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Abstract

We study the convergence in distribution norms in the Central Limit Theorem for non identical
distributed random variables that is

where S,, = Z?:l Z; with Z; centred independent random variables (with a suitable re-normaliza-
tion for S,,) and G is standard normal. We also consider local developments (Edgeworth expansion).
This kind of results is well understood in the case of smooth test functions f. If one deals with
measurable and bounded test functions (convergence in total variation distance), a well known
theorem due to Prohorov shows that some regularity condition for the law of the random variables
X,, n € N, on hand is needed. Essentially, one needs that the law of X,, is locally lower bounded
by the Lebesgue measure (Doeblin’s condition). This topic is also widely discussed in the literature
(see Battacharaya and Rao [12]). Our main contribution is to discuss convergence in distribution
norms, that is to replace the test function f by some derivative 9% f and to obtain upper bounds
for ,(0%f) in terms of the original function f.
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1 Introduction

We consider a sequence of centred independent random variables Z; € R? k € N with covariance
matrixes o,/ = E(Z}Z]) and we look to

Su(2) = Z. (1.1)
k=1

Our aim is to obtain a Central Limit Theorem as well as Edgeworth developments in this framework.
The basic hypotheses are the following. We assume the normalization condition

> ow =14 (1.2)
k=1

where I; € Mgyxq is the identity matrix. Moreover we assume that for each p € N there exists a
constant Cj, > 1 such that
Cp(2)

np/2 ’

mI?XE(]Zk]p) < (1.3)
Let [|f|l}, » denote the norm in WH© that is the uniform norm of f and of all its derivatives of order
less or equal to k. First, we want to prove that

B(G(S,(2) - [ fahala)da] < 2 17l (1.4)

n

where v4(z) = (2m)" %% exp(—2 |z[?) is the density of the standard normal law. This corresponds

to the Central Limit Theorem (hereafter CLT). Moreover we look for some functions (polynomials)
Y : R? = R such that for N € N and for every f € CISNH)(NH) (RY)

N 1 Cn
E(f(Sa(2)) — /R I@ (X @) ) va@da| < S Wl (L5)
k=0 nz

This is the Edgeworth development of order N. In the case of smooth test functions f (as it is the
case in (L)), this topic has been widely discussed and well understood: such development has been
obtained by Sirazhdinov and Mamatov [2I] in the case of identically distributed random variables
and then by Goétze and Hipp [16] in the non identically distributed case. A complete presentation of
this topic may be found in the book of Battacharaya and Rao [12]. It it worth to mention that the
classical approach used in the above papers is based on Fourier analysis. In particular, the coefficients
1 in the above development are given as inverse Fourier transform of some suitable functions, so
the expression of vy is not completely transparent and its explicit computation requires some effort.



In our paper we use a different approach based on the Lindemberg method for Markov semigroups
(this is inspired from works concerning the parametrix method for Markov semigroups in [9]). This
alternative approach is convenient for the proof of our main result concerning “distribution norms”
(see below). But, even in the case of smooth test functions, this allows to obtain slightly more clear
and precise results: we prove that 1, are linear combination of Hermite polynomials of order less or
equal to k, whose coefficients are explicit and computed starting with the moments of Z; and G;, G;
denoting a Gaussian random variable with the same covariance matrix as Z;. So the computation of
these coefficients is easier. Moreover, our estimates hold for each fixed n (in contrast with the ones in
the above papers, which are just asymptotic).

A second problem is to obtain the estimate ([L3]) for test functions f which are not regular, in particular
to replace || f[| i1y (n+3),00 PY [If]lo - This amounts to estimate the error in total variation distance.
In the case of identically distributed random variables, and for N = 0 (so at the level of the standard
CLT), this problem has been widely studied. First of all, one may prove the convergence in Kolmogorov
distance, that is for f = 1p where D is a rectangle. Many refinements of this type of result has been
obtained by Battacharaya and Rao and they are presented in [I2]. But it turns out that one may
not prove such a result for a general measurable set D without assuming more regularity on the
law of Zi, k € N. Indeed, in his seminal paper [20] Prohorov proved that the convergence in total
variation distance is equivalent to the fact that there exists m such that the law of Z; +--- + Z,, has
an absolutely continuous component. In [3] Bally and Caramellino obtained (LH]) in total variation
distance, for identically distributed random variables, under the hypothesis that the law of Zj, is locally
lower bounded by the Lebesgue measure. We assume this type of hypothesis in this paper also. More
precisely we assume that there exists r,e > 0 and there exists 2z, € R? such that for every measurable
set A C By(z)

P(Z, € A) > e\(A) (1.6)

where A is the Lebesgue measure. This condition is known in the literature as Doeblin’s condition.
Under this hypothesis we are able to obtain (L)) in total variation distance. It is clear that (L6]) is
more restrictive than Prohorov’s condition. However we prove that in the framework of the CLT for

identically distributed random variables, if we have Prohorov’s condition we may produce doubling
2(k+1)m

condition as well, just working with the packages Yz = > "0 "\

which is a stronger version of Prohorov’s theorem.

Let us finally mention another line of research which has been strongly developed in the last years: it
consists in estimating the convergence in the CLT in entropy distance. This starts with the papers of
Barron [I1] and Johnson and Barron [I4]. In these papers the case of identically distributed random
variables is considered, but recently, in [I3] Bobkov, Chistyakov and Gd&tze obtained the estimate in
entropy distance for the case of random variables which are no more identically distributed as well.
We recall that the convergence in entropy distance implies the convergence in total variation distance,
so such results are stronger. However, in order to work in entropy distance one has to assume that
the law of Z, is absolutely continuous with respect to the Lebesgue measure and have finite entropy
and this is more limiting than (L6]). So the hypothesis and the results are slightly different.

A third problem is to obtain the CLT and the Edgeworth development with the test function f
replaced by a derivative 0, f. If the law of S,,(Z) is absolutely continuous with respect to the Lebesgue
measure, this means that we prove the convergence of the density and of its derivatives as well (which
corresponds to the convergence in distribution norms). Unfortunately we fail to obtain such a result
in the general framework: this is moral because we do not assume that the laws of Zp, k = 1,...,n
are absolutely continuous, and then the law of S,,(Z) may have atoms. However we obtain a similar
result, but we have to keep a “small error”. Let us give a precise statement of our result. For a
function f € C’;”(Rd) (m times differentiable with polynomial growth) we define L., (f) and [,,,(f) to

Z;. This allows us to prove Corollary
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be two constants such that

> 10af @) < Lin(f)(1 + |z]) ), (1.7)

0<|ar| <

Our main result is the following: for a fixed m € N, there exist some constants Cny > 1 > ¢y > 0
(depending on r, e from (6] and on C), from (L3))) such that for every multi-index v with |y| = m
and for every f € C*(R?)

N

1
B (2, (50 / 0 f(z 1 q;)n—/ 7)) ra()de)| .

<Cn <Lm(f)€_chn + WLO(JC))-

If the random variables Z;,k € N are identically distributed we succeed to obtain exactly the same
result under the Prohorov’s condition (see Corollary BI12). So this is a strictly stronger version of
Prohorov’s theorem (for m = 0 we get the convergence in total variation). Moreover, such result is
used in [6] in order to give invariance principles concerning the variance of the number of zeros of
trigonometric polynomials.

However we fail to get convergence in distribution norms because L,,(f)e”“¥*™ appears in the upper
bound of the error and L,,(f) depends on the derivatives of f. But we are close to such a result:
notice first that if f,, = f * ¢s, is a regularization by convolution with 6,, = exp(—5X x n) then (L8]

gives
N

B(0,u(52) = [ 0,50 (X mmtale))ute)ie)| < <RIt (19)

q=0

Another way to eliminate L,,(f)e”“¥*™ is to assume that the law of Z;, ¢ = 1,...,m are absolutely
continuous with the derivative of the density belonging to L'. This is done in Proposition we
prove that for every k € N and every multi-index «

sup(1 + [z[*)* |Oaps, (x) — dary(@)] <

Bl

so, under these stronger conditions, we succeed to obtain convergence in distribution norms.

But the most interesting consequence of our result is given in Theorem 4.1} there we give an invariance
principle for the occupation time of a random walk. More precisely we take ¢, = n —30-9) with
p € (0,1) and we prove that, for every p’ < p

n k
| ;E(g(_&m)(; z)) —E( 1 (e (Wodds)| < ﬁ

0 €n

with Wy a Brownian motion (so fol %1(_%,%)(Ws)ds converges to the local time of W). Here the test
function is f, = il(—an,an) and this converges to the Dirac function. This example shows that (L.8])
is an appropriate estimate in order to deal with some singular problems.

The paper is organized as follows. In Section 2] we prove the result for smooth test functions (that
is (LH)) and in Section B we treat the case of measurable test functions. In order to do it we use
some integration by parts technology which has already been used in [3] and which is presented in
Section Bl We mention that a similar approach has been used by Nourdin and Poly [I8], by using
the I'-calculus settled in [10]. The main result in Section Bl is Theorem B.8 In Section M we treat



the two applications mentioned above. Finally we leave for Appendix [A] the explicit calculus of the
coefficients 1), from (LH]) for ¢ = 1,2,3 and in Appendix [Bl we prove a technical result which is used
in our development.

Although many ideas in our paper come from previous works (mainly from Malliavin calculus), at the
end we finish with an approach which is fairly simple and elementary - so we try to give here a presen-
tation which is essentially self contained (even if some cumbersome and straightforward computations
are just sketched).

2 Smooth test functions

2.1 Notation and main result
We fix n € N and we consider n centred and independent random variables Z = (Zj)1<x<, with
Zy = (Z}, ..., Z%) € R We denote by oy, the covariance matrix of Zj that is
o) =E(ZjZ]), 1<k<n.
We look to .
Su(2) =) Z. (2.1)

k=1

Our aim is to compare the law of S,,(Z) with the law of S, (G) where G = (Gj)1<k<n denotes n
centred and independent Gaussian random variables with the same covariance matrices:

E(GLGY) = o},

This is a CLT result (but we stress that it is not asymptotic). And we will obtain an Edgeworth
development as well.
We assume that Zj, has finite moments of any order and more precisely,

. Ci(2)
1 < K] . )
g,ggnE(lel )< (22)
In particular, for i = 2 the inequality ([Z2]) gives
(2
max sup|o,”’| < £ (2.3)
1<k<n ij n

Since the covariance matrix of Gy is equal to that of Zj, the inequality ([22]) holds for the G}’s as
well, so we can resume by writing

sup E(|Zf) vE(Gy[) < FE).

S w7 (2.4)

Without loss of generality, (from Hélder) we can assume that 1 < C;(Z) < C;i41(Z) and more in
general
1< Cp(2) <CU(2), pa=1.

Remark 2.1. Although it is not explicitly written, we are assuming that we fix n and that the laws of
Zy. and Gy, as well as o, are all depending on n. In our applications, we take a sequence Y = {Yj}i



of i.i.d. centred r.v’s taking values in R™ and we consider Zj = ﬁC’kYk, where C}, denotes a d X m
matriz. Therefore, we actually study

1 n
n = — Y
S NG 321 CLYL
Notice that

w7 5 NG

E(|Z|") <
max E(|Z[') <
in which ¢;(Y') denotes a constant depending only on (the law of) the Y} ’s, so that (2.7) actually holds.
We will specialize the results to this case. But in order to relax the notation and the proofs, it is much
more useful to consider a general Zj. instead of ﬁC’kYk.

In order to give the expression of the terms which appear in the Edgeworth development we need to
introduce some notation.

We say that « is a multiindex if o € {1,...,d}* for some k > 1, and we set |a| = k its length. We
allow the case k = 0, giving the void multiindex o = ().

