z]

For α = 1, . . . ,m, the matrices [ŷα] ∈ Mm,K are known (computed with
Eq. (44)). The algorithm for generating nsim independent samples of the analytical
representation X(Nd, Ng, µ) of random vector X is deduced from the develop-
ments presented in Section 3 and is detailed hereinafter.

• By using the results presented in Section 3.1, nsim independent samples
{[ξ`sim], ` = 1, . . . , nsim} of random matrix [Ξ] with values in MNg ,µ are cal-
culated as follows:

1. Computation of the (Ng×N) real matrix [u`] =
√

∆r [γ`] in which [γ`]
is an independent sample of a normalized Gaussian random matrix [Γ]
with values in MNg ,N . This means that all the entries [Γ]kj are indepen-
dent normalized Gaussian real-valued random variables. For instance
by using Matlab, the generation is written as [γ`] = randn(Ng, N).

2. Computation of the (Ng ×m) real matrix [w`] = [u`] [a] in which [a]
is the (N ×m) real matrix defined by Eq. (4).

3. Computation of the sample [ξ`sim] of random matrix [Ξ] with values
in MNg ,µ such that, for k = 1, . . . , Ng and α = 1, . . . , µ, [ξ`sim]kα =
{[w`] [d ]}kα in which matrix [d ] is defined by Eq. (26).

• Computation of [Ψsim] ∈ MK,nsim by using Section 3.5 in replacing nMC by
nsim and [ξ`] by [ξ`sim]).

• Computation of the samples [z1PCE,sim], . . . , [znsim
PCE,sim] in Mν,m of the random ma-

trix [Z(Nd, Ng, µ)] with values in Mν,m, such that, for ` = 1, . . . , nsim, for
k = 1, . . . , ν, and for α = 1, . . . ,m, we have [z`PCE,sim]kα = [ẑ αPCE,sim]k` with
[ẑαPCE,sim] = [ŷα] [Ψsim] (see Eqs. (47) and (48)), in which [ŷα] ∈ Mm,K has
previously been computed with Eq. (44).

• Computation of the additional samples [x1PCE,sim], . . . , [xnsim
PCE,sim] in Mn,N of ran-

dom matrix [X(Nd, Ng, µ)] with values in Mn,N such that, for ` = 1, . . . nsim,
we have [x`PCE,sim] = [x] + [ϕ] [λ]1/2 [z`PCE,sim] [g]T (see Eq. (6)).

• Deducing the nsim × N additional samples x1
PCE,sim, . . . , x

nsim×N
PCE,sim in Rn of ran-

dom vector X(Nd, Ng, µ) with values in Rn such that, for ` = 1, . . . , nsim×N
and for k = 1, . . . , n, the component x`

PCE,sim,k of x`PCE,sim is such that x`
PCE,sim,k =

[x`PCE,sim]k in which [x`PCE,sim] is the matrix in Mn,nsim×N defined by [x`PCE,sim] =
[ [x1PCE,sim] . . . [xnsim

PCE,sim] ].
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4.2. Estimation of the L2-error for X(Nd, Ng, µ) with respect to random vector X
For given Nd, Ng, µ, and nsim, the L2-error of the random vector X(Nd, Ng, µ)

with respect to random vector X is estimated by

errorX(Nd, Ng, µ) =
‖ [covX(Nd,Ng ,µ)]− [covX] ‖F

‖ [covX] ‖F
, (51)

in which the covariance matrix [covX(Nd,Ng ,µ)] ∈ Mn of the random vector X(Nd,

Ng, µ) is estimated with the nsim × N samples x1
PCE,sim, . . . , x

nsim×N
PCE,sim , and where the

covariance matrix [covX] ∈ Mn of the random vector X is estimated with the nMC×
N samples x1

ar, . . . , xnMC×N
ar that are the columns of the matrices [x1ar], . . . [x

nMC
ar ],

that are computed using Section 2 (see Eq. (20)). It should be noted that the
number of samples for random vectors X and X(Nd, Ng, µ) are not the same and,
in addition, X and X(Nd, Ng, µ) are statistically independent. Consequently, the
classicalL2-norm cannot be introduced for quantifying the convergence, and since
X and X(Nd, Ng, µ) have the same mean vectors, the distance between the covari-
ance matrices is used.

5. Applications

Three applications presented in [1] are partially reused for illustrating the
methodology proposed. The three examples consist of obtaining samples of ran-
dom vector X with values in Rn such that:

1. in example 1, the dimension is n = 2 and there are N = 230 given data
points in subset Sn, for which the mean value is made up of two circles in
the plane).

