D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense twoframe stereo correspondence algorithms, International Journal of Computer Vision, vol.47, issue.1/3, pp.7-42, 2002.
DOI : 10.1023/A:1014573219977

E. Izquierdo, Disparity/segmentation analysis: matching with an adaptive window and depth-driven segmentation, IEEE Transactions on Circuits and Systems for Video Technology, vol.9, issue.4, pp.589-607, 1999.
DOI : 10.1109/76.767125

A. Fusiello, V. Roberto, and E. Trucco, SYMMETRIC STEREO WITH MULTIPLE WINDOWING, International Journal of Pattern Recognition and Artificial Intelligence, vol.14, issue.08, pp.1053-1066, 2000.
DOI : 10.1142/S0218001400000696

M. Agrawal and L. Davis, Window-based, discontinuity preserving stereo, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.66-73, 2004.
DOI : 10.1109/CVPR.2004.1315015

M. Bleyer and M. Gelautz, A layered stereo algorithm using image segmentation and global visibility constraints, Int. Conf. Image Process, pp.2997-3000, 2004.

N. Slesareva, A. Bruhn, and J. Weickert, Optic Flow Goes Stereo: A Variational Method for Estimating Discontinuity-Preserving Dense Disparity Maps, Pattern Recognition, pp.33-40, 2005.
DOI : 10.1007/11550518_5

O. Veksler, Stereo Correspondence by Dynamic Programming on a Tree, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.384-390, 2005.
DOI : 10.1109/CVPR.2005.334

V. Kolmogorov and R. Zabih, Computing visual correspondence with occlusions using graph cuts, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.508-515, 2001.
DOI : 10.1109/ICCV.2001.937668

W. Miled, J. Pesquet, and M. Parent, Disparity Map Estimation Using A Total Variation Bound, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06), pp.48-55, 2006.
DOI : 10.1109/CRV.2006.28

URL : https://hal.archives-ouvertes.fr/inria-00001255

M. Ansari, L. Masmoudi, and A. Bensrhair, A new regions matching for color stereo images, Pattern Recognition Letters, vol.28, issue.13, pp.1679-1687, 2007.
DOI : 10.1016/j.patrec.2007.04.011

A. Koschan, V. Rodehorst, and K. Spiller, Color stereo vision using hierarchical block matching and active color illumination, Proceedings of 13th International Conference on Pattern Recognition
DOI : 10.1109/ICPR.1996.546141

K. Mühlmann, D. Maier, J. Hesser, and R. Männer, Calculating dense disparity maps from color stereo images, an efficient implementation, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), pp.30-36, 2001.
DOI : 10.1109/SMBV.2001.988760

L. Alvarez and J. Sánchez, 3-D geometry reconstruction using a color image stereo pair and partial differential equations, 2000.

L. Alvarez, R. Deriche, J. Sánchez, and J. Weickert, Dense disparity map estimation respecting image discontinuities: A PDE and scale-space based approach (a) Grey levels (b) RGB color space (c) LUV color space, 2000.

A. Koschan, Improving robot vision by color information, Proc. Int. Conf. Artifi. Intell. and Information Control Systems of Robots, pp.247-258, 1997.

T. Belli, M. Cord, and S. Philipp-foliguet, Colour contribution for stereo image matching, Proc. Int. Conf. Color in Graphics and Image Process, pp.317-322, 2000.

J. R. Jordan and A. C. Bovik, Computational stereo vision using color, IEEE Control Systems Magazine, vol.8, issue.3, pp.31-36, 1988.
DOI : 10.1109/37.474

A. Koschan, Dense stereo correspondence using polychromatic block matching, Proc. Int. Conf. Comput. Analysis of Images and Patterns, pp.538-542, 1993.
DOI : 10.1007/3-540-57233-3_71

S. Chambon and A. Crouzil, Color stereo matching using correlation measures, Complex Systems Intelligence and Modern Technological Applications, pp.520-525, 2004.

M. Bleyer, S. Chambon, U. Poppe, and M. Gelautz, Evaluation of different methods for using colour information in global stereo matching approaches, The Congress of the International Society for Photogrammetry and Remote Sensing, 2008.

A. Fusiello, E. Trucco, and A. Verri, A compact algorithm for rectification of stereo pairs, Machine Vision and Applications, vol.12, issue.1, pp.16-22, 2000.
DOI : 10.1007/s001380050120

P. L. Combettes, A block-iterative surrogate constraint splitting method for quadratic signal recovery, IEEE Transactions on Signal Processing, vol.51, issue.7, pp.1771-1782, 2003.
DOI : 10.1109/TSP.2003.812846

E. Geoffrey and P. W. Richard, Detecting binocular half-occlusions: Empirical comparaisons of five approaches, IEEE Trans. Pattern Anal. Machine Intell, vol.42, issue.8, pp.1127-1133, 2002.

A. L. Yuille and T. Poggio, A generalized ordering constraint for stereo correspondence, 1984.

A. N. Tikhonov and A. Y. Arsenin, Solution of ill-posed problems, 1977.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

P. L. Combettes and J. C. Pesquet, Image Restoration Subject to a Total Variation Constraint, IEEE Transactions on Image Processing, vol.13, issue.9, pp.1213-1222, 2004.
DOI : 10.1109/TIP.2004.832922

URL : https://hal.archives-ouvertes.fr/hal-00621804

H. H. Nagel and W. Enkelmann, An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, issue.5, pp.565-593, 1986.
DOI : 10.1109/TPAMI.1986.4767833

L. Alvarez, J. Weickert, and J. Sánchez, Reliable estimation of dense optical flow fields with large displacements, International Journal of Computer Vision, vol.39, issue.1, pp.41-56, 2000.
DOI : 10.1023/A:1008170101536