Let a be a multiindex and set k = |a|. For for x € R and f : R? — R, we denote 2% = x4, - - - T,
and 0o f(2) = Op,, -+ Os,, f(), the case k = 0 giving 2% =1 and dyf = f. In the following, we denote
with C¥(R?) the set of the functions f such that d,f exists and is continuous for any a with |o| < k.
The set C;f(Rd), resp. CF(R?), is the subset of C*(RY) such that 0, f has polynomial growth, resp.
is bounded, for any o with |a| < k. C>®(R%), resp. C’Z?O(Rd) and C£°(R?), denotes the intersection of
CH(R?), resp. of CF(R?) and of Cf(R?), for every k.

For f € CF(RY) we denote

£ lkse = 1Floe + D 10afllo

1<]al<k
and for f € C;f(Rd) we define Li(f) and [(f) to be some constants such that
> 10af (@) < Li(f)(1+ 2. (25)

0<|a| <k

Moreover, for a non negative definite matrix ¢ € Myxq we denote by L, the Laplace operator
associated to o, i.e.

d
Ly= Y 0"0.0.,. (2.6)
i,j=1
For r > 1 and [ > 0 we set
Ao(r) =E(Z%) —E(GY) and DY =" Ay(r)da. (2.7)

|| =l
Notice that DY) =0 for I = 0,1,2 and, by [24), for I > 3 and |a| = then

20(Z
|An(r)| < n@SQ )

We construct now the coefficients of our development. Let N be fixed: this is the order of the
development that we will obtain. Given 1 < m < k < N we define

A = {((1,1) oy (s 1) N+2>1; >3, N :=[N/2] > I/ >0,i =1,....m},

Ame = {0, 0); s (s Un)) € A2 D Li+2) 1=k +2m}.
1=1 i=1

r=1,...,n. (2.8)

(2.9)
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Then, for 1 < k < N, we define the differential operator

k m m
ney ¥ > e lSls, o
((l171)7 (lmsl m))EAmk1<T1< <rm<ni= 1 J=1 231
By using (22]) and (2.8]), one easily gets the following estimates:
Cs
Puf@ < Cx q sup af (@), f € G (RY), (2.11)
C
Tef@)] < O x A Ly(F)A+ ), f e G, (212)

where Lgi(f) and I3(f) are given in (23] and C, Cs are positive constants.

We introduce now the Hermite polynomials. We refer to Nualart [I9] for definitions and properties,
here we just give the shortest way to introduce them by means of the integration by parts formula.
Given a multi-index «, the Hermite polynomial H, on R is defined by

E@af(W)) =E(f(W)Ho(W)) Vfe CF(R?) (2.13)

where W is a standard normal random variable in R?. Moreover for a differential operator I' =
Z|a|<k a(a)0y, with a(a) € R, we denote Hr = Z|a‘<k a(a)H, so that

E@f(W)) = E(f(W)Hp(W)). (2.14)
Finally we define

N
x) =1+ Y Hr,(z) with T, defined in (2I0). (2.15)

The main result in this section is the following (recall the constants Lx(f) and Ix(f), f € C’;,’,“(Rd),

defined in (2.5)):

Theorem 2.2. Let N € N be given. Then for every f € C’2N(N+N+3) (R9)

[E(f(Sn(2)) — E(f(W) PN (W))|

< ,HNC,2N(N+2N)( Z2)(1 + Czlﬁ(f)(Z))2N+32(N+2)(l]\7(f)+1)Lﬁ(f) %

1 (2.16)
2(N+3) N

+1

n_2

in which N = [N/2], N = N(2N + N +5), Hy is a positive constant depending on N and W denotes
a standard normal random variable in R,
As a consequence, taking f(z) = x® with |B| = k, one gets

IN(N+2N 1
[E(S(2)%) = E(WPDN (W) < HNCorg - (Z)(1 + Cop(2)2NH320N 0D o L (217)
n 2
2.2 Basic decomposition and proof of the main result
Let N € {0,1,...}. We define
N+2
T f@) =Y 3DV (@), (2.18)



Since Dr(,l) =0 for [ =0, 1,2, the above sum actually begins with [ = 3 and of course this is the basic
fact. Then, with the convention 2%23 =0, we have

N+2

1
T f@) =Y 3DV (@),
=3
We also define
T = iy X[ 0N EEOSE Az Za o
| =N 43 (2.19)

T4, fla) = Tzlvff(a:)—Tzlvff(w)-

For a matrix o € M x4 we recall the Laplace operator L, associated to o in (see (2.0])) and we define

N
W o f (2 Z lll Ll ), with N =[N/2], (2.20)
N+1 _
hy o f(z) = %/{) SNE(LY T f(z + oV/2\/s W))ds. (2.21)

In (221, W stands for a standard Gaussian random variable. Then we define

Ux,f(@) =E(hy o, fle+Gr)) and Uy, f(z) = hy,, f(z). (2.22)

We now put our problem in a semigroup framework. For a sequence Xy, k > 1, of independent r.v.’s,
for 1 < k < p we define

P¥ f(x) = f and for p > k > 1 then P f(x) ( (m+ZX>> (2.23)

We use PkZm and P,fp. By using independence, we have the semigroup and the commutative property:

pY, =P P =PXPY k<r<p. (2.24)
Moreover, for m = 1,..., N we denote
mo . om
QN Tlyem Z H sz;,m | Tzqvj,rj and
R o (2.25)
Rg\rfnlin = Z Pm+1 nan 141, Pr1+1 ro krlQer, o

k<ri<--<rm<n

Notice that in the first sum above the conditions ¢;, ¢} € {0,1} and g1+ -+ ¢m+¢} +---+ ¢, > 0 say
that at least one of ¢;,q},7 = 1,...,m is equal to one. We notice that the operators T]{,ﬂ and U]{,7 o

represent “remainders” and they are supposed to give small quantities of order n~ 2+ S the fact

that at least one g; or ¢/ is non null means that the product ([, Un 10| TH ».) has at least one
)

term which is a remainder (so is small), and consequently RE\Tk ,, is a remainder also.



Finally we define

N+1
(N+1) o 0 1
QN NAT 7TN+1 - H (TNﬂ“i + TNJ“Z‘) and
(N4+1) =1 ( (2.26)
N+1) G N+1)
RNJML - Z PTN+1+1 ”PTN+1 TN41 PT1+1 T2 k )1 QN 1w TN

k§r1<~~-<r1\z+1§n
We are now able to give our first result:

Proposition 2.3. Let N > 1 and let T](\),’T, h?\,m, R%n,z o m=1...,N+1, be given through (ZI3),
(2.20), (223), (2.20). Then for every 1 <k <n+1 and f € C’IJ,V(2N+N+3) (RY) one has

n m N+1
Pt =Pof+Y Y Pea(T17%) (H Moo )T+ D RYLS (227)
m=1k<ri<--<rm<n i=1 m=1

Proof. Step 1 (Lindeberg method) We use the Lindeberg method in terms of semigroups: for
1<k<n+1

n
Z G _ Z G
Pk,n—i—l - Pk,n-i—l - Z Pr—l—l,n—i-l( ror+1 Pr r—i—l)Pk,r'

Then we define
App = Lickpr<n (B1 ) — Py ) Py (2.28)

and the above relation reads
PkZ,n+1 Pk mt1 T Z 11 Ak, 11 (2.29)

We will write (2.29]) as a discrete time Volterra type equation (this is inspired from the approach to
the parametrix method given in [J]: see equation (3.1) there). For a family of operators Fj, ,, k < p
we define AF by

p—1
(AF)k,p = Z Fr+1,pAk,7"+1
r=k
and we write (2.29) in functional form:
PZ = pY 4+ APZ. (2.30)
By iteration,
PZ = PY 4 APY ... 4 ANPY 4 ANFIpZ, (2.31)

By the commutative property in (2.24]), straightforward computations give

m pG G G Z G
(A P%)g p—1k<p mz rm+1,p— IPm 1+1, rm”’Pr1+1,r2Pk,r1(Pp—1,p_Pp—l,p)x

k<ri<--<rm<p—2

X(Pgnﬂ“m-i-l - P%mm-i-l)(PTgn—l,T’mfl-i-l - Pgnflﬂnmfl‘i‘l) e (Pgﬂ"l'f‘l - P7“C1;,T’1+1)'
(2.32)
Step 2 (Taylor formula) The drawback of ([Z31) is that A depends on PZ also, see (Z28). So, we

use now the Taylor’s formula in order to eliminate this dependance. We use (2.4]) and we consider a



Taylor approximation at the level of an error of order n="3". We use the following expression for the
Taylor’s formula: for f € C’;,’O(Rd),

N+2

flz+y) = flz) + Z > Ouf(x Z / MV, (2 + Ay)dA

Ia\—p |o|=N+3
Then we have, with DY defined in 20,

(Prr—i-l Prr—i—l)f( ) E(f(x+Zr)) _E(f($+G7‘))
N+2

—ZZ,D 1> / NV E(0af (0 + A2:)Z2) ~ B(0af (v + AGGE)]dA

| I=N+3
= TN,rf(l’) + TN,rf(l’)-

By using the independence property, one can apply commutativity and by using (232) we have

m
§ : G G | | 0 1
(AmF)k,r—i-l = 1k§7’+1—m Frm—l—l r+1P Pm—1+1,rm = Prl—i-l,rng,rl (TN,rj +TN,T’J')' (233)
k<ri<-<rm<r 7j=1

Notice that the operator in ([Z33) acts on f € C™N+3) In particular,

m
m pG _ G G G 0 1
(A P )k,n-l—l = 1k§n+1—m Z Prm—i—l n+1P Tm—1+1rm = Prl—l—l,rsz,rl H(TN,rj + TN,rj)

E<ri<--<rm<n J=1
(2.34)
Step 3 (Backward Taylor formula) Since

Pr(j’n—l—l n+1P Pm—1+1,rm = Prcl;—l—l,rzplgrlf(x) = E(f(l’ + Z Gk - ZGT’J‘>)7
i=k j=1

the chain P i Pr(_f 10 P,frl contains all the steps, except for the steps corresponding to r;,7 =
1,...,m (remark that for each i, Pg’ri 41 is replaced with TJ(\)/,n + T]{,’n). In order to “insert” such steps

we use the backward Taylor formula (B.3]) up to order N = [N/2] (see next Appendix D). So, we take
Wy o, and hy , as in (2.20) and 20 respectively and we have

ro—1

PSPl @) = E(f(z+ 2 Gi- Gr,))

B(1, 1 (o + Z D) E( 1 (243 G- 6))
i=k
= PT(l;—I—l,T‘QPk,Tl (P 71 T1+1hN Orq + hN 10 )f(f]f)
Pr1+1 r2P1§r1(UN,r1 + UN,Tl)f(x)a

Uy, and Uy . being given in [22). We use this formula in @34) for every i = 1,2,...,m and we
get

m

m
(AmPG)k,n-‘rl = Z Prm—i-l n+1" Prcl;—l—l,rngG,rl < H(U]%,TZ +U11\7 T > (H TN T +TN7” > (235)
7j=1

k<ri<-<rm<n i=1

10



Notice that the above operator acts on Cm(2N+N+5) (Rd) Our aim now is to isolate the principal term,

that is the sum of the terms where only UNJZ_ and TNW appear. So we write

m m
(AmPG)km-l-l - Z Prgl—i-l,n-‘rl e Pg—i-l,rngG,rl (H U]%,m) (H T](\)f,rj)
i=1

k<ri<--<rm<n =1

G G G Him)
T Z Pt PT1+17T2P/€,7‘1QN,le,Tm

k<ri<--<rm<n

with Q%ngl .ry, defined in ([2.25). The second term is just R%nlz ,, in (Z25). In order to compute the
first one we notice that for every ' < r < r” we have

G
P, ,PS PS . =PS,

T

so that

m
G G G 0
Prm—l—l,n—i-l e Prl—l—l,rng,rl (H UN,TZ‘ Pk n+1 H hN O'”
=1

Then, for m=1,..., N

AP = Y K m(nhw V(1178 + RS
i=1

k<ri<--<rm<n

We treat now AN+ PZ. Using ([Z33) we get

N
N+1pZ _ Z Z G 0 1 (N+1)
(A P )k,n—i—l - PT’N+1+1,n+lP N+LrN41” Prl—i-l TQPk,rl H(TN,m + TN,ri) RNk no
k<ri<..<rn41<n =1

which acts on C’,],V N+ 0

We give now some useful representations of the remainders.
Lemma 2.4. Let m € {1,... N +1} andry < --- < rp, <n be fized. Set Ny, := m(2N + N +5) for

m < N and N, = (N + 1)(N + 3) otherwise. Then, the operators Qg(,'?r)l’m’rm defined in (ZZ3) for
m=1,...,N and in (Z28) for m = N + 1, can be written as

QNn,, fla)y=">" ap ()6, Oaf (@) (2.36)

3§|a|§Nm

™m

where a,(a) € R are suitable coefficients with the property

o oy (z)m
|ag " (a)] < Niom (2.37)
n- 2
and 07 . CI‘,X’(]Rd) — CI‘,’O(Rd) is an operator which verifies

102, ..o f ()] < (2N DFLCYE (2) (A + Coty, (1(2))) ™ L (F)(1 + )V D (2.38)

C > 0 being a suitable constant. Moreover, 0% can be represented as

15-5T'm

0 e f(T) = /(Rd)2 flx+yr+ -+ vom)ir, (Y- dyom) (2.39)

where py, s a finite signed measure.

oo T'm
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Proof. In a first step we construct the measures ,url and the operators 6 .~ and in a second

step we prove that the corresponding coefficients ay, i ’“”( ) verify (Z37). We start by representing
T]%m defined in (2I8]). Set

VO (dy) = n2 An(r)do(dy), o] =1> 3.

