O. Ezvan, A. Batou, and C. Soize, Multilevel reduced-order computational model in structural dynamics for the low- and medium-frequency ranges, Computers & Structures, vol.160, pp.111-125, 2015.
DOI : 10.1016/j.compstruc.2015.08.007

URL : https://hal.archives-ouvertes.fr/hal-01188399

O. Ezvan, Multilevel model reduction for uncertainty quantification in computational structural dynamics, Computational Mechanics, vol.18, issue.10, 2016.
DOI : 10.1080/03610928908830127

URL : https://hal.archives-ouvertes.fr/hal-01391536

T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 2000.

O. Zienkiewicz and R. Taylor, The Finite Element Method, 2000.

C. Soize, Medium frequency linear vibrations of anisotropic elastic structures, La Recherche Aérospatiale, vol.5, pp.65-87, 1982.
URL : https://hal.archives-ouvertes.fr/hal-00770395

K. Bathe and E. Wilson, Numerical methods in the finite element method, 1976.

L. Meirovitch, Dynamics and Control of Structures, 1990.

J. Argyris and H. Mlejnek, Dynamics of Structures. North-Holland, 1991.

M. Geradin and D. Rixen, Mechanical Vibrations, Second edition: Theory and Applications to Structural Dynamics, 1997.

R. Ohayon and C. Soize, Structural Acoustics and Vibration, The Journal of the Acoustical Society of America, vol.109, issue.6, 1998.
DOI : 10.1121/1.1352086

URL : https://hal.archives-ouvertes.fr/hal-00689039

R. Craig and A. Kurdila, Fundamentals of Structural Dynamics The subspace iteration method -revisited, Bathe KJ Comp Struct, vol.13, issue.126, pp.177-183, 2006.

S. Casciati and L. Faravelli, Quantity vs. Quality in the Model Order Reduction (MOR) of a Linear System, Smart Structures and Systems, vol.13, issue.1, pp.99-109, 2014.
DOI : 10.12989/sss.2014.13.1.099

R. Lyon and R. Dejong, Theory and Application of Statistical Energy Analysis, 1995.

R. Langley and P. Bremner, A hybrid method for the vibration analysis of complex structural-acoustic systems, The Journal of the Acoustical Society of America, vol.105, issue.3, pp.1657-1671, 1999.
DOI : 10.1121/1.426705

A. Lebot, ENERGY TRANSFER FOR HIGH FREQUENCIES IN BUILT-UP STRUCTURES, Journal of Sound and Vibration, vol.250, issue.2, pp.247-2753933, 2001.
DOI : 10.1006/jsvi.2001.3933

L. Maxit and J. Guyader, Extension of SEA model to subsystems with non-uniform modal energy distribution, Journal of Sound and Vibration, vol.265, issue.2, pp.337-358, 2003.
DOI : 10.1016/S0022-460X(02)01459-1

URL : https://hal.archives-ouvertes.fr/hal-01162178

R. Langley, V. Cotoni, and V. , Response variance prediction in the statistical energy analysis of built-up systems, The Journal of the Acoustical Society of America, vol.115, issue.2, pp.706-718, 2004.
DOI : 10.1121/1.1642621

R. Langley, On the diffuse field reciprocity relationship and vibrational energy variance in a random subsystem at high frequencies, The Journal of the Acoustical Society of America, vol.121, issue.2, pp.913-921, 2007.
DOI : 10.1121/1.2409484

V. Cotoni, R. Langley, P. Shorter, P. Ragnarsson, B. Pluymers et al., A statistical energy analysis subsystem formulation using finite element and periodic structure theory Subcomponent modelling of input parameters for statistical energy analysis by using a wavebased boundary condition1992) A modal hybridization method for vibroacoustic studies at medium frequencies, J Sound Vib J Sound Vib J Acoust Soc Am, vol.318, issue.924, pp.1077-110896, 2008.