2. in example 2, the dimension is n = 3 and there are N = 400 given data
points in subset Sn, for which the mean value is made up of a helix in three-
dimensional space).

3. the third example corresponds to a petro-physics database that is made up
of experimental measurements (downloaded from [46]) and detailed in [47],
for which the dimension is n = 35 and for which N = 13, 056 given data
points are concentrated in an unknown “complex” subset Sn of Rn, which
cannot be easily described once discovered.
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Figure 1: 230 given data points (left). Eigenvalues of the transition matrix for random vector H
(right).

5.1. Application 1: Dimension n = 2 with N = 230 given data points
For this first application, the statistical fluctuations are around two circles. The

number of given data points is N = 230, no scaling of data is performed, but the
normalization defined in Section 2.1 is done. Fig. 1 (left) displays the 230 given
data points for random vector X = (X1, X2) of the dataset represented by ma-
trix [xd] in M2,230, and shows that the given data points are concentrated in the
neighborhood of two circles. The kernel is defined in Section 2.2, the value used
for the smoothing parameter is ε = 100×2π/N = 2.73, parameter ζ defined
in Appendix A is chosen to 1, and the graph of the eigenvalues of the transition
matrix for random vector H is displayed in Fig. 1 (right). This graph shows that
dimension m can be chosen to be 3, for which the value of ered(m) (defined by
Eq. (B.4)) is 6.96× 10−4 (it can thus be considered that a reasonable mean-square
convergence has been reached). Fig. 2 (left) displays the pdf for random variables
X1 and X2 computed with a nonparametric estimation from the data points. For
generating 9, 200 additional samples, the numerical values of the parameters are
f0 = 1.5, ∆r = 0.1179, M0 = 110, and nMC = 40, yielding 4, 400 for the pa-
rameter M defined in Appendix C. The additional samples [x1ar], . . . , [x

nMC
ar ] (with

nMC = 40) are computed by using Section 2.6 and are displayed in Fig. 2 (right),
which shows the 230 given data points and the 9, 200 additional samples gener-
ated using the reduced-order ISDE. It can be seen that the additional samples are
effectively concentrated in subset Sn (as it has be shown in [1], if a direct simula-
tion was used instead of the method proposed, then the 9, 200 additional samples
would not be concentrated in subset Sn, but would be scattered).
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Figure 2: pdf for random variablesX1 (solid line) andX2 (dashed line) obtained by a nonparamet-
ric estimation from data points (left). 230 given data points (blue symbols) and 9, 200 additional
samples (red symbols) generated using the reduced-order ISDE with m = 3 (right).

Figure 3: Graph of the error function Nd 7→ error[Z](Nd, Ng, µ) for Ng = 1 (dashed line) and for
Ng = 2 (solid line), and for µ = m = 3.

The analytical representation of [X] is constructed by using the methodol-
ogy presented in Sections 3 and 4. All the computations are performed with
f0 = 1.5, ∆r = 0.1179, M0 = 110, and nMC = 500. The value of µ is
fixed such that µ = m = 3. Fig. 3 displays the graph of the error function
(Nd, Ng) 7→ error[Z](Nd, Ng, µ) defined by Eq. (50) forNd = 1, . . . , 5, forNg = 1
and 2, and for µ = 3. For Nd = 5, for Ng = 2, and for µ = 3, the number of
vector-valued coefficients is K(Nd, Ng, µ) = 462, and the value of the error func-
tion (defined by Eq. (51)) is errorX(Nd, Ng, µ) = 7.58 × 10−4. The convergence
in probability distribution of the components X1 and X2 of random vector X is
shown in Fig. 4, which displays the pdf of X1 (left figure) and the pdf of X2

(right figure), estimated by using [x1ar], . . . , [x
nMC
ar ] (reference pdf, computed with

nMC = 40) and estimated using [x1PCE,sim], . . . , [xnMC
PCE,sim] (pdf computed with the an-
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Figure 4: For Nd = 5, Ng = 2, and µ = m = 3, graphs of the reference pdf (dashed line) and
of the pdf computed with the analytical representation (solid line) for random variables X1 (left
figure) and X2 (right figure). In each figure, the dashed line and the solid line are superimposed.