Notice that if || =1 > 3 then ns |A(r)] <2C1(Z). So, we have

N+2

TR Z Do Adﬁaf(w+y)V?’“(dy) with

=3 n: la|=1 (2.40)

/Rd(l +y) N (dy) < 2C1(2), ol =1 <N +2.

Hereafter v denotes a non negative power. Concerning 7' J{,ﬂn in [219), for |a| = N + 3 set v1%(dy) =

n 2 (1= VN2 [unz, (dy) — pag, (dy)] dA, that is
1
A =0T [ (1= NP [E(Z0Lazea) — E(GE1agea)ldN, |l = N +3,
0

for every Borel set A. Then we have

1 1,
771%(1”3) E (N ) / Ouf(x +y)v,*(dy) with
la|=N+3 (2.41)

o 2v+1
L+ 1) € 5 Ol (20 + o ()2, ol = N +3,

Ty, f(x) =

We represent now the operator UR,J flx) = E(h?m o f (@ + Gy)) with h?m o, f defined in (220). Notice

that
N
Z Z o with 7 () = 2ll' Haa% DOk g = 1.

=0 |a|=21

So, by denoting pgr the law of G,., we have

N
Uk ) = Bl S0+ G) =32 32 (o (@) [ Ouf (ot el (dy) with
1=0 [a|=2 R (2.42)
Ca(2)!

Nlns

len" ()] < and / (14 ly1)lpg, |(dy) < 27(1 + C4(2)).
Rd

We now obtain a similar representation for h]l\C o f(z) defined in (Z2I]). Set

po(dy) = < /0 1 sﬁ%uz\/gw(y)dS) dy,

in which ¢,1/2 5y, denotes the density of a centred Gaussian r.v. with covariance matrix so. Then
we write

1 , (Vo
hyvofx)= > () /d Oof(x +y)ps(dy) with b7 (a) = ONTINT [T oo v

la|=2(N+1) R k=1

12



Since N +1 > (N +1)/2, we have

Uk, f(@) = b fo) = 3 b07(a / O f ( + y)ob, (dy) with
lol=2(N+1) (2.43)

1 N+1

_ 27
o N+1, ——= ¥ .1 <
b)) < S o™ T and [ (o ) <

Using (Z.40), (Z41), (2.42) and (2.43])) we obtain (23] with the measure p . = from ([2.39) con-

structed in the following way:

(1+C5(2)).

/Rdx2 f(yla cee 7ym7§17- o @m)ﬂfl,,,,,rm(dyla cee 7dym7dg17 cee 7dgm)

o BB ) ) )0 () ()

where 7); is one of the measures I/ﬁi’ﬁ , g =0,1, and 7; is one of the measures pgrz_, q=0,1.

Let us check that the coefficients an' "™ (a) which will appear in (236 verify the bounds in (Z.37).
Take first m € {1,..., N}. Then len) m 1s the sum of ([[", UX}/””)(H?:l T;i,j,rj) where ¢;,q} € {0,1}
and at least one of them is equal to one. And ay'""™ () is the product of coefficients which appear
in the representation of U% J\;,n- and Tgfﬁ,. Recall that the coefficients of TJ(\]T,rj are all bounded by
Cn~3/% and the coefficients of T]{,’Tj are bounded by Cn~2W+3) Moreover the coefficients of U]Q,’n_
are bounded by CC2W (Z) and the coefficients of U le,n- are bounded by CCQN *Hz )n_(NH). Therefore,

(I, Uﬁmi)(]—[;ﬂ:l TX{TJ_) is upper bounded by

( C ))Zl’ilqi y ( C >ZE’;1(1—%) y <CCN+1( ))Zi’élqé y (Coy(z))ﬂil(l—qé)

ns(N+3) n32 nN+1
1 \XZia O™ 1\ Xt 4 N1 m
< -
= <ngw> * <nﬁ+1> (0 (2))
(cof+z)m - (cof i z)m (CCNH( )™
AT Gt (NA) TR, g T n%(Zzzlqﬁlelq;)ﬁ? -

We finally prove (238). We have

05 0ul @< [ o, f!<w+zyz+zy])!nh A1) =+ [l (@) 712 (A1) -~ 7 (i)

=1
< Lo, (D14 O (T [0t Ohaltan)) (TT [+ 1)
i=1 /R i=1 /R

< L, (A1 + ) D (20n12(2)) v (@ DHCY R (2)(1+ Cory, (1(2))

% (21Nm (f)(l + Cle(f) (Z))>m
< (DO (D)1 oty (1 ()" L (£ (1 [ e D)

because Cny2(Z) < Conys)(Z) 2('9) < C2<N+3)(Z)%. So the proof concerning QS\T,'?T)M“’T , m =

(N+1)

., N, is completed. The proof for Q Ny is clearly the same. []

HTN+1

We give now the representation of the ° prmc1pal term”:

13



Lemma 2.5. Let the set-up of Proposition[2.3 hold. Then,

i\f: Z (ﬁTJgf,m> ( H W o, ) = i\f: T+ Q% (2.44)
m=1

m=11<rm<.<rm<n i=1
with Ty, defined in (210) and

(COxa@ICU)N=

+1

)C:

QNn = > (@) with ()] <

N+1<|a|<N(N+2N)

Proof. Let A,, and A,,; be the sets in ([Z9). Notice that, for fixed m, the A, ;’s are disjoint
as k varies. Suppose that m € {1,..,N}. Then Ap,, = 0 if & ¢ {m,...,N(N + 2N)} so that

A, = U2N(N+2)Am,k and consequently
NN+2N NN+2N
U%:lAm: 1U ( )A —U ( ) 7k7:7,=1 Am7k.
It follows that
N m
Z Z (HTZ%7TZ><HhNO'T >
m=11<r <..<rm<n i=1
N+2 v,
Y Y Y Y (IIhew) (IS
= i TR
m=11y,. Jm—3l1, S,=01<rm <..<rm<n  i=1 j=1 j*
N(N+2N) m m I
1 _ (—1)%
SV D > (o) (52
k=1 m= 1(l171)7 7(lm7m))€Amk1<T1< <Tm<n i=1 v .]:1 ! .]
_ 0
— Zrk“‘QN,n
k=1
with
N(N+2N) m o m (- 1)1’
QRon= > Z > > (I (IT5 ST “Ls,).
k=N+1 m=1 (13 1),....(Lmlly)) €A g 171 <eoorm<n =1 © j=1 27

which is a differential operator of the form (245]). Moreover, the coefficients ¢, («) can be bounded as
follows:

en(@)] < o™ XH(”CNH D) T (5 E ) < ORI

3 o 26 TR
™ x (CCN+1(Z)Co(Z))™ _ (CCN41(Z)Co(Z))N(N+2N)
R net - n

and the estimate in (Z45]) holds as well. [J

We are now ready for the

14



Proof of Theorem We denote PX = Pffnﬂ, with X = Z or X = G, so that

E(f(Sn(Z2)) ~ E(f(W)@n(W)) = PZ(0) - P (1d + Zrk)
We have proved that
N
Bl f(x) = Pf (Id + Zrk)f(x) + I f(z) + Lf(z) + L f(z) (2.46)
k=1
with
Lf(z) = PyQynf(),
IQf(‘T) = Z PTN+1+1 nPrCI;V—i-l TN41 Prl-l—l T’Q'Pk rng\]/'V:} ,rN+1f(‘T)
1<ri<..<ry+1<n (247)

N
Lf(x) = Y. > PS L PS PG, PELQYY L (),

m=11<r<..<rm<n

so it is sufficient to study the remaining terms I;, Is and I3 above.
Consider first m € {1,..., N}. We use Lemma [24] (recall N,, given therein) and in particular (2.30):

G G
Pm+1 nPrm 1+1,rm ‘PT1+1 72 17‘1QN7“1, T f
_ T1yeenyT G G o
= E : anp m(o‘)Prm—i-l,nPrmﬂ—i-l,rm Pr1+1 b1 T19T17 rmOaf.
3<[a|<Nm

Notice that if [g(x)| < L(1 4 |z|)" then

PPt B(E(1+ 3 Gulgtnrnn]))

k=1

<201+ Jo)B( (1 +\§:Gk1k¢{m--mm}(>l> < L) (14 Hinlké{m--m}Hly'
k=1 k=1

| G
Tm+1n Tm—1+1,7m"

Since the Gilpg(r,,..r,,}'s are centred and independent, we can use the Burkholder inequality (see
next (B.26]), which gives

HZleki{m ’rm}H < <Z“Gk1k¢{rl, mm}”l)l/z . <"Zn: Cf/l(Z)>1/2 < ()

n
k=1

and by inserting, we get

PG, PO g@)] < LA+ [2)' (14 C(2)) < 2/ + Cu(2))L(1 + o)),

’ Tm+17l T’m 1+1 T™m "

We use now this inequality with g =07 . 0daf: by applying ([2.38) we get

G l
’ rm+1,n rm 1+1,rm Prl—i-l T2P1 rlQN 1y (‘T)’ S ICN,m(f)(l + "T‘) Nm(f)

with
Knam(f) = 28m D1+ O ((2)) (2N DL (2)(1+ Cony, (1)(2))2) " Livi ()

15



Moreover, using (2.37)

G G
| rm+1n Tm—1+1,7m" 'Pr1+1 T2 1T’1QN7*1, 77"7nf($)|

< Knm(F)A A+ )@ 3™ arere ()|
0<|e|<N+1
_ m 1
< HN’CN,m(f)(l+|x|)lNM(f)(CCéV+1(Z)) x %(N+3m)

Hy denoting a constant depending on N only. Since the set {1 < r; < ... < 7, < n} has less than
n'™ elements, we get

~ 1
[I3f(2)] < N x 0™ x UKy (f) (L + |z]) ¥ D (€O (2))™ ns(N+3m)
1
In, (f N+1
< NHNKN ()L A+ ) ¥ D (€ (2))™ x LIV

The estimate for Io(f) is analogous. Concerning I f, we use (2.45]) in order to obtain

[ f(2)] < > len(@)] | Py 00 f (2)]

N+1<|a|<N(N+2N)

- . Iy(nsom ()
= > [en ()] Ly (o) (F) (1 + |$|)lN(N+2N)(f)E<<1 + ‘ > GkD VR )
N+1<|a|<N(N+2N) 1
CCN11(Z)Co(Z))NIV+2N) B -
: ( = ;1\72;(1 ) LN(N+2N)(f)(1 + ‘xDlN(NHN)(f) X 2ZN(N+2N)(f)(1 + Cle(NHN)(f)(Z))a

in which we have again used the Burkholder inequality ([B.26). By using C,(Z) < Cl/ 7U(2) < Cpy(2),
q>1, we get

1

N(N+2N — _
Z 1f(2)] < HNC2 N(+3-i)-2 )( Z)(1 + C'glﬁ(f)(Z))2N+32(N+2)(1N(f)+l)L]\7(f)(1 + |x|)lN(f) X~
n_2

with N = N(2N + N + 5), and statement (ZI8) follows. Concerning ZI7), it suffices to notice that
for f(x) = #” with |8] =k then Lg(f) =1 and I5(f) = k. O

3 General test functions

3.1 Differential calculus based on a splitting method

In this section we use the variational calculus settled in [2, [, [7, 8] in order to treat general test
functions. Let us give the definitions and the notation.