P. Ladevèze, A new computational approach for structure vibrations in the medium frequency range, CR Acad Sci II B-Mec, vol.322, issue.12, pp.849-856, 1996.

C. Soize, Reduced models in the medium frequency range for general dissipative structural-dynamics systems, European Journal of Mechanics - A/Solids, vol.17, issue.4, pp.657-685, 1998.
DOI : 10.1016/S0997-7538(99)80027-8

URL : https://hal.archives-ouvertes.fr/hal-00765806

P. Ladevèze, L. Arnaud, P. Rouch, and C. Blanzé, The variational theory of complex rays for the calculation of medium???frequency vibrations, Engineering Computations, vol.18, issue.1/2, pp.193-214, 2001.
DOI : 10.1108/02644400110365879

C. Farhat, I. Harari, and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.11-12, pp.11-121389, 2003.
DOI : 10.1016/S0045-7825(02)00646-1

D. Bel, E. Villon, P. , and B. Ph, Forced vibrations in the medium frequency range solved by a partition of unity method with local information, International Journal for Numerical Methods in Engineering, vol.269, issue.9, pp.1105-1126, 2005.
DOI : 10.1002/nme.1202

P. Ladevèze and M. Chevreuil, A new computational method for transient dynamics including the low- and the medium-frequency ranges, International Journal for Numerical Methods in Engineering, vol.194, issue.4, pp.503-527, 2005.
DOI : 10.1002/nme.1379

P. Shorter and R. Langley, Vibro-acoustic analysis of complex systems, Journal of Sound and Vibration, vol.288, issue.3, pp.669-699, 2005.
DOI : 10.1016/j.jsv.2005.07.010

L. Zhang, R. Tezaur, and C. Farhat, The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime, International Journal for Numerical Methods in Engineering, vol.19, issue.2, 2006.
DOI : 10.1002/nme.1619

L. Ji, B. Mace, and R. Pinnington, A mode-based approach for the mid-frequency vibration analysis of coupled long- and short-wavelength structures, Journal of Sound and Vibration, vol.289, issue.1-2, pp.148-170, 2006.
DOI : 10.1016/j.jsv.2005.02.003

C. Soize, A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy, The Journal of the Acoustical Society of America, vol.94, issue.2, pp.849-865, 1993.
DOI : 10.1121/1.408186

URL : https://hal.archives-ouvertes.fr/hal-00770298

A. Sarkar and R. Ghanem, Mid-frequency structural dynamics with parameter uncertainty, Comput Method Appl M, vol.191, issue.02, pp.47-485499, 2002.

L. Gagliardini, L. Houillon, G. Borello, and L. Petrinelli, Virtual SEA: Mid-Frequency Structure-Borne Noise Modeling Based on Finite Element Analysis, SAE Technical Paper Series, pp.22-28, 1555.
DOI : 10.4271/2003-01-1555

R. Ghanem and A. Sarkar, Reduced models for the medium-frequency dynamics of stochastic systems, The Journal of the Acoustical Society of America, vol.113, issue.2, pp.834-846, 2003.
DOI : 10.1121/1.1538246

E. Capiez-lernout and C. Soize, Robust updating of uncertain damping models in structural dynamics for low- and medium-frequency ranges, Mechanical Systems and Signal Processing, vol.22, issue.8, pp.1774-1792, 2008.
DOI : 10.1016/j.ymssp.2008.02.005

URL : https://hal.archives-ouvertes.fr/hal-00684795

M. Kassem, C. Soize, and L. Gagliardini, Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle, Journal of Sound and Vibration, vol.330, issue.5, pp.937-946, 2011.
DOI : 10.1016/j.jsv.2010.09.008

URL : https://hal.archives-ouvertes.fr/hal-00684293

R. Ohayon and C. Soize, Advanced Computational Vibroacoustics -Reduced-Order Models and Uncertainty Quantification, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01162161

