L. Danzer, B. Grünbaum, and V. Klee, Helly???s theorem and its relatives, Convexity, Proc. of Symposia in Pure Math., Amer, pp.101-180, 1963.
DOI : 10.1090/pspum/007/0157289

J. E. Goodman, R. Pollack, and R. Wenger, Geometric Transversal Theory, New Trends in Discrete and Computational Geometry of Algorithms and Combinatorics, pp.163-198, 1993.
DOI : 10.1007/978-3-642-58043-7_8

J. Eckhoff and . Helly, Radon and Caratheodory type theorems, Handbook of Convex Geometry, pp.389-448, 1993.

R. Wenger, Geometric permutations and connected components, DI- MACS, 1990.

A. Holmsen, Recent progress on line transversals to families of translated ovals, Contemporary Mathematics, vol.453, pp.283-298, 2008.
DOI : 10.1090/conm/453/08803

M. Katchalski, T. Lewis, and J. Zaks, Geometric permutations for convex sets, Discrete Mathematics, vol.54, issue.3, pp.271-284, 1985.
DOI : 10.1016/0012-365X(85)90111-6

M. Katchalski, T. Lewis, and A. Liu, Geometric permutations of disjoint translates of convex sets, Discrete Mathematics, vol.65, issue.3, pp.249-259, 1987.
DOI : 10.1016/0012-365X(87)90057-4

H. Edelsbrunner and M. Sharir, The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n???2, Discrete & Computational Geometry, vol.7, issue.1, pp.35-42, 1990.
DOI : 10.1007/BF02187778

N. Rubin, H. Kaplan, and M. Sharir, Improved Bounds for Geometric Permutations, SIAM Journal on Computing, vol.41, issue.2, pp.367-390, 2012.
DOI : 10.1137/110835918

M. J. Katz and K. R. Varadarajan, A Tight Bound on the Number of Geometric Permutations of Convex Fat Objects in R d, Discrete & Computational Geometry, vol.26, issue.4, pp.543-548, 2001.
DOI : 10.1007/s00454-001-0044-9

A. Asinowski, M. Katchalski, A. Holmsen, and H. Tverberg, Geometric Permutations of Large Families of Translates, Discrete and Computational Geometry, pp.157-176, 2003.
DOI : 10.1007/978-3-642-55566-4_7

O. Cheong, X. Goaoc, and H. Na, Geometric permutations of disjoint unit spheres, Computational Geometry, vol.30, issue.3, pp.253-270, 2005.
DOI : 10.1016/j.comgeo.2004.08.003

URL : https://hal.archives-ouvertes.fr/inria-00000637

V. L. Klee, Common secants for plane convex sets, Proceedings of the American Mathematical Society, vol.5, issue.4, pp.639-641, 1954.
DOI : 10.1090/S0002-9939-1954-0063684-8

O. Cheong, X. Goaoc, A. Holmsen, and P. S. , Helly-Type Theorems for Line Transversals to Disjoint Unit Balls, Discrete & Computational Geometry, vol.26, issue.3, pp.194-212, 2008.
DOI : 10.1007/s00454-007-9022-1

URL : https://hal.archives-ouvertes.fr/inria-00103856

G. Megyesi and F. Sottile, The Envelope of Lines Meeting a Fixed Line and Tangent to Two Spheres, Discrete & Computational Geometry, vol.33, issue.4, pp.617-644, 2005.
DOI : 10.1007/s00454-005-1160-8

C. Borcea, X. Goaoc, and S. Petitjean, Line Transversals to Disjoint Balls, Line transversals to disjoint balls, pp.158-173, 2008.
DOI : 10.1007/s00454-007-9016-z

URL : https://hal.archives-ouvertes.fr/inria-00176201

A. Holmsen, M. Katchalski, and T. Lewis, A Helly-Type Theorem for Line Transversals to Disjoint Unit Balls, Discrete and Computational Geometry, vol.29, issue.4, pp.595-602, 2003.
DOI : 10.1007/s00454-002-0793-0

B. Aronov, O. Cheong, X. Goaoc, and G. Rote, Lines Pinning Lines, Lines pinning lines, pp.230-260, 2011.
DOI : 10.1007/s00454-010-9288-6

URL : https://hal.archives-ouvertes.fr/inria-00518028

O. Cheong, X. Goaoc, and A. Holmsen, Lower bounds to helly numbers of line transversals to disjoint congruent balls, Israel Journal of Mathematics, vol.4, issue.3, pp.213-228, 2012.
DOI : 10.1007/s11856-011-0179-1

URL : https://hal.archives-ouvertes.fr/inria-00518035

C. Borcea, X. Goaoc, S. Lazard, and S. Petitjean, Common Tangents to Spheres in ???3, Discrete & Computational Geometry, vol.35, issue.2, pp.287-300, 2006.
DOI : 10.1007/s00454-005-1230-y

URL : https://hal.archives-ouvertes.fr/inria-00070675