We say that the law of the random variable Y € R? is locally lower bounded by the Lebesgue measure
if there exists yy € R? and e, > 0 such that for every non negative and measurable function
f:RE SRy

E(f(Y) 2 e[ fly—yv)lpon Y —yv)dy. (3.1)
We denote by L(r,¢) the class of the random variables which verify (3.). Given r > 0 we consider
the functions a,, 1, : R — R, defined by

1
=1 = et Lr<p<arye” 1. (3.2)

s
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If Y € £(2r,e) then
E(f(Y)) > ¢ / £y — w)e(ly — v P)dy

The advantage of 1, (|y — yy|*) is that it is a smooth function (which replaces the indicator function
of the ball) and (it is easy to check) that for each I € N,p > 1 there exists a universal constant Cj , > 1
such that

G
YD)l (P < 32 (33)
where a!” denotes the derivative of order I of a,. Moreover one can check (see [3]) that if Y € £(2r,¢)
then it admits the following decomposition (the equality is understood as identity of laws):

Y=xU+(1-x)V (3.4)
where x, U, V are independent random variables with the following laws:
P(x=1)=em(r) and P(x=0)=1—em(r),
P(U € dy) = sy = ) )y o)

P(V € dy) = (P(Z € dy) — etr(ly — yv|*)dy)

o
1 —em(r)
with

- / 4elly — gy |)dy. (3.6)

We are now able to present our calculus. We fix r,e > 0 and we consider a sequence of independent
random variables Y, € £(2r,¢),k € N. Then, using the procedure described above we write

Yi = xeUk + (1 — X&) Vi, (3.7)

the law of xk, Ur and Vj being given in (B35]). We assume that xx, Uk, Vi, k € N, are independent.
We define G = o(xx, Vi, k € N). A random variable F' = f(w,Uy,...,U,) is called a simple functional
if fis G x B(R™™") measurable and for each w, f(w,-) € C°(R¥*™). We denote S the space of the
simple functionals. Moreover we define the differential operator D : S — Iy := I5(R%) by Dy b =
Xk(‘)uif(w, Ui, ...,U,). Then the Malliavin covariance matrix of F' € (F*, ..., F™) € 8™ is defined as

co d

ol = (DF',DF7), = > Dy F' x Doy F?, i3 =1,...,m. (3.8)
k=1 p=1

If o is invertible we denote yp = a}l.

Moreover, we define the iterated derivatives D™ : S — l®m by ngl)“) i) = Dy in) Dt ,im)
and on S we consider the norms

= |FP? +Z\DmF\l®m—1F\ +Z Z Z | D i) -Dtom i) F
m=1kqi,...km=111,...,im=1
and

1], = (). (3.9)
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We introduce now the Ornstein-Uhlenbeck operator L. We denote 0 ; = 0;Inpy, (Uy) = 2(Uy —
Uv)' LU —yy 2<200r(|Uk — yv[?), pu,, being the density of Uy, and we define

oo d
= (DgiyDieiyF + Doy F % Ors). (3.10)
k=1 i=1

Using elementary integration by parts on R? one easily proves the following duality formula: for
FGesS
E((DF, DG),,) = E(FLG) = E(GLF). (3.11)

Finally, for ¢ > 2, we define

IEWgp = 1Fllqp + ILE] (3.12)

q—2p-

We recall now the basic computational rules and the integration by parts formulae. For ¢ € C'(R%)
and F' = (F!, ..., F) € S we have

d
F) = Z d;0(F)DFY, (3.13)

and for G € S
L(FG) = FLG + GLF — 2(DF, DG) . (3.14)

The formula (BI3]) is just the chain rule in the standard differential calculus and BI4]) is obtained
using duality. Let H € S. We use the duality relation and ([B.II]) we obtain

E(HFLG) = E((D(HF), DG),)) = E(H (DF, DG),)) + E(F (DH, DG),,).
A similar formula holds with GLF instead of FLG. We sum them and we obtain

E(H(FLG +GLF)) = 2E(H (DF,DG),)+E((DH,D(FG)),,)
= 2E(H (DF,DG),) + E(HL(FG)).
We give now the integration by parts formula (this is a localized version of the standard integration
by parts formula from Malliavin calculus).

Theorem 3.1. Let n > 0 be fived and let ¥, € C*(R) be such that 1y,/s ) < ¥y < 1 oy and for

every k € N one has H\I/7(7k)|]Oo < Cn7*. Let F € 8% and G € S. For every ¢ € C3°(RY), > 0 and
i=1,..d
E(0;0(F)G¥,(detor)) = E(¢(F)H;(F,GYy(det op))) (3.15)

with

M&

H;(F,GU,(det oF)) p(detor))y LFI + (D(GW, (det o)y ), DFY), . (3.16)

]:1
Let m e Nym > 2 and a = (aq, ..., ) € {1,...,d}™. Then
E(00¢(F)GY,(det op)) = E(¢p(F)Ho(F, GV, (det or))) (3.17)
with Ho(F, GV, (det or)) defined by reccurence

H(al,...,am) (F, G\I/n(det O’F)) = Ham (F, H(al,...,amfl) (F, G\I’n(det O’F)))

18



Proof. We give here only a sketch of the proof, a detailed one can be found e.g. in [4] and [7]. Using
the chain rule D¢(F) = Vo(F)DF so that

(DO(F), DF),, = Vo(F) (DF, DF),, = V$(F)or

It follows that, on the set det op > 0,we have V(F) = yp (D@(F'), DF),, . Then, by using (3.15]) we
get

E(GU,(detop)Vo(F)) = E(GV,(detor)yr (DH(F), DF),)
= E(¢(F)GV,(det op)yr LF) — E(o(F){(GVy(det op)yr), DF),-

and (3.15)-(3.16]) hold. By iteration one obtains the higher order integration by parts formulae. [
We give now useful estimates for the weights which appear in ([BI7]):

Lemma 3.2. Let m,q € N, F € 8 and G € S. There exists a universal constant C > 1 (depending
on d,m,q only) such that for every multi index o with |o| = q one has

m 2dg(m 3)
| Ho(F, GUy (det o)), < Cp~ 1m0 D (1 || P[0T 4 | LEPE ) |Gy (3.18)
In particular we have
2dq(q+3
|Ha(F, G, (det ap))l|, < Cor P (v [F2902) VGl (3.19)

Proof. A rather long but straightforward computation (see [7] or [4] Theorem 3.4, more precise details
are given in [5]) gives
|Ho(F, G, (det or))|,,

< OOV (detop) YO (14 [P0 LR ) |G, (detor)

m+q+1 m-+q

Notice that

|GV, (det op)|

IN

|Gliq [Wn(det or)]

m+q m+q m+q
C C
é nm+q |G|m+q |det O-F|m+q —_ nm+q |G|m+q |F|m+q

Moreover, on the set ¥, (det o) # 0 we have det op > /2. So

2dq(m+q+3)
|Ho(F,GU,(det op))|,, < Cp~ @Dt (q | p310 e L pppe, iG],

so ([BI8)) is proved. Taking now m = 0 and using Schwartz inequality we obtain (3.19). OJ

We go now on and we give the regularization lemma. We recall that a super kernel ¢ : RY — R is a
function which belongs to the Schwartz space S (infinitely differentiable functions which decrease in
a polynomial way to infinity), [ ¢(z)dz = 1, and such that for every multi indexes a and 3, one has

/ Poy)dy = 0, o> 1, (3.20)

/Iylmlaw(y)ldy < oo (3.21)

As usual, for |a| = m then y® = [["; ya,. Since super kernels play a crucial role in our approach we
give here the construction of such an object (we follow [I7] Section 3, Remark 1). We do it in dimension
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d =1 and then we take tensor products. So, if d = 1 we take 1) € S which is symmetric and equal to
one in a neighborhood of zero and we define ¢ = F 11, the inverse of the Fourier transform of 1. Since
F~! sends S into S the property ([3.21)) is verified. And we also have 0 = ¢(m =i [2™¢(x

o (320 holds as well. We finally normalize in order to obtain [ ¢ = 1.
We fix a super kernel ¢. For ¢ € (0,1) and for a function f we define

Ly
05(y) = 576(%) and fs = fx s,
the symbol * denoting convolution. For f € C¥(R?), we recall the constants Li(f) and l;(f) in 3.

Lemma 3.3. Let F € S% and q,m € N. There exists a constant C' > 1, depending on d, m and q only,
such that for every [ € C’g+m(Rd), every multi index v with |y| = m and every n,d > 0

[E(Wy(det o7))0y f(z + F)) — E(¥y(det 07))0y f5(x + F))|

< Cauyralol) LIS} Corm(F) s (1 -+ a0 (322
with
o= [16I 1+ [Pdz and C(F) = 1V IFIZEEED o). (3.23)
As a consequence, we have
B0,/ @+ F)) — B0, fslx + F)) -

(@] 04
< CIFIG (i L )P 2(det o < 7) + %mem(m) (1+ fa]) ),

Proof A. Using Taylor expansion of order ¢

0, f(x) — 0y fi(ar) = / (0 () — 05 1 ()5 (2 — y)dy
~ [ Latewésta = ndv+ [ Byylwisste = vy
with

Ly q(z,y) Z Zaaf — )",

=1 |a|=i
R, (z, ,Z/aafxﬂ( —2))(z —y)*(1 — N\)%dA.
lor|=q
Using [B20) we obtain [ I(z,y)ds(z — )dy = 0 and by a change of variable we get

Ry g(z,y)ps(x — y)dy = Z d2¢5(2)000y f (2 + A2)2%(1 — N)4d.
/ s

So, we have

E(¥,(detop)0y f(x + F)) — E(¥,(det o )0, f5(x + F))

= IE(/ U, (det o) Ry q(x + F,y)ps(x + F — y)dy)

-5 Ly / /dm W, (det 07)0ads f(z + F + A2))2*(1 — A)1dA.

la|=q
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Using integration by parts formula [B1I7) (with G = 1)
|E(V,(det 07)0a0, f(x + F + A\z))|
= [E(f(F 4 X2)H y o) (F, ¥ (detaF))|
< Lo(/)E((L+ o] + |2] + |F))° Y [He o) (F, Uy (det o)) )
2
< C(1+ oD+ )0 Lo(f) [ Fllget ) (B Hey ) (F, @ (det o) )12,

and the upper bound from BI9) (with p = 2) we get

2y1/2 a 2d(g+m)(g+m+3)
|H (0 (detUF))‘ )2 < W(lv 111 +;1n+1 4g(q+m)( +m+3))

And since [ dz|¢s(2)2%| (1 + |2])00) <67 [[p(2)2%] (1 + |2]))dz we conclude that

[E(Wy(det or))0y f(F)) — E(Wy(det or))0y f5(F))]

1 o1
< O+ Dy Lo IFISG) Coom(F) e, ety = [ 16661 0+ a0

and ([3.22]) holds. Concerning ([B3.24]), we write

E((1 — W, (det o7)))d, f(z + F)) — E((1 - ¥, (det o7)))d, f5(x + F))|
2(Lo(D, f5) V Lo(dy )E((L — U, (det o)) (1 + [a] + [F])o@Fs)Vio(@:0))

< 2(Lo(0f5) V Lo(031)(1 + |a]) 0@ I Vi@ Dy || VO pL2 (det oo < ).