J. Durand, C. Soize, and L. Gagliardini, Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation, The Journal of the Acoustical Society of America, vol.124, issue.3, pp.1513-1525, 2008.
DOI : 10.1121/1.2953316

URL : https://hal.archives-ouvertes.fr/hal-00685108

A. Arnoux, A. Batou, C. Soize, and L. Gagliardini, Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics, Journal of Sound and Vibration, vol.332, issue.16, pp.3667-3680, 2013.
DOI : 10.1016/j.jsv.2013.02.019

URL : https://hal.archives-ouvertes.fr/hal-00803461

L. Gagliardini, Dispersed vibroacoustic responses of industrial products: what are we able to predict?, Proceedings of the International Conference on Noise and Vibration Engineering ISMA 2014, pp.15-17, 2014.

I. Bucher and S. Braun, Left Eigenvectors: Extraction From Measurements and Physical Interpretation, Journal of Applied Mechanics, vol.64, issue.1, pp.97-105, 1997.
DOI : 10.1115/1.2787300

P. Hansen, The Truncated SVD as a Method for Regularization, Reduction of Stiffness and Mass Matrices, pp.534-553380, 1965.

N. Bouhaddi and R. Fillod, A method for selecting master DOF in dynamic substructuring using the Guyan condensation method, Computers & Structures, vol.45, issue.5-6, pp.5-6941, 1992.
DOI : 10.1016/0045-7949(92)90052-2

T. Belytschko and W. Mindle, Flexural wave propagation behavior of lumped mass approximations, Computers & Structures, vol.12, issue.6, pp.805-812, 1980.
DOI : 10.1016/0045-7949(80)90017-6

H. Chan, C. Cai, and Y. Cheung, Convergence Studies of Dynamic Analysis by Using the Finite Element Method With Lumped Mass Matrix, Journal of Sound and Vibration, vol.165, issue.2, pp.193-207, 1993.
DOI : 10.1006/jsvi.1993.1253

. Doi, High convergence order finite elements with lumped mass matrix, 11¡1879::AID-NME933¿3.0.CO, pp.1879-18881097, 1996.

Y. Hahn and N. Kikuchi, Identification of global modeshape from a few nodal eigenvectors using simple free-form deformation, Engineering with Computers, vol.87, issue.3, pp.115-128, 2005.
DOI : 10.1007/s00366-005-0314-x

J. Guyader, Characterization and reduction of dynamic models of vibrating systems with high modal density, Journal of Sound and Vibration, vol.328, issue.4-5, pp.488-506, 2009.
DOI : 10.1016/j.jsv.2009.08.012

J. Guyader, Modal sampling method for the vibration study of systems of high modal density, The Journal of the Acoustical Society of America, vol.88, issue.5, pp.2269-2276, 1990.
DOI : 10.1121/1.400069

A. M. Doi and W. Greene, Continuum models for beam-and platelike- lattice structures, AIAA J, vol.16, issue.12, pp.1219-1228, 1978.

J. Planchard, Vibrations of nuclear fuel assemblies: A simplified model, Nuclear Engineering and Design, vol.86, issue.3, pp.383-3910029, 1995.
DOI : 10.1016/0029-5493(85)90303-6

J. Sigrits and D. Broc, Dynamic analysis of a tube bundle with fluid-structure interaction modelling using a homogenisation method, Comput Method Appl M, vol.197, pp.9-121080, 2008.

R. Craig, A review of time domain and frequency domain component mode synthesis method in combined experimental-analytical modeling of dynamic structural systems, ASME-AMD, vol.67, 1985.