Figure 5: 230 given data points (blue symbols) and 9, 200 additional samples (red symbols) gen-
erated using the analytical representation.

alytical representation for nMC = 500). It can be seen that the convergence is
excellent. The 40-first additional samples [x1PCE,sim], . . . , [x40PCE,sim] are displayed in
Fig. 5, which shows the 230 initial data points and the 9, 200 additional samples
generated using the analytical representation. It can be seen that the samples are
effectively concentrated in subset Sn.

5.2. Application 2: Dimension n = 3 with N = 400 given data points
The number of given data points is N = 400, no scaling of data is performed,

but the normalization defined in Section 2.1 is done. Fig. 6 (left) displays the 400
given data points for random vector X = (X1, X2, X3) of the dataset represented
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by matrix [xd] in M3,400, and shows that the given data points are concentrated in
the neighborhood of a helical. The kernel is defined in Section 2.2, the value of
the smoothing parameter that is retained is ε = 100×2π/N = 1.57, parameter ζ
defined in Appendix A is set to 1, and the graph of the eigenvalues of the transi-
tion matrix for random vector H is displayed in Fig. 6 (right). This graph shows
that dimension m can be chosen to be 4 for which the value of ered(m) (defined by
Eq. (B.4)) is 5.48× 10−4 (it can thus be considered that a reasonable mean-square
convergence has been reached). Fig. 7 (left) displays the pdf for random variables

Figure 6: 400 given data points (left). Eigenvalues of the transition matrix for random vector
H(right).

X1, X2, and X3 computed with a nonparametric estimation from the data points.
For generating 8, 000 additional samples, the numerical values of the parameters
are f0 = 1.5, ∆r = 0.1179, M0 = 110, and nMC = 20, yielding 2, 200 for the pa-
rameter M defined in Appendix C. The additional samples [x1ar], . . . , [x

nMC
ar ] (with

nMC = 20) are computed by using Section 2.6 and are displayed in Fig. 7 (right),
which shows the 400 given data points and the 8, 000 additional samples gener-
ated using the reduced-order ISDE. It can be seen that the additional samples are
effectively concentrated in subset Sn (as it has be shown in [1], if a direct simula-
tion was used instead of the method proposed, then the 8, 000 additional samples
would not be concentrated in subset Sn, but would be scattered).

The analytical representation of [X] is constructed using the methodology pre-
sented in Sections 3 and 4. All the computations are performed with f0 = 1.5,
∆r = 0.1197, M0 = 110, and nMC = 2, 000. The value of µ is fixed such
that µ = m = 4. Fig. 8 displays the graph of the error function (Nd, Ng) 7→
error[Z](Nd, Ng, µ) defined by Eq. (50) for Nd = 1, . . . , 4, for Ng = 1, 2, 3, and
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Figure 7: pdf for random variablesX1 (solid line),X2 (dashed line), andX3 (dotted line) obtained
by a nonparametric estimation from data points (left). 400 given data points (blue symbols) and
8, 000 additional samples (red symbols) generated using the reduced-order ISDE with m = 4
(right).

Figure 8: Graph of the error function Nd 7→ error[Z](Nd, Ng, µ) for Ng = 1 (dotted line), Ng = 2
(dashed line), Ng = 3 (solid line), and for µ = m = 4. In each figure, the dashed line and the
solid line are superimposed.

for µ = 4. For Nd = 4, for Ng = 3, and for µ = 4, the number of vector-valued
coefficients is K(Nd, Ng, µ) = 1, 820, the value of the error function (defined by
Eq. (51)) is errorX(Nd, Ng, µ) = 2.54× 10−4, and the convergence in probability
distribution of the components X1, X2, and X3 of random vector X is shown in
Fig. 9, which displays the pdf of X1 (left figure), the pdf of X2 (central figure),
and the pdf of X3 (right figure), estimated using [x1ar], . . . , [x

nMC
ar ] (reference pdf,

computed with nMC = 20) and estimated using [x1PCE,sim], . . . , [xnMC
PCE,sim] (pdf computed

with the analytical representation for nMC = 2, 000). It can be seen that the conver-
gence is good. The 20-first additional samples [x1PCE,sim], . . . , [x20PCE,sim] are displayed
in Fig. 10, which shows the 400 given data points and the 8, 000 additional sam-
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Figure 9: For Nd = 4, Ng = 3, and µ = m = 4, graphs of the reference pdf (dashed line) and
of the pdf computed with the analytical representation (solid line) for random variables X1 (left
figure), X2 (central figure), and X3 (right figure).

Figure 10: 400 given data points (blue symbols) and 8, 000 additional samples (red symbols)
generated using the analytical representation.

ples generated using the analytical representation. It can be seen that the samples
are effectively concentrated in subset Sn.