IN

So the proof of [3.24]) will be completed as soon as we check that lo(0y fs5) < I (f) and Lo(0, fs) <
L (f) [ (1 + [y |o(y)] dy:

0, il ' [ 2.5 - vyost 1 ) [ 1o =) sty dy

< L (F)(1 + [z / (1 + ) |6(y)] dy.

O

3.2 CLT and Edgeworth’s development

In this section we take F' = S,(Z) = > }_; Zi defined in 2I)). It is convenient for us to write
or = CrCy with C, € Mgyq symmetric and Z, = CyYy. So S, (Z) = Y ;4 CrYs. We assume that
Yi € L(2r,e) so we have the decomposition ([B.7). Consequently

n n
F=58,(2)=) CiYi=Y CrlalUs+ (1 —xu)V).
k=1 k=1
We will use Lemma B3] so we estimate the quantities which appear in the right hand side of (3.22]).
Lemma 3.4. For every k € N and p > 1 there exists a constant C depending on k,p only, such that

Cp(Z
sup (2l < € x . (5.29
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Proof. We will use the following easy consequence of Burkholder’s inequality for discrete martingales:
if M,, =53 A with Ag, k= 1,...,n independent centred random variables, then

il < (1)) <o a2 s o(Sia) . eas)
k=1 k=1

Using this inequality and ([2.4) we obtain |5, (Z)]|, < C x C,(Z). We look now to the Sobolev norms.
It is easy to see that, S, (Z)* denoting the ith component of S,(Z),

DySn(2)' = xxCp? and  DWS,(Z) =0 for 1 > 2.
Since Y p_; lok| < Co(Z) it follows that
150(2)|ly.p < 2Cp(Z) Yk €N,p>2.

Moreover

LSn(Z) - = ZLZk = - ZXkaAr(Uk)a Ar(Uk) - 1r<\Uk—yy\2<2r X 20’;“(’Uk - yYP)(Uk - yY)'
k=1 k=1

We prove that

C
ILSn( D)k p < %

ol Cp(Z), (3.27)

C depending on k,p but being independent of n.
Let k = 0. The duality relation gives E(LZy) = E((D1, DZy),, ) = 0. Since the LZ}’s are independent,

l2
we can apply ([B.20)) first and (2.4]), so that

n 1/2
1S, = (D IcA@I})
k=1

< (;Cz(z) 14,wolz)"

By B3) E(|4,(Up)[?) < Cr7? so ||LS(Z)]|,, < Cr~' x Ca(Z).
We take now k = 1. We have

Dy LSn(Z)" = D(g ) (xkCqAr(Uyg)) = xxCy D,y Ar (Uy)

so that, using again (2.4)),

) n d ) 02(2) n d )
LS, =3 D xCaDig p Ar(Ug)|” < € x >0 Dap Ay

n
g=1j=1 g=1j=1

We notice that Dy, jyA,(Ug) is not null for r < |U; — yy|* < 2r and contains the derivatives of a, up
to order 2, possibly multiplied by polynomials in the components of U, — yy of order up to 2. Since

|Uy — yy|* < 2r, by using (83) one obtains E(|DLF[})) < Cr=2r x 021/2(2), so B:27)) holds for k =1
also. And for higher order derivatives the proof is similar. [J

We give now estimates of the Malliavin covariance matrix. We have

n
08n(2) = Z XkOk-
k=1
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We denote

To = 0 Ay = I (Fa€6), Xn = sup (06,6 (3.28)
i=1 lgl=1 l§1=1

For reasons which will be clear later on we do not consider here the normalization condition &,, = Id.
We have the following result.

Lemma 3.5. Letn = (ﬁfgg)))d. Then

e3Cq 12(1+ 2)\,) A2m2(r)
<n) < _ 2 ‘
P(detog,(z) <n) < 5 ( ) > exp ( 6%, X n), (3.29)

¢q denoting a positive constant depending on the dimension d only and N, and ), being given in (3.23).

Proof. Since o, = C},C}; we have

n

(05,26 €)= xn (086, &) = }:xmcg\

k=1

Take &1,....,6n € Sg_1 =: {€ € R? : |¢] = 1} such that the balls of centers & and radius n'/¢
cover S,_1. One needs N < ¢;n~' points, where ¢, is a constant depending on the dimension. It
is easy to check that & — <‘7Sn(Z)§ € > is Lipschitz continuous with Lipschitz constant 2\, so that

infie=1 (05, (2)&,€) = infimy . N (05, (26, &) — 2Aan™/9. Consequently,

N
P(detog, (z) <n) < P( lnf < 05,26 €) <0 < ZP(<USn(Z)§i7§i> <t/ 42X,
=1
<4 i IED((ffsn(z &, &) <L+ 2X,)).

So, it remains to prove that for every £ € S;_1 and for the choice n = (2%{;"12(;\“)))%

— 2¢3 N m?2(r)
1/d - =\
P((05,(2)€:6) < (1+2X)n"9) < 9 exp( 16X, Xn)’

We recall that E(yi) = m(r) and we write

P((75,2)6:€) < (L+ 20077 = P32 (= m(1) (Gl < (1+ 20)n/ " = m(r) Y |Cre? )

= k=1
< B(= 200 = m) [P 2 dum(r) = 1+ 2%,)0')

the last equality being true because

Z|Ck€| Z 016, €) > A, [ =

k=1

So, we take n = (f{ﬁ&b)d and we get

B((75,2)6. € < (1+ )" < B = 3 (i~ mlr) (Cue? > 2020
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We now use the following Hoeffding’s inequality (in the slightly more general form given in [I5]
Corollary 1.4): if the differences X}, of a martingale M,, are such that P(|X| < bg) = 1 then P(M,, >
z) < (2€3/9) exp(—|z|> x n/(2(b3 +--- +b2))). Here, we choose X = —(xix — m(r)) |Cré|*. These are
independent random variables and | Xj| < 2|Cy£[*. Then

n

2o Aym(r)y _ 2¢° Aam?(r) n
2¢3 A2m2(r)
S Tgoexp < 16X, )

O

We are now able to give the regularization lemma in our specific framework.

Lemma 3.6. Let q,m € N. There exists some constant C > 1, depending just on q,m, such that for
every 6 > 0, every multi index v with |y| = m and every f € C’;”(Rd) one has

[E(0yf (2 + 5a(2))) — E(0yf5(2 + Sn(2)))]

Anm? (r (3.30)
< COy ) (2)Qqm(Z) (L) eXp(—TX() x ) + 67Lo(f) ) (1 + [a])m (1)
with
T (Z) 1 4 2\ dlarms)?
Qam(2) = ratml < Anm(r)) Clon (F)V(I0 (f)+4)> (3.31)

¢p being given in (T23).

Proof. We will use Lemma Notice first that, by [B.25]), the constant Cyip,(Sn(Z)) defined in

(323)) is upper bounded by

2d(q+m)(q+m+3) —(g+m+1
CClagtmy(gtm+3) (2T i )

C depending on d and g+ m. And by using the Burkholder inequality (3.26]), one has [|.S,(Z )Héolf){}) <
Czll{)z(f)(Z). So [B:24) gives

[E(0yf (2 + Sn(2))) = E(0f5(x + Sn(2)))]

1/2
CCay(1)(Z) _2a(gsm)(grm+3) 5

1/2
= pgtmtl T4d(g+m)(g+m+3) (Z)Clm(f)v(lo(f)Jrq) (Lm(f)P / (detop <n) + 77(IIJFTH)QLO(JC)) X
(1 + a0,

¢p(f) being given in [B23). We take now 7 = ( Anm(r) )% and we use ([3:29) in order to obtain

2(1+2n)
CO D) itarmy(atm
[0, 1o+ 5.(2) ~ B0 e + Su(ZD)| < — 2 Gt e B D oo
1+ 2, \ dlg+m+1)? A2 (r
<)\ m(r)) <Lm(f) eXP(_W() xn)+ 5‘1L0(f))(1 + |$|)lm(f)

O

We are now able to characterize the regularity of the semigroup PZ :
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Proposition 3.7. Let f € C’;”(Rd). If |v] = m then

C(l + Cglm(f)(Z))(l + QXn)dﬂ A%mz(r)

() _

B, f(z + Su(Z))] < (Lu(£)270 x ANmETE exp(— S ) -
C1+ Cotg()(2)) Cogmim 3 (Z) (1 + 2X,, )+ D? '

FLo(f)2°0) )1+ [y

P m(r) T

Proof. We take n = ( )E Tg))) and the truncation function ¥, and we write

E(Oyf(x +Sn(2))) =1+ J

with
I=E0,f(x+ S,(Z2))(1 -V, (detog,))), J=EOyf(x+ 5(2))¥,(detog,)).

We estimate first

11| < Lu(HE(Q+ 2]+ [8u(2))" D (1 - ¥, (det og,)))
< Lin(F)E((Q+ 2] +]80(2) P UN2PY2 (det 0, < 1)
N\ 2m2 r
< CLp(f)2D (1 + |x])2m (1+c2lm(f)(2))(2g+T?:;))d/2 exp(_ Agﬁ( ) n)

In order to estimate J we use integration by parts and we obtain

J = E(f(z+ Su(2))Hy(5n(2), Uy(det os,)))
Lo(/)E((L + || + |Su])°Y) | H, (S0(2), ¥y (det os,)))

<
< CLo(f)2°D (1 + |20 (1 + Coty (1) (2)(E(| Ho (Sn(Z), ¥ (det o5, ) )2,

Then using (319) and ([B:25)

| H,(Sn(Z), Uy(det o5, (2))) Co~ M0 (1 v |[1S,(2)|||2dmemes) -y

m+1,8dm(m+3)

IN

I

—(m 2dm(m+3) Anm( ) —d(m+1)?
Ccr( +1)08dm(m+3)(z)<72(1 +Xn)> :

IN

O

We are now able to give the main result.

Theorem 3.8. We look to Sp(Z) = > p_1 Zk = Y 1 CkYs and we assume that Yy, € L(2r,e) for
some £ > 0,7 > 0. We also assume that (Z2) and (I3) hold (for every p € N). Let N,q € N be fized.
We assume that n is sufficiently large in order to have

m2 T)
n3NHD =T X0 < 1 and p > AN 4+ 1)Co(2).

There exists C > 1, depending on N and q only, such that for every multi index v with |y| = q and
every f € Cg(R?)

1 m2(r)

[E(0,f(5n(2))) = E(8,f(W)@n(W))| < C x C*(Z)(W%(f) + Ly(fle” =7 (3.33)
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where

C*(Z) _ (Cé\f-l-l(Z))N+12(N+1)(lo(f)+1)+2(1 +C2l0(f)(Z))2N+3

cB(2) (3.34)
Tp1+1m(7‘)d(171+1)2 Clo(F)+a+(N+1)(N+3)

. N+1
with p1=2¢+ (N +1)(N +3),  p2 =8dpi(p1 +3), p3 = 2dpi(p1 +3) + —— (3.3)

¢p being given in [F23).
Proof. Step 1. We assume first that f € C’gHNH)(NH) (R%) and we prove that

[E(yf(Sn(2))) — E(yf(W)PN(W))|
G,
- 1(N+1)( q+(N+1)(N+3

20 (3.36)

)(f)21q+(N+1)(N+3)(f)e_ )

"+Lo(f)2l°(f)),

where

~ N N+1)/2 .
C1 = (COT )N O (2) Byyvamyves with
C

By = (27T (14 O, ))?) N H2 D) (e <

d
1+ Cop, )(2)) X cgdgg§j§;<z>.