D. De-klerk, D. Rixen, and S. Voormeeren, General Framework for Dynamic Substructuring: History, Review and Classification of Techniques, AIAA Journal, vol.46, issue.5, pp.1169-1181, 2008.
DOI : 10.2514/1.33274

A. Leung, Dynamic stiffness and substructures, 1993.
DOI : 10.1007/978-1-4471-2026-1

R. Ohayon, C. Soize, and R. Sampio, Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances, Archives of Computational Methods in Engineering, vol.49, issue.3, pp.321-329, 2014.
DOI : 10.1007/s11831-014-9107-y

URL : https://hal.archives-ouvertes.fr/hal-00940080

J. Argyris and S. Kelsey, The Analysis of Fuselages of Arbitrary Cross???section and Taper, Aircraft Engineering and Aerospace Technology, vol.31, issue.3, pp.62-74, 1959.
DOI : 10.1108/eb033088

J. Przemieniecki, MATRIX STRUCTURAL ANALYSIS OF SUBSTRUCTURES, AIAA Journal, vol.1, issue.1, pp.138-147, 1963.
DOI : 10.2514/3.1483

B. Irons, Structural eigenvalue problems - elimination of unwanted variables, AIAA Journal, vol.3, issue.5, pp.961-962, 1965.
DOI : 10.2514/3.3027

W. Hurty, Vibrations of structural systems by component mode synthesis, J Eng Mech-ASCE, vol.86, issue.4, pp.51-70, 1960.

W. Hurty, Dynamic analysis of structural systems using component modes, AIAA Journal, vol.3, issue.4, pp.678-685, 1965.
DOI : 10.2514/3.2947

R. Craig and M. Bampton, Coupling of substructures for dynamic analyses, AIAA J, vol.6, issue.7, pp.1313-1319, 1968.

K. Bathe and S. Gracewski, On nonlinear dynamic analysis using substructuring and mode superposition, Computers & Structures, vol.13, issue.5-6, pp.699-707, 1981.
DOI : 10.1016/0045-7949(81)90032-8

C. Farhat and M. Geradin, On a component mode synthesis method and its application to incompatible substructures, Computers & Structures, vol.51, issue.5, pp.459-4730045, 1994.
DOI : 10.1016/0045-7949(94)90053-1

L. Meirovitch, A. Hale, L. Meirovitch, and M. Kwak, On the Substructure Synthesis Method, AIAA Journal, vol.19, issue.7, pp.940-9471709, 1981.
DOI : 10.2514/3.51023

S. Voormeeren, P. Van-der-valk, and D. Rixen, Generalized Methodology for Assembly and Reduction of Component Models for Dynamic Substructuring, AIAA Journal, vol.49, issue.5, pp.1010-1020, 2011.
DOI : 10.2514/1.J050724

W. Benfield and R. Hruda, Vibration Analysis of Structures by Component Mode Substitution, AIAA Journal, vol.9, issue.7, pp.1255-1261, 1971.
DOI : 10.2514/3.49936

M. Neal and R. , A hybrid method of component mode synthesis, Comput Struct, vol.1, issue.471, pp.581-6010045, 1971.

S. Rubin, Improved Component-Mode Representation for Structural Dynamic Analysis, AIAA Journal, vol.13, issue.8, pp.995-1006, 1975.
DOI : 10.2514/3.60497

D. Markovic, K. Park, and A. Ibrahimbegovic, Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis, International Journal for Numerical Methods in Engineering, vol.24, issue.1, pp.163-180, 2007.
DOI : 10.1002/nme.1878

R. Ohayon, R. Sampaio, and C. Soize, Dynamic Substructuring of Damped Structures Using Singular Value Decomposition, Journal of Applied Mechanics, vol.64, issue.2, pp.292-298, 1997.
DOI : 10.1115/1.2787306

URL : https://hal.archives-ouvertes.fr/hal-00770023

K. Park and Y. Park, Partitioned component mode synthesis via a flexibility approach A dual Craig-Bampton method for dynamic substructuring, AIAA J Rixen DJ J Comput Appl Math, vol.42, issue.16812, pp.1236-1245383, 2004.