5.3. Application 3: Dimension n = 35 with N = 13, 056 given data points
The database used corresponds to petro-physics field observations. The dimension
of random vector X is n = 35 and the number of given data points isN = 13, 056.
The scaling defined in Section 2.1 is necessary and has been done. The scaled data
points are then represented by the matrix [xd] in M35,13056. The normalization is
performed using Eq. (1) for which ν = 32. Figure 11 displays the 13, 056 given
data points viewed from coordinates x16 and x28, from coordinates x27 and x28,
and from coordinates x30, x32, and x33. Although only a partial representation of
the data points are shown in these three figures, it can be seen that Sn is certainly
a complex subset of Rn. The kernel is defined in Section 2.2, the value of the

28



Figure 11: 13, 056 given data points viewed from coordinates x16 and x28 (left), viewed from
coordinates x27 and x28 (center), and viewed from coordinates x30, x32, and x33 (right).

Figure 12: Eigenvalues of the transition matrix for random vector H (left). Graph m 7→ ered(m) in
log10 scale (right).

smoothing parameter that is retained is ε = 150, parameter ζ defined in Appendix
A is chosen to 1, and the graph of the eigenvalues of the transition matrix for ran-
dom vector H is displayed in Fig. 12 (left). This figure shows that the valuem = 8
could potentially be used, because it corresponds to a good value for the identifi-
cation of the geometry of the support. However, for m = 8, the value of ered(m)
(defined by Eq. (B.4)) is 0.422 indicating that mean-square convergence is not
reached, which means that the convergence is not yet obtained with respect to the
probability distribution of [H]. Fig. 12 (right) displays the graph of the function
m 7→ ered(m). The mean-square convergence is reasonably reached for m = 50,
for which the value of ered(m) is 9.69×10−4. Consequently, the value m = 50 has
been selected and random matrix [Z] has values in Mν,m. The construction of germ
[Ξ] with values in MNg ,µ is performed with µ = 8� m = 50, a consistent choice
which limits the numerical cost of performing a convergence analysis with respect
to Ng and Nd. As noted and explained below, good convergence with respect to

29



Figure 13: Left figures: pdf for some components of random vector X estimated from the data
points [xd] (dashed lines) and estimated with the simulated samples [x1ar], . . . , [x

nMC
ar ] (solid lines).

Right figures: 13, 056 given data points (blue symbols) and 39, 168 simulated samples (red sym-
bols).

Ng and Nd is achieved for µ = 8. No additional computation are thus performed
for 8 < µ ≤ 50.

In order to limit the volume of data presented in the figures, only nMC = 3 sam-
ples of random matrix [X] with values in M35,13056 are displayed, yielding 39, 168
samples of random vector X. The simulated samples [x1ar], . . . , [x

nMC
ar ] of [X] are
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Figure 14: Graph of the error functionNd 7→ error[Z](Nd, Ng, µ) forNg = 1 (dotted line),Ng = 2
(dashed line), Ng = 3 (thin solid line), and for µ = 8.

computed by using Eq. (20) for which the numerical values of the parameters
(defined in Appendix C for solving the reduced-order ISDE) are ∆r = 0.06142,
M0 = 330, and nMC = 3, yielding M = 990. For the same coordinates as those
introduced in Fig. 11, the left figures in Fig. 13 display the pdf of the considered
components of random vector X estimated using the data points [xd] and estimated
with the simulated samples [x1ar], . . . , [x

nMC
ar ] (with nMC = 3). The right figures in

Fig. 13 display the 13, 056 given data points [xd] and the 39, 168 simulated sam-
ples [x1ar], . . . , [x

nMC
ar ] (with nMC = 3). It can be seen that these simulated samples

are effectively concentrated in subset Sn.