Notice that (3.36)) is analogous to ([B.33]) but here Ly(f) and [,(f) are replaced by L\ (vi1yv+3)(f)

and lgy(n+1)(v+3) (f)-
We recall that in ([2:46]) and (2:47]) we have proved that

N
P70, f(w) = PY(Id+ ) T1)oy f(x) + L0y )(x) + 1(0,f) () + I3(0, f) (x)

k=1
with
L(f)(z) = PYQN.f(o), (3.37)
N+1
Ig(f)(l‘) = Z PTZ1V<5»1+1,7L+1P7“61;\I+17TN+1"'Pg-‘rl,?”zPlGﬂ“lQ§V7T17.?.7TN+1f(x)
1S7‘1<...<T‘N+1Sn
N
I(f)(z) = Z Z P7§n+l,n+1p7§171+177’7n"'P7§+17T2P167;7’1Qg\yfrfgly---yr'm‘f(:v)
m=11<r;<...<rm<n
and (see (236) and (2.45)
QN f@) = D A (@, af (@),
Il SN (3.38)
Qof(z) = > en(@)da f (@), '
N+1<|a|<N(N+2N)
Ny, being given in Lemma [Z4l The coefficients which appear above verify
i . CCW—H AL CCON-1(2)Co(Z N(N+2N)
()] < L O ang e, o) < CnAIGBE) (3.39)
n 2 n- 2
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We first estimate I5(f). Let us prove that for every r| < ... < ryi1

PTN+1+1 npg\r—i-l TN41 Pr1+1 rgPI?rlQ(N+1rN+1a f( )
01 _m2(r) n
< i v vy ()2 v eSS0 Lo 0D)1 4 fafascrsores
(3.40)
where
~ ~ N .
C1 = (COY T NN YN P (2) Bys vy vas) with
C
_ (ol 1 2\N+1o] 2dp(p+3)
BP - (2 p(DF (1 + Cle(f)) ) - 2 » (/) Tp+1m(7‘)d(p+1)2 X (1 + Cle(f) (Z)) x 08d§(£+3) (Z)
Recall that o,, < 205(Z). We take n > 4(N + 1)C2(Z) so that
N+1
ri A1
Z o <41 (3.41)
Recall that Y ;" | 0; = I. So we distinguish now two cases:
g 1
: ;> = .
Case 1 | Z o; > 2], (3.42)
i=ryi1+1
TN+1 1
C 2: 3 > 1. 4
ase ; i 2 3 (3.43)

We treat Case 1. Notice that all the operators coming on in (8.37) commute so, using also (3.38]) we
obtain

(N+1)
P rNy1+1, n+1PrN+1 TN+1"" P’r‘1+1 TQPk‘ TIQNTL 77"N+18 f(x)

_ § : Tl "N 41 «a G G G Z
- an ( )erl, ,TN+1P’I‘N 1+1,TN"'Prl—i-l,rzpl,rlPTN—i-l,na’YaOéf(‘T)‘
3<|a| <(N+1)(N+3)

Using [3.42)) and [332) with m = ||+ |a| < ¢+ (N + 1)(N + 3) we get

| rN4+1+1, n+18'yaaf(x)|

’IY’L2 T

< Agy (v (v3) (Lgy (v (f)2larevanos (e 55N Lo20U) (£))(1+ fe])far v v ()

with o
_ 2dp(p+3)
Ap = 1P+ (r) A1) X (14 Caty(1)(2)) % Cygy(rzy (2)-
Therefore, we can write
_mi)
LO(pTN+1+1 20,00 f) = HNA1)(N+3) (Lq+(N+1)(N+3)(f)2lq+(N+1)(N+3)(f)€ 64 X4 Lo(f)QlO(f))

l(]( TN+1+1,na“{80lf) = lq+(N+1)(N+3) (f)

Now, in the proof of Theorem we have proven that

PSP, PR 9(2)] < Lo(g)(1 4 Cagg ) 209 (1 + |a])f09)
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and following the proof of Lemma 2.4] we have

1/2 m
65, pn9(@)] < (29OTCH2 L (Z)(1 4 Coty()(2))) " Lolg) (1 + )2
So, taking all estimates, we obtain
N+1)/2
|07’17 ,TN+1P7'§\7 1+1,rNe Pg-l—l,rgPlG,mPTir-i-l n-l—la 8af($)| < BQ+(N+1)(N+3)02((J\;:—§§ (Z)
( )

(L v v (Ze 009 D=0 4 o(£)200D) s (14 [affasovnivsn ()

with
Bp = (le(f)+1(1 + C2lp(f))2)N+1Ap21p(f)'
So,

7 a G N+1)
’PTN+1+1,71+1P N+LrNr Pr1+1,7’2P177“1Q$’1,+ 7’N+la f( )‘
P N+1)/2
< 3 an " (@) By vy v+ Coonag) (2)%
3<]a| S (N+1)(N+3)

2,
) (f)21q+(N+1)(N+3) (Ne— e x

X (Lgg(N4+1)(N+3 " Lo(f)20 ) (1 [a])farevenevin (D)
(chﬁ-l(z))N-i-l N+1)/2
<22 = By (v41)(v43 Cynra) (2)
n

7’L2 ™
X (Lt (V1) (3 ()2t ovenevea (e 5T Lo(£)200)(1 4 ] larrvenoven ()

and (3.40)) is proved in Case 1.
We deal now with Case 2. We write

Z G (N+1)
PTN+1+1,n+1PrN+1,rN+1 Pr1+1 T2 1 1 QN 1. 7TN+18 f($)

_ } : Tl "N+ « G G
= Gn ( )67"1, ,TN+1P’!‘N+1+1 n+1PrN+1 N4l Pr1+1,r2P1,rla'\/aocf(‘T)’
3<]a<(N+1)2

Notice that
PG

rN+LTNG

’ Pg+1,r2P€T1 a‘/aaf($) = E(a“/aaf(x + G))

where G is a centred Gaussian random variable of variance Y .~ o; — > o, > %I . So standard
integration by parts yields

P51, PE 0,00 f(2)] < CLo(f)(1 + |z])lot)

’ rN+1LrNgr e

Now the proof follows as in the previous case. So ([B3.40) is proved. And, summing over r; < ry <
< ryt1 S nowe get

[12(0y f) ()]
<atHx %(LQ-F(N—%D(N—I—S)(f)21q+(N+1)(N+3)(f)e_ e Lo(£)2°U)(1 + [l venven ()
n2
- %(LH(NH)(NH)(f)2lq+(N+1)(N+3) (e~ s + Lo(£)20U)(1 + || arvenwva (),
n2
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Exactly as in Case 2 presented above (using standard integration by parts with respect to the law of
Gaussian random variables) we obtain

C
|11 (04 f) ()| + [I3(0 f) ()| < n%(iNIH)LO(f)(l + ‘x’)lo(f)_

So, ([3.30) is proved.
Step 2. We now come back and we replace Lqi(nvy1)n+3)(f) by Lg(f) in B36). We will use the
regularization lemma. So we fix § > 0 (to be chosen in a moment) and we write

[E(0,f(Sn(2))) —E(0, f(W)®n(W))| < As(f) + A5(f) + A5 (f)
with
As(f) = [E(0y[5(Sn(2))) — E(y fs(W) PN (W))]
)

A5(f) = By f(Sn(2))) — E(01f5(Sn(£)))]
A§(f) = [E(0yf (W) n (W) — E(0y fs(W)2n (W))] -
We will use B.36) for fs. Notice that Ly, (fs) < émLo(f)0~™, with ¢, = maxo<jaj<m [ |0ad(z)|dz,
and 1, (f) = lo(f). So,
C 1 _m2()n
As(h) <~ o) (5 1),

where

N N
C1 = (COY 2NN TLOS N IR (2)2NHDUHDR2 (1 4 Oy (2) 2NV By vy (v43)

) B C 2dp(p+3)
with By = P+l () AP+ 1)? x C8dp(p+3) ().

We use now ([3.30) with x = 0 and with some h to be chosen in a moment. We then obtain

m;g’) X n> + Lo f)<5h>

with Qp4(Z) defined in (B31)) (In order to identify the notation from (B331)) we recall that ¢ = || was
denoted by m in ([33I]) and h, which we may choose as we want, was denoted by ¢ in (331])). And

we also have A%(f) < CLo(f)8" (the proof is identical to the one of (3.24]) but one employs usual
integration by parts with respect to the Gaussian law). We put all this together and we obtain

[E(0yf(Sn(2))) = E(8y f(W)@ N (W))]
C 1 _m2()

xXn
TN Lo(f) (5q+(N+1)(N+3) e & "'+ 1)

HOCY 1 (D)Qnal2) (Lol De™ 5" + Lo(1)35")

A5(f) < CO% 1 (2)@ng () (Lo exp -

IN

We take now § such that

5h . 1 _m2(7‘)n
= s (v+3) ©
so that
L _ m2(r)n x h _ mz(r)n
M =c 64 htat(N+D(N+3) — =~ 128
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the last equality being obtained if we take h = g+ (N + 1)(N + 3). With this choice of h and 0 we get
[E(Dy f(Sn(2))) — E(0yf(W)PNn(W))|
_7n2(r')n 1
< (201 + 0021l/02(f)(Z)Qq—i-(N-i-l)(N—i—S),q(Z))Lo(f)(e 25 + )

+ OO (D)Qur vy (v3).0(Z) Ly( e 5

We take now n sufficiently large in order to have

1 2(
n3s(VHD) o~

The statement now follows by observing that, with Cy(Z) given in (3.34)),

2C1 + CCy 1 (2)Qq (v 4y 43)0(Z) < C x Cul2),

1/2
Cgl/o(f)(Z)Qq—i-(N—i-l)(N—i-S),q(Z) < C x Cu(2).
O

The result in Theorem holds under the following slightly weaker condition (which will be used in
the proof of Corollary below).

Proposition 3.9. Assume that for some m < n one has Yy, € L(2r,¢) fork <n—m and Y ;" 0 >
$1. Then (333) holds true.

Proof. The idea is that, since > _}" o) > %I , the random variables Y.,k < n —m contain sufficient
noise in order to give the regularization effect.

We show the main changes in the estimate of Io(f) (for I;(f), I3(f) the proof is analogues). We
split P, TN+1+1 n = PTZNHH’n_mPnZ_m,n and we need to have sufficient noise in order that PZ N1+ ln—m

gives the regularization effect. Then, the two cases described in ([3.42]) and ([B.43)) are replaced now by
S o; > I and YN > 1T respectively. And the condition (BA1) becomes S 1+ o, <

i=ry4+1+1 = = i=1 —

%I . Then the proof follows exactly the same line. [J

The result in Theorem holds without assuming the normalization condition (L2). In fact, we can
state the following

Proposition 3.10. Let o, denote the covariance matriz of Sy (Z) and assume it is invertible. Then
(3:33) reads: for a multi-index o with || = g

2 /—
m=(7)
6 X

E(Oaf(Sn(Z))) — E(Oaf (o3 *W)O% (W))| < C x CI(Z)( Lo(f) + Ly(f)e™ ") (3.44)

%(N-i—l)

where W is a standard Gaussian random variable and ®%¢ is defined in (ZI0) using Zy, = on'?z,
instead of Zy, (this means that the coefficients Ay(k) = E(Z2) — E(GY) are replaced by A, (k)

E(Zy) — E(GS)). And CI"(Z) = (X‘ff/g;q)c*(Z) with Cy(Z) given in ([3-34) and A, respectively
the lower respectively the larger eigenvalue of o,,. Finally T = r(A,/An)?.
Proof. For a matrix o € My, and for two multi-indexes a = (o, ..., o), 8 = (b1, ..., By) we denote

o8 = [T, 0P Suppose that o is invertible and let v = ¢~!. For a function f = RY — R let
fa(z) = f(ax). A simple computation shows that

(Oaf)(ox) = > ¥*P0sfs(x).
1B|=la
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We denote now Z, = on /Z, and we note that Sn(Z) = on Y 2Sn(Z) verifies the nomalization
condition ([L2)). So using ([B33) for S, (Z) we obtain

E(0af(Sn(2))) = E@af(0y/*Sn(Z))) = Z(051/2)‘1’%(55]“03/2(Sn(7))
|Bl=q

= > (0 PO f 12 (W)DT (W) + R (1)
181=q

= E(@af(0,/*W)2F (W) + Y (0, /) Ry ().
18l=q
The estimate of Ry(n) follows from the fact that Lq(f 1/2) < M Ly(f) and Zm‘:q(a;lﬂ)a’ﬁ <
CA;NM O
Another immediate consequence of Theorem B.8]is given by the following estimate for an “approxi-
mative density” of the law of S, (Z) :

_ 7n2(r')

Corollary 3.11. Suppose that n(N+D (G +32q) = Tq X0 < 1. Let 6, be such that

20,
n(N+l)/2de—";T(dT)><n <6, < - 1 )
N3N+
Then ) o
‘E(E1{|Sn(z)—a<5n}> - ’yd(a)@N(a) S n%(N-i-l) . (345)

Here v, is the density of the standard normal law in RE.