J. Beck and L. Katafygiotis, Updating Models and Their Uncertainties. I: Bayesian Statistical Framework, Journal of Engineering Mechanics, vol.124, issue.4, pp.455-4610733, 1998.
DOI : 10.1061/(ASCE)0733-9399(1998)124:4(455)

R. Ibrahim, Parametric Random Vibration, Journal of Applied Mechanics, vol.53, issue.4, 1985.
DOI : 10.1115/1.3171899

R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

M. Kennedy, O. Hagan, and A. , Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2001.
DOI : 10.1111/1467-9868.00294

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.395-410, 2004.
DOI : 10.1137/S1064827503424505

URL : https://hal.archives-ouvertes.fr/hal-00686211

R. Mace, W. Worden, and G. Manson, Uncertainty in Structural Dynamics, Special issue of the Journal of Sound and Vibration, vol.288, issue.3, pp.431-790, 2005.

G. Schuëller, Computational methods in stochastic mechanics and reliability analysis. Special issue of, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.12-161251, 2005.

G. Schuëller, Preface, Computers & Structures, vol.83, issue.14, pp.1031-1150, 2005.
DOI : 10.1016/j.compstruc.2005.01.004

G. Schuëller, Developments in stochastic structural mechanics, Archive of Applied Mechanics, vol.26, issue.3, pp.10-12755, 2006.
DOI : 10.1007/s00419-006-0067-z

M. Bayarri, J. Berger, R. Paulo, J. Sacks, J. Cafeo et al., A Framework for Validation of Computer Models, Technometrics, vol.49, issue.2, pp.138-154, 2007.
DOI : 10.1198/004017007000000092

G. Schuëller and H. Pradlwarter, Uncertain linear systems in dynamics: Retrospec- tive and recent developments by stochas- tic approaches, Eng Struct, issue.11, pp.312507-2517, 2009.

L. Maitre, O. Knio, and O. , Spectral methods for uncerainty quantification with applications to computational fluid dynamics, 2010.

P. Arendt, D. Apley, W. Chen, D. Lamb, and D. Gorsich, Improving identifiability in model calibration using multiple responses, J Mech Des, vol.134, issue.10, 2012.

C. Soize, Stochastic modeling of uncertainties in computational structural dynamics???Recent theoretical advances, 2017) Handbook of Uncertainty Quantification, pp.2379-2395978, 2013.
DOI : 10.1016/j.jsv.2011.10.010

URL : https://hal.archives-ouvertes.fr/hal-00743699

T. Bui-thanh, K. Willcox, and O. Ghattas, Parametric Reduced-Order Models for Probabilistic Analysis of Unsteady Aerodynamic Applications, AIAA Journal, vol.46, issue.10, pp.2520-2529, 2008.
DOI : 10.2514/1.35850

J. Degroote, J. Virendeels, and K. Willcox, Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis, International Journal for Numerical Methods in Fluids, vol.32, issue.6, pp.207-230, 2010.
DOI : 10.1002/nme.2100

Y. Marzouk, H. Najm, and L. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, AIP Conference Proceedings, pp.560-586, 2007.
DOI : 10.1063/1.2149785

D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas, Non-linear model reduction for uncertainty quantification in large-scale inverse problems, International Journal for Numerical Methods in Engineering, vol.41, issue.2, pp.1581-1608, 2010.
DOI : 10.1002/nme.2086

C. Lieberman, K. Willcox, and O. Ghattas, Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems, SIAM Journal on Scientific Computing, vol.32, issue.5, pp.2523-2542, 2010.
DOI : 10.1137/090775622

A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, European Journal of Applied Mathematics, vol.19, issue.03, pp.339-373, 2014.
DOI : 10.1023/B:ACAP.0000013855.14971.91

T. Cui, Y. Marzouk, and K. Willcox, Data-driven model reduction for the Bayesian solution of inverse problems, International Journal for Numerical Methods in Engineering, vol.30, issue.6, pp.966-9904748, 2015.
DOI : 10.1002/nme.4748