The analytical representation is constructed using the methodology presented in
Section 3. All the computations are performed with f0 = 1.5, ∆r = 0.06142,
M0 = 1, and nMC = 25, 000 (the ergodic property is used for estimating the coef-
ficients of the PCE). Fig. 14 displays the graph of the error function (Nd, Ng) 7→
error[Z](Nd, Ng, µ) defined by Eq. (50) for Nd = 1, . . . , 4, for Ng = 1, . . . , 3, and
for µ = 8 (for the reason given before). For Nd = 4, Ng = 3, and µ = 8, the
number of vector-valued coefficients is K(Nd, Ng, µ) = 20, 475 and the value of
the error function (defined by Eq. (51)) is errorX(Nd, Ng, µ) = 6.6 × 10−3. The
same components X16, X27, X28, X30, X32, and X33 that those used in Fig. (13)
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Figure 15: Left figures: pdf for some components of random vector X estimated without the an-
alytical representation (dashed lines) and estimated with the simulated samples [x1ar], . . . , [x

nMC
ar ]

(solid lines). Right figures: 13, 056 given data points (blue symbols) and 39, 168 simulated sam-
ples (red symbols).

are observed for presenting the results obtained by using the analytical represen-
tation. Figure (15) displays the pdf of X16 and X28 (left top figure), the pdf of
X27 and X28 (left central figure), and the pdf of X30, X32, and X33 (left bottom
figure), estimated using [x1ar], . . . , [x

nMC
ar ] (reference pdf, computed with nMC = 3)

and estimated using [x1PCE,sim], . . . , [xnMC
PCE,sim] (pdf computed with the analytical repre-
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sentation for nMC = 25, 000). It can be seen that the convergence (in measure) of
the analytical representation of X is good (the dashed lines are superimposed to
the solid lines). In Fig. 15, each one of the three right figures displays the 13, 056
given data points [xd] and the 39, 168 samples corresponding to the 3-first sam-
ples [x1PCE,sim], . . . , [x3PCE,sim] generated with the analytical representation. It can be
seen that the samples computed with the analytical representation are effectively
concentrated in subset Sn.

6. Conclusions

Starting with a dataset concentrated around a manifold, a new methodology
has been presented and validated for constructing a probabilistic characterization
of the dataset in the form of a polynomial chaos expansion. Mathematically, this
takes the form of a known affine transformation of a matrix-valued random vari-
able for which its polynomial chaos expansion is constructed and is concentrated
on the manifold that is identified from the dataset. The proposed methodology is
robust and can be used for high dimension and for large given datasets. In the first
article, we have proposed a method for constructing a generator of samples on the
manifold on which the dataset lives. In this paper, we have proposed an analytical
characterization of the dataset on the manifold, which also allows for generating
samples on the manifold, which is easy to implement. In addition, a germ is char-
acterized on the manifold, which allows other processes to be constructed on the
manifold and which also allows for implementing the spectral methods for any
nonlinear transformations defined on the manifold.
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Appendix A. Construction of the diffusion-maps basis

In this appendix, we summarize the construction of the diffusion map-basis
based on [2, 12] and detailed in [1]. Let [b] be the positive-definite diagonal real
matrix in MN such that [b]ij = δij

∑N
j′=1[K]ij′ in which [K]ij′ = kε(η

d,i,ηd,j
′
).

Let [P] be the transition matrix in MN such that [P] = [b]−1 [K] and let [PS] be the
symmetric matrix in MN such that [PS] = [b]1/2 [P] [b]−1/2 = [b]−1/2 [K] [b]−1/2.
Let m be an integer such that 1 < m ≤ N . The eigenvalues of [PS]φα = Λαφ

α
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are positive and such that 1 = Λ1 > Λ2 ≥ . . . ≥ Λm. Let [φ] be the matrix in
MN,m such that [φ]T [φ] = [Im], whose columns are the m orthonormal eigenvec-
tors φ1, . . . ,φm associated with Λ1, . . . ,Λm. The right eigenvectors ψ1, . . . ,ψm

associated with Λ1, . . . ,Λm, which are such that [P]ψα = Λαψ
α, are written as

ψα = [b]−1/2φα ∈ RN , α = 1, . . . ,m , (A.1)

and consequently, the matrix [ψ] = [ψ1 . . .ψm] = [b]−1/2 [φ] ∈ MN,m is such that

[ψ]T [b] [ψ] = [Im] , (A.2)

which defined the normalization of the right eigenvectors of [P]. A ”diffusion-
maps basis” is defined by [g] = [g1 . . . gm] ∈ MN,m (which is an algebraic basis of
RN for m = N ) such that

gα = Λζ
αψ

α ∈ RN , α = 1, . . . ,m , (A.3)

in which ζ is an integer that is chosen for fixing the analysis scale of the local
geometric structure of the dataset. It should be noted that the family {Ψζ}ζ of dif-
fusion maps are defined [2, 12] by the vector Ψζ = (Λζ

1ψ
1, . . . ,Λζ

mψ
m) in order

to construct a diffusion distance, and integer ζ is thus such that the probability of
transition is in ζ steps. However, as it has been explained in [1], we do not use
such a diffusion distance.