Proof. Let h(z) = ff;o dri... fi;l él{\z_@gn}dwd so that él{\x—a\gén} = Oy, ...0zgh(z). Using
Theorem B.8]

E(%usn(z)_mn}) B0y, 0pah(Sn(Z))) = BBy ..0pah(W)Bx (W) + R (n)
= E((Sidl{w_a\gsn}@N(W)) + Ry(n)

with

1 1 _m2m C
Tonon T Fa€ ° n) S T
ns(N+1) gl nz(V+1)

the last inequality being true by our choice of 9,,. Moreover

Bx(m)] < O

1 1
E(@”‘W—“'S‘Sn})%(m) - /Rdgl{y—agan})%(y)w(y)dy

= ®y(a)yala) + R'(n)

with |[R'(n)| < the last inequality being again a consequence of the choice of §,. O

_Cc
s (N+1)
We now prove a stronger version of Prohorov’s theorem. We consider a sequence of identical dis-

tributed, centred random variables X; € R¢ which have finite moments of any order and we look
to

S, (X) = % > Xk
k=1
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Following Porhorov we assume that there exist m € N such that
P(Xy + ...+ X, € dz) = p(dz) + ¢ (z)dx (3.46)
for some measurable non negative function ).

Corollary 3.12. We assume that (3.46]) holds. We fiz q, N € N. There ezists two constants 0 < ¢, <
1 < Cy (depending on N and q) such that the following holds: if

1
na(N-‘rl)e—C*TL S 1

then, for every multi-index v with |y| < q and foe every f € Cg(R?) one has

[E(0,.£(5,(5))) — (@, FV)@n(W)| < Cu s Lolh) + L(e ") (3.47)
Proof. We denote
2(k+1)m 1
Y, = Z X; and Zp = —Y;.

i=2km+1 \/ﬁ

Notice that we may take v in (.46 to be bounded with compact support. Then ¢ *1) is continuous and
so we may find some r > 0, > 0 and y € R? such that v % 1) > elp, (y)- It follows that Yy € L(2r, )
and we may use the previous theorem in order to obtain B47T) for n = 2m x n’ with n’ € N. But this
is not satisfactory because we claim that (3.47]) holds for every n € N. This does not follow directly
but needs to come back to the proof of Theorem B8] and to adapt it in the following way. Suppose
that 2mn’ <n < 2m(n’ 4+ 1). Then

1 & 1 & 1 &

k=2mn’+1 k=2mn’+1

Since X},2mn’ + 1 < k < n have no regularity property, we may not use them in the regularization
arguments employed in the proof of Theorem B8l But Yj,1 < k < n’ contain sufficient noise in order
to achieve the proof (see Remark B9]). OJ

4 Examples

4.1 An invariance principle related to the local time

In this section we consider a sequence of independent identically distributed, centred random variables
Yi, k € N, with finite moments of any order and we denote

k
1
Sp(k,Y)=— Y;.
n( ? ) \/ﬁ ; 7
Our aim is to study the asymptotic behaviour of the expectation of

1< , 1
Ln(Y) = n Zwen(sn(kay)) with wen(l‘) = gl{mgsn}-
k=1 "

So L,(Y) appears as the occupation time of the random walk S, (k,Y),k = 1,...,n, and consequently,
as g, — 0, one expects that it has to be close to the local time in zero at time 1, denoted by 1, of the
Brownian motion. In fact, we prove now that E(L,(Y)) — E(l1) as n — oo.
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Theorem 4.1. Let ¢, = n~ 21" with p € (0,1). We consider a centred random variable Y € L(r,¢)
which has finite moments of any order and we take a sequence Y;,i € N of independent copies of Y.
We define

N(Y) = max{2k : E(Y?*) =E(G*)} —1>1

and we denote pyyy = 8(1 + (N(Y) + 1)(N(Y) +3))(4 + (N(Y) + 1)(N(Y) + 3)). For everyn <1
there exists a constant C depending on r,e,p,n and on HYHPN(Y) such that

C
|E(LH(Y)) - E(Ln(G))| < +7;pN(Y) (4-1)
The above inequality holds for n which is sufficiently large in order to have
1 m2(r) 1
3 J e my <« -
" eXp( 3 " ) = AN+ Lmp (42)
As a consequence, we have
lim E(Ly(Y)) = E(l), (4.3)
ly denoting the local time in the point 0 at time 1 of a Brownian motion.
Proof. All over this proof we denote by C' a constant which depends on 7, ¢, p,n and on ||Y|| PN ) (as

in the statement of the lemma) and which may change from a line to another.
Step 1. We take k,, = n"". Suppose first that k& < k,,. We write

E (e, (Sa(k.¥))) = — (1= B(S:(k.Y)| > )

En
so that
[E(ve, (Sn(k,Y))) — E(¢e, (Sn(k, G)))| < i(P(‘Sn(k7Y)‘ > &5) + P(ISn(k, G)| > €n)).

Using Chebyshev’s inequality and Burkholder’s inequality we obtain for every p > 2

(ZHYH) o %:%x(g)””.

And the same estimate holds with Y; replaced by G;. We conclude that

P(|Sn(k,Y)| > e0) = (( >5n\/_>

B(E S e (500 )) - B(E S (500,00 < oy X LSS by
k=1 k=1 n k=1

< 5’;1 X /Okn/n 2P 2dy = 5’;1 X <%)§+1

- C C

- 1
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We take p = %ﬁg)}/) and we obtain

‘E(% iwen(sn(k‘,Y))) - E(% §¢€n(5n(k, G))) ‘ <
k=1 =1

Step 2. We fix now k > k;,, and we apply our Edgeworth development (see ([8:33]) to

S

k k

1 1

% E 1 Y; == E - Zi7 where ZZ == m}fl
1= 1=

In particular the constants Cp,(Z) defined in (Z4) are given by C,(Z) = kP/?2 max; E(|Z;|P) = ||V
We denote

ham(w)=(/fx¢@n@ndy=:hqm(ax) (4.4)

This gives 1, (v) = b}, (z) and hy, ,(z) = ahy, (ax). Moreover, [[hanleo <1 and [|A, [l < |a|/en,
so that

Lolhan) =1 and Ly(han) = o] x —.

n

We now write

E(ye, (Sn(k,Y)) = E( ’Ln(Sn(k,Y))):E< i,n( ELZE))

We will use (333) with f = h \/E and 0, will be the first order derivative. Then, by ([B.33) with
N = N(Y)

n

n

Ben(Sa(k V) = |7 (B . W)@y (W) + Rovr ()

with

IN

32

C Eo1 m?2(r)
S o T C\/; X g, &P < T3 k)

Here C is the constant from ([B.33]) defined in ([3.34]). Notice that by ([£2]), for k > k, = n" one has

\/%X iexp(—m;ér) xk>

c 2
Bxnt®)] < gl )+ CL0 = e (=5 x k)

2

ni exp < _m (r) X n’m>
32

1 1 C

S IO VRN S R

IN
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so that |Ryy (k)| < Ck=WO)TD/2 Then

1
‘Z[RN(Y < (N(Y+1/2Z k/n”N(y)xE

k=kn,
< ¢ / . _ds__
- pvV)+1)/2 o/ 81+N(Y)
C N(Y)

= —wmoane k)T = —.

n(N(Y)+1)/2 i e
We recall now that (see (2.13]))
Pyyy(z) =1+ Z Hr,(x

with Hrp,(x) linear combinations of Hermite polynomials (see (2I0) and (2.14])). Notice that if [ is
odd then I'; is a linear combination of differential operators of odd order (see the definition of A,,; in
23)). So Hr, is an odd function (as a linear combination of Hermite polynomials of odd order) so
that v, x Hr, is also an odd function. Since W7 and —W; have the same law, it follows that

(d@ (\/7 X Wl)HFl(Wl)) E(wan(\/g X (—Wl))HFl(—W1)>
- —E@gn(\/% X W1>le(W1)>

and consequently

\/% x E(hﬁng)Hn(Wl)) —E(v., (@ X W1 ) Hr, (W) ) = 0.

Moreover, by the definition of N(Y'), for 21 < N(Y) we have E(Y?) = E(G*) so that Hr,, = 0. We
conclude that

\/%E<h’\/g’n(W1)q’N(Y)(W1)> - \/%E(hﬁnw) ~ B (v (/5 1)) = B (5,000

We put now together the results from the first and the second step and we obtain (4.T]).
Step 3. We prove ([@3]). Recall first the representation formula

B [ v Waas) =( [ v @itaa).

where [ denotes the local time in a € R at time 1, so that I; = [{. Since a + [{ is Hélder continuous
of order & for every p' < 1, we obtain

/ 1
([ v Was) - B < = (45)
n 4
We prove now that, for every p’ < 1 and n large enough,
1
C
E( / ben(Wy)ds) = E(La(G))| < 5z (4.6)
0 n- 2



To begin we notice that Sy, (k, ) has the same law as Wy, /,,, so that we write

1

B v 0008) - (1100 = E( 3 0)

with
(k+1)/n
o= [ e e (Wi
As above, we take k,, = n”" and for k < k,,, we have
1 (k+1)/n
E(6x) = . y (]P’(\Wsl > ep) = P(|Wy | > En))ds.

Since P(|Ws| > e,) < C exp(—%), this immediately gives

‘E(‘Sk)‘SgeXP(—}E%X n )<£exp<—laix n >:£exp<—%np(1_"))

neEy 2 k+1 ney 2 kn+1 ney
so that
k
i C 1 _ C
> E@0)] < — exp(—gn ) <~
k=1 " noz

for n large enough.
We consider now the case k > k,,. Using a formal computation, by applying the standard Gaussian
integration by parts formula, we write

B, (V) e Wiga)) = 5 [ BOL 0V =5 [ B0, (VoW

= [ B oW (W) = [ B (VW) Ha(W))de,

/n k/n 203/2

in which we have used ([@4]) and where Hj denotes the third Hermite polynomial. The above compu-
tation is formal because 1., is not differentiable. But, since the first and the last term in the chain of
equalities depends on 1., only (and not on the derivatives) we may use regularization by convolution
in order to do it rigorously. Notice also that the first equality is obtained using Ito’s formula and the
last one is obtained using integration by parts. It follows that

(k+1)/n s (k+1)/n
ds/ ! ¢ ! dv
k

E(6)] < /k / B e, (VW) [Ha (W) o < &

/n 203/2 n Jijn 03/2
and consequently

= c o C
> \E(fsk)fﬁ—/ dv < —5-
k n- 2

3/2
n
k=Fky, n/n U

So (@) is proved, and this together with ({5 and ([@.1l), give (@3]). O
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4.2 Convergence in distribution norms

In this section we prove that, under some supplementary regularity assumptions on the laws of Zj,
k € N, Theorem implies that the density of the law of S,,(Z) converges in distribution norms to
the Gaussian density. We write

C
Zy = \/—EYk

and we denote o}, = C;,C};. We assume that

0<ag<o,<T <00, and sup Y[} < oo. (4.7)
k
In particular each oy is invertible. We denote v = ak_l. Notice that the normalization condition is
1 ¢ :
- Y E(Zi.Z]) = lisj.
k=1
For a function f € C'(R?) and for k € N we denote

miaf) = [ 0+ e [V5(@)] da

Proposition 4.2. A. We fix ¢ € N and we also fiz a polynomial P. Suppose that Y; € L(r,e),i € N
and [{.7) holds. Moreover we suppose that

P(Y; € dy) = py,(y)dy with py, € CYR?Y)  for every fori=1,...,q. (4.8)

There ezist some constants ¢ € (0,1) (depending on r and on €) and Cy(P) > 1 (depending on q,0,7
and on P) such that, if nlatD)/2e=cn < 1 then, for every f € CH(RY), and every multi-index o with
lal <q

’E(P(Sn(z))aaf(sn(z)) - E(P(SH(G))aaf(Sn(

p)(py;) x Lo(f)- (4.9)

B. Moreover, if pg, is the density of the law of S,(Z) then, if pldtat)/2e=en < 1 we have

q+d

Cq+a(P)
;(;Sél]lgd ‘P(x)(aapsn (x) - aaf}/(x))‘ < q—i_T Z];Il ml,lo(f)—l-lo(P) (pyl) (410)

where v is the density of the standard normal law in R?.