C. Soize, Random Vectors and Random Fields in High Dimension: Parametric Model-Based Representation, Identification from Data, and Inverse Problems, Handbook for Uncertainty Quantification, pp.1-65978, 2016.
DOI : 10.1007/978-3-319-11259-6_30-1

URL : https://hal.archives-ouvertes.fr/hal-01284672

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.
DOI : 10.1103/PhysRev.106.620

M. Mignolet and C. Soize, Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequen- cies, 2008.

C. Soize, Soize, Random matrix models and nonparametric method for uncertainty quantification, Handbook of Uncertainty Quantification, pp.1-69978, 2016.

C. Chen, D. Duhamel, and C. Soize, Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels, Journal of Sound and Vibration, vol.294, issue.1-2, pp.64-81, 2006.
DOI : 10.1016/j.jsv.2005.10.013

URL : https://hal.archives-ouvertes.fr/hal-00686153

R. Capillon, C. Desceliers, and C. Soize, Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures, Computer Methods in Applied Mechanics and Engineering, vol.305, pp.154-172, 2016.
DOI : 10.1016/j.cma.2016.03.012

URL : https://hal.archives-ouvertes.fr/hal-01289045

C. Soize and H. Chebli, Random Uncertainties Model in Dynamic Substructuring Using a Nonparametric Probabilistic Model, Journal of Engineering Mechanics, vol.129, issue.4, pp.449-4570733, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:4(449)

URL : https://hal.archives-ouvertes.fr/hal-00686215

M. Mignolet, C. Soize, J. Avalos, and C. Soize, Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures Robust design optimization in computational me- chanics, AIAA J J Appl Mech-T ASME, vol.51, issue.752, pp.1296-13081, 2008.

M. Mignolet and C. Soize, Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.45-48, pp.45-483951, 2008.
DOI : 10.1016/j.cma.2008.03.032

URL : https://hal.archives-ouvertes.fr/hal-00686140

E. Capiez-lernout, C. Soize, and M. Mignolet, Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation, Computer Methods in Applied Mechanics and Engineering, vol.271, issue.1, pp.210-230, 2014.
DOI : 10.1016/j.cma.2013.12.011

URL : https://hal.archives-ouvertes.fr/hal-00922708

C. Soize and C. Farhat, Uncertainty quantification of modeling errors for nonlinear reduced-order computational models using a nonparametric probabilistic approach, Int J Numer Meth Eng, 2016.

C. Soize and A. Batou, Stochastic Reduced-Order Model in Low-Frequency Dynamics in Presence of Numerous Local Elastic Modes, Journal of Applied Mechanics, vol.78, issue.6, pp.61003-61004, 2011.
DOI : 10.1115/1.4002593

URL : https://hal.archives-ouvertes.fr/hal-00692835

J. Sethian, A fast marching level set method for monotonically advancing fronts., Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1591-1595, 1995.
DOI : 10.1073/pnas.93.4.1591

J. Sethian and R. Kimmel, Computing Geodesic Paths on Manifolds, P Natl Acad Sci, vol.95, pp.8431-8435

G. Karypis and K. Vipin, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998.
DOI : 10.1137/S1064827595287997

J. Bennighof and R. Lehoucq, An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2084-2016, 2004.
DOI : 10.1137/S1064827502400650

W. Gao, X. Li, C. Yang, and Z. Bai, An Implementation and Evaluation of the AMLS Method for Sparse Eigenvalue Problems, ACM Transactions on Mathematical Software, vol.34, issue.4, pp.1-20, 2008.
DOI : 10.1145/1377596.1377600

R. Rubinstein, Simulation and the Monte Carlo Method, 1981.

G. Golub and C. Van-loan, Matrix Computations, 1983.

H. Inman and E. Bradley, The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities, Communications in Statistics - Theory and Methods, vol.23, issue.10, pp.3851-3874, 1989.
DOI : 10.2307/2577572