Geometric permutations of non-overlapping unit balls revisited

Abstract : Given four congruent balls A, B, C, D in Rδ that have disjoint interior and admit a line that intersects them in the order ABCD, we show that the distance between the centers of consecutive balls is smaller than the distance between the centers of A and D. This allows us to give a new short proof that n interior-disjoint congruent balls admit at most three geometric permutations, two if n≥7. We also make a conjecture that would imply that n≥4 such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counterexample of a highly degenerate nature (in the algebraic sense).
Type de document :
Article dans une revue
Computational Geometry, Elsevier, 2016, 53, pp.36-50. 〈10.1016/j.comgeo.2015.12.003〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01393009
Contributeur : Admin Upem <>
Soumis le : samedi 5 novembre 2016 - 18:08:43
Dernière modification le : jeudi 5 juillet 2018 - 14:45:55
Document(s) archivé(s) le : lundi 6 février 2017 - 13:03:45

Fichier

permgeom2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jae-Soon Ha, Otfried Cheong, Xavier Goaoc, Jungwoo Yang. Geometric permutations of non-overlapping unit balls revisited. Computational Geometry, Elsevier, 2016, 53, pp.36-50. 〈10.1016/j.comgeo.2015.12.003〉. 〈hal-01393009〉

Partager

Métriques

Consultations de la notice

307

Téléchargements de fichiers

55