Proof A. We proceed by recurence on the degree k of the polynomial P. First we assume that k =0
(so that P is a constant) and we prove (9] for every ¢ € N. We write

sn(Z)zﬁzn:CiYi— Z Y 4+ S\ (7).
=1 i=1

with
540(2) =



Then we define
1
(x)=E(f(—=) CYi+z

o= (s(d 350 )
and we have

E (o f(Sn(Z)) = E(9ag(S\(2)))-
Now using (3.44]) with N = 0 for Sﬁlq)(Z) we get

E(9,9(S\?(2))) = E(0ag(SD(Q))) + Ry, = E(0af 1y CiY; + S9(G))) + Rn (4.11)
: : (s (e S+ 5106)

with !

Bal < (= Lo(9) + €™ L4(9)). (4.12)

Let us estimate L,(g). We recall that v; = ; . For a = (a, ..., y) we have

(aaf)<%i2:;0iyi+x) - Ed: nq/z(f[(wq)aiﬁi) X 0,100 g4 (f(%zi;Cy—Fx)) (4.13)

1,--0¢=1 =

in which we have assumed that the Y;’s take values in R™. So

Ong(x) = E( (0 f) (% Z CiY;+))

m

:nQ/2B zﬁ: 1 (H 3O /qm 0,10 (\/_ZCZy, +2)) prl (ys)dyr..-dy,q
1Bg=1 i=1
m q
= (-1)%1? > (H ““Bl) / f(L Z Ciyi + w) Hay@ipy@- (yi)dy:...dyq.
BryonBg=1 i=1 Ram © A/ i=1 =1

It follows that

Oug(@)] < Cnt2Lo(f) / 1+ a3 O T IVpvs00)] sl
=1 =1

< CniLo(f)(1 + |zf)lo) Hmuo(f)(pYi)'
i=1
We conclude that 1,(g) = lo(f) and L,(g) < Cn??Lo(f) 1L, my () (Py;)- The same is true for ¢ = 0
and so ([ALI2]) gives

I 1 Cn 1 1
|R,| < C'Lo(f)il;[lmuo(f)(lm)(% 1 n/2e ) < CLo(f)il;[lmLzo(f)(pn) X 7

the last inequality being true if n%/2e=¢" < n=1/2,

So ([AI1)) says that we succeed to replace Yj,q +1 < i < n by G;,q+ 1 < i < n and the price to
be paid is CLo(f) [T{—; m1,1(5)(pv;) ¥ ﬁ Now we can do the same thing and replace Y;,1 <i < ¢
by Gi,1 < i < ¢ and the price will be the same (here we use C;G;,i = ¢ + 1,...,2q instead of

C;Y;,i=1,...,q). So ([@9) is proved for polynomials P of degree k = 0.
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We assume now that (4.9) holds for every polynomials of degree less or equal to k — 1 and we prove
it for a polynomial P of order k. We have

0ou(Px f)= > 0sPx0,f

(Bm)=a
so that
Px0f=0,Pxf)— Y  0sPxx0f.
(Byy)=c
[B1>1

Since |3| > 1 the polynomial dgP has degree at most k — 1. Then the recurrence hypothesis ensures
that (@3] holds for dgP x 0, f. Moreover, using again (3] for g = P x f we obtain ([@3) in which
Lo(g) < Lo(P)Lo(f) and lo(g) < lo(P) + lo(f) appear. So A. is proved.

Let us prove B. We denote f,(y) = H?Zl L(z,00)(¥) and, for a multi-index a = (a1, ..., g) we denote
@ = (ai,...,aq,1,...,d). Then, using a formal computation (which may de done rigourously by means
of a regularization procedure) we obtain

P()8aps, (x)

/ 5oy — ) P(y)0aps, (4)dy

Y / 9380(y — )0, P(y)ps, (v)dy
(By)=c

= 0 Y [ 050, Pws, Wiy
(By)=a

= TN E(05£:(8(2))0,P(Sn(2)))
(By)=a

A similar computation holds with S,,(Z) replaced by S, (G). So we have

1P< )(Oaps, (z) = 0y ()
< > [E@5falSu(2)0, P(Su(2))) — E(D5£2(S1(G))0, P(Sa(G)))
By)=a
q+d

Cyta(P)
= %Hml,lo(mzo(m(m)
=1

the last inequality being a consequence of (£.9). O

Remark 4.3. We would like to obtain Edgeworth expansions as well — but there is a difficulty: when
we use the expansion for Sﬁlq)(Z) we are in the situation when the covariance matriz of S,(Lq)(Z) is
not the identity matriz. So the coefficients of the expansion are computed using a correction (see the
definition of Ay in the Remark [ZI0). And this correction produces an error of order n~Y2. This
means that we are not able to go beyond this level (at least without supplementary technical effort).

A Computation of the first three coefficients

We explicitly write the expression of T'y, for k = 1,2,3 (for larger values of k the term T’y is difficult
to explicitly compute). Recall formulas ([ZI0) for I'y, and formula ([29) for the set A,, ; appearing in

&.10).
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Case k=1. Then m =1 and [ = 3,1’ = 0. So the first order terms are given by
n
LR DS > A
r—l |a\ 3r=1

Case k = 2. Then m = 1 or m = 2. Suppose first that m = 1. Then we need that [ + 2" = k+2m = 4.
This means that we have [ = 4,1’ = 0. The corresponding term is

1 & 1 -
ﬁ _1D7(“4) = ﬁ Z ZAa(r)a

‘06‘24 r=1

Suppose now that m = 2. Then we need that 1 + ls + 2(l] + 1)) = k + 2m = 6. The only possibility is
l1 =1y = 3,15 =1, =0 and the corresponding term is

1 1
36 Z Dﬁf’)Dﬁi’) =36 Z Z Z Ay (r1)Ag(r2)000p.
0<ri1<ra<n |a|=3]8]=3 0<ri<r2<n
We conclude that
Z Z r) Oa +— SN D Au(r)As(re) 005
Ioc\ 47r=1 |a| 318|=3 0<r1<ra<n

caso iid

1

2 24271)( A(‘) +
laf=4 Ia\ 318|=3

Case k = 3. m =1. We need that [ +2I' = k+2m =5.Sol =3,I'"=1o0r 1 =5,I' =0. The term
coresponding to | = 3,I' =1 is

n n J
_% ZD£3)LC1” = _% Z Z Aa(r)aa Z Ui’jaiaj
r=1

r=1|a|=3 i,j=1
1 d n .
= -5 DTN AUl 0.0:0;.
|a|=34,j=1r=1

and the term corresponding to [ = 5,1’ = 0 is

n

P IETEE D IPINE

r=1 |ae|=5r=1

m = 2. We need I + 1o +2(l] +1,) = k+2m = 3+ 4 = 7. The only possibility is Iy = 3, Iy = 4,
=l,=0and !y =4,y =3,15 =1, =0. The corresponding term is

3
2 Z 31 DT(’1)4| 3|4| Z Z Z Aa(r1)Ap(r2)0a0s-
0<r1<ra2<n |a|=3|8|=4 0<r1<r2<n

= 3. We need Iy +lo + 13 +2(5 + 1, +15) = k+2m = 3+ 6 = 9. The only possibility is
li =lp =13 =3,l] =1, =14 and the corresponding term is

6i3 Y pPpE@D® - 3222 ST Aalr)As(r2) Ay (r5)0a050,.

0<r1<ra<rz<n |a|=3|8|=3 |y|=3 0<r1<re<rz<n
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We conclude that

n

d
oy SR son- g 8 8 S

2D D DIED DI WL ALNS

‘ | 3‘5‘ 40<r1<ro<n

Z > > Aalr)As(ra) Ay (rs)dads0,

|=318|=3 |y|=3 0<ri<ra<rsz<n

B A Backward Taylor formula

We consider a non negative definite square matrix o € Mgy and we write it as 0 = C' x C*, with
C € Myxg (so C = 01/2). And we denote by L, the Laplace operator associated to o :

d
Lof = Z ai’j8i8jf.
ij=1
We also consider a d-dimensional Brownian motion W = (W', ..., W %).
Lemma B.1. Set L, = Zijzl 0%90;0; and let C denote a matriz such that CCT = o. Then for

everyk € N, k>0, and g € C’gk+2(Rd) one has

k k+1 p1
1
9(0) = E(CW1)) + E 2%, LLg(CWA)) + %/0 s*E(LET g(CWy))ds, (B.1)
(=1 ’

in which W denotes a standard Brownian motion in R?.

Proof. Set X; = CW,. By Itd’s formula, one has E(g(X1)) = E(g9(X¢)) + % ftl E(Lyg(X5))ds, so we

can write

1 1
Blo(X0) = Elo(X0) ~ 5 [ BlLog(X.))ds. (B2)
Taking ¢t = 0, this gives )
o(0) = E(o(X1) ~ 3 | B(Eoo(xX0)ds
We now iterate the above equality. First, we have
1 I
9(0) = B(9(X0)) - 3E(Log(X0) ~ 5 [ [BLro(X.) ~ E(Lag(X1))]ds
and by using (B.2)) we get
0(0) = B(6(x1)) ~ 3B (Loo(x0) + § [ s [ BUZgOW)a
= B(g(X1)) — 5E(Log(X1)) + 1 /0 WE(L2g(X,))du.

By proceeding in the iteration, statement (B.I]) follows. [J
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We consider now a sequence of independent centred Gaussian random variables GG}, with covariance
matrix o and we denote S, = Z£:1 G'.. Moreover, for a matrix o € M xq we define the operators

—1 N+1 1
h )+ Z 21l' Ll hzlv,a¢($) = %/0 SNE(LfrV—l_lﬁb(iE + CpaWs))ds.

where W is a d—dimensional Brownian motion independent of .S),.

Lemma B.2. For every ¢ € C*N*t2(R?) one has

E(6(Sp)) = E(hiy 4, ,,0(Sp+1) + E(hy 5, #(Sp)) (B.3)

Proof. We notice that G4 has the same law as C),1; W7, and moreover, we denote 9, (x) = ¢(Sp(w)+
x). Then, using the independence property and (B we obtain

N
E(1u(0)) = E(Wu(CpriWh)) +Z 21[, E(LY,, ., %u(Cppa W)
=1

(_1)N+1 N N+1
toNTINT ; s E(Lg, Y (Cpa W) )ds.

Since E(LL, _,t(Cpr1W1)) = B(LL |, 6(Sy11) and (LY 6 (Cpr1W1)) = E(LYH16(S, + Cpra W)

Op+1 0'+1 Op+1 Op+1

the above formula is exactly (B3). O
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