Appendix B. Criterion for estimating an optimal value ofm

In this Appendix, we recall the criterion introduced in [1] for estimating a
value of dimension m. Let [xd] ∈ Mn,N be the matrix of the dataset introduced
in Section 2.1 and let [ηd] ∈ Mν,N be the matrix computed with Eq. (2). We then
introduced the matrix [xred(m)] ∈ Mn,N such that (see Eqs. (4) and (6)),

[xred(m)] = [x] + [ϕ] [λ]1/2 [zd] [g]T , [zd] = [ηd] [a] . (B.1)

Let x1
red(m), . . . , xNred(m) be the N vectors in Rn, which constitute the columns of

matrix [xred(m)] ∈ Mn,N . We then introduced the empirical estimates mred(m) ∈
Rn and [cred(m)] ∈ Mn of the mean value and the covariance matrix calculated with
the sample [xred(m)] ∈ Mn,N such that

mred(m) =
1

N

N∑
j=1

xjred(m) , (B.2)
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[cred(m)] =
1

N − 1

N∑
j=1

(xjred(m)−mred(m)) (xjred(m)−mred(m))T . (B.3)

A criterion for the mean-square convergence can then chosen as

ered(m) =
‖[cred(m)]− [c]‖F

‖[c]‖F
. (B.4)

in which [c] is defined by

m =
1

N

N∑
j=1

xd,j , [c] =
1

N − 1

N∑
j=1

(xd,j −m) (xd,j −m)T . (B.5)

Since [xred(N)] = [xd], it can be deduced that ered(m)→ 0 when m goes to N . For
a fixed reasonable value ε0 > 0 of the relative tolerance ered(m), an estimate of m
will consist in looking for the smallest value of m such that ered(m) ≤ ε0.

Appendix C. Algorithm for solving the reduced-order ISDE

The algorithm for solving the reduced-order ISDE defined by Eqs. (7) to (9)
is detailed in [1] and is summarized hereinafter. The Störmer-Verlet scheme is
used. Let M = nMC × M0 be the positive integer in which nMC and M0 have
been introduced in Section 2.6. The reduced-order ISDE is solved on the finite
intervalR = [0 ,M ∆r], in which ∆r is the sampling step of the continuous index
parameter r. The integration scheme is based on the use of the M + 1 sampling
points r`′ such that r`′ = `′∆r for `′ = 0, . . . ,M . The following notations are
introduced: [Z`′ ] = [Z(r`′)], [Y`′ ] = [Y(r`′)], and [W`′ ] = [W(r`′)], for `′ =
0, . . . ,M , with

[Z0] = [Hd] [a] , [Y0] = [N ] [a] , [W0] = [0ν,m] a.s . (C.1)

For `′ = 0, . . . ,M − 1, let

[∆W`′+1] = [∆W`′+1] [a] , (C.2)

be the sequence of random matrices with values in Mν,m, in which [∆W`′+1] =
[W`′+1]− [W′

`]. The increments [∆W1], . . . , [∆WM ] are M independent random
matrices with values in Mν,N . For all k = 1, . . . , ν and for all j = 1, . . . , N , the
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real-valued random variables {[∆W`′+1]kj}kj are independent, Gaussian, second-
order, and centered random variables such that

E{[∆W`′+1]kj[∆W`′+1]k′j′} = ∆r δkk′ δjj′ . (C.3)

For `′ = 0, . . . ,M − 1, the Störmer-Verlet scheme applied to Eqs. (7) and (8)
yields

[Z`′+ 1
2
] = [Z`′ ] +

∆r

2
[Y`′ ] , (C.4)

[Y`′+1] =
1− b
1 + b

[Y`′ ] +
∆r

1 + b
[L`′+ 1

2
] +

√
f0

1 + b
[∆W`′+1] , (C.5)

[Z`′+1] = [Z`′+ 1
2
] +

∆r

2
[Y`′+1] , (C.6)

with the initial condition defined by (9), where b = f0 ∆r /4, and where [L`′+ 1
2
]

is the Mν,m-valued random variable such that

[L`′+ 1
2
] = [L([Z`′+ 1

2
])] = [L([Z`′+ 1

2
] [g]T )] [a] , (C.7)

in which, for all [u] = [u1 . . . uN ] in Mν,N with u`′ = (u`
′
1 , . . . , u

`′
ν ) in Rν , the

entries of matrix [L([u])] in Mν,N are defined by Eqs. (11) to (14).
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