M. A. Alghamdi, A. Alotaibi, P. L. Combettes, and N. Shahzad, A primal-dual method of partial inverses for composite inclusions, Optimization Letters, vol.38, issue.8, pp.2271-2284, 2014.
DOI : 10.1007/s11590-014-0734-x

URL : https://hal.archives-ouvertes.fr/hal-01158985

H. Attouch, L. M. Briceño-arias, and P. L. , A Parallel Splitting Method for Coupled Monotone Inclusions, SIAM Journal on Control and Optimization, vol.48, issue.5, pp.3246-3270, 2010.
DOI : 10.1137/090754297

A. Auslender, M???thodes num???riques pour la d???composition et la minimisation de fonctions non diff???rentiables, Numerische Mathematik, vol.18, issue.3, pp.213-22372, 1971.
DOI : 10.1007/BF01397082

K. Barty, J. Roy, and C. Strugarek, Hilbert-Valued Perturbed Subgradient Algorithms, Mathematics of Operations Research, vol.32, issue.3, pp.551-562, 2007.
DOI : 10.1287/moor.1070.0253

H. H. Bauschke and J. M. Borwein, On Projection Algorithms for Solving Convex Feasibility Problems, SIAM Review, vol.38, issue.3, pp.367-426, 1996.
DOI : 10.1137/S0036144593251710

H. H. Bauschke and P. L. Combettes, A Weak-to-Strong Convergence Principle for Fej??r-Monotone Methods in Hilbert Spaces, Mathematics of Operations Research, vol.26, issue.2, pp.248-264, 2001.
DOI : 10.1287/moor.

H. H. Bauschke and P. L. , Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.

H. H. Bauschke, M. N. Dao, D. Noll, and H. M. Phan, Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study

H. H. Bauschke, F. Deutsch, and H. Hundal, Characterizing arbitrarily slow convergence in the method of alternating projections, International Transactions in Operational Research, vol.1, issue.4, pp.413-425, 2009.
DOI : 10.1111/j.1475-3995.2008.00682.x

J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, vol.4, issue.1-2, pp.459-494, 2014.
DOI : 10.1007/s10107-013-0701-9

URL : https://hal.archives-ouvertes.fr/hal-00916090

R. I. Bot¸andbot¸bot¸and, C. Heinrich, and . Douglas, Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators, SIAM J. Optim, vol.23, pp.2541-2565, 2013.

L. M. Briceño-arias, Probì emes d'Inclusions Couplées: ´ Eclatement, Algorithmes et Applications, Thèse de doctorat, 2011.

L. M. Briceño-arias and A. Douglas, A Douglas???Rachford splitting method for solving equilibrium problems, Nonlinear Analysis: Theory, Methods & Applications, vol.75, issue.16, pp.6053-6059, 2012.
DOI : 10.1016/j.na.2012.06.014

L. M. Briceño-arias, Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions, Optimization, published online, 2013.

L. M. Briceño-arias and P. L. Combettes, Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery, Numer. Math. Theory Methods Appl, vol.2, pp.485-508, 2009.

L. M. Briceño-arias and P. L. Combettes, Monotone operator methods for Nash equilibria in nonpotential games, Computational and Analytical Mathematics, pp.143-159, 2013.

C. L. Byrne, Iterative Optimization in Inverse Problems, 2014.

J. Céa, Optimisation: Théorie et Algorithmes, 1971.

A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, vol.2057
DOI : 10.1007/978-3-642-30901-4

E. Chouzenoux, J. Pesquet, and A. Repetti, A block coordinate variable metric forward???backward algorithm, Journal of Global Optimization, vol.6, issue.3
DOI : 10.1007/s10898-016-0405-9

URL : https://hal.archives-ouvertes.fr/hal-00945918

P. L. Combettes, Quasi-Fej??rian Analysis of Some Optimization Algorithms, pp.115-152, 2001.
DOI : 10.1016/S1570-579X(01)80010-0

P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, pp.475-504, 2004.

P. L. Combettes, Fej??r Monotonicity in Convex Optimization, pp.1016-1024, 2009.
DOI : 10.1007/978-0-387-74759-0_179

P. L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal, vol.16, pp.727-748, 2009.

P. L. Combettes, D. D?ungd?ung, and B. C. V?uv?u, Dualization of signal recovery problems, Set-Valued Var, Anal, vol.18, pp.373-404, 2010.

P. L. Combettes and J. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for, Inverse Problems in Science and Engineering, pp.185-212, 2011.

P. L. Combettes and B. C. V?uv?u, Variable metric forward-backward splitting with applications to monotone inclusions in duality, Optimization, pp.1289-1318, 2014.

P. L. Combettes and V. R. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.
DOI : 10.1137/050626090

URL : https://hal.archives-ouvertes.fr/hal-00017649

L. Condat, A Primal???Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, Journal of Optimization Theory and Applications, vol.23, issue.1???2, pp.460-479, 2013.
DOI : 10.1007/s10957-012-0245-9

URL : https://hal.archives-ouvertes.fr/hal-00609728

E. D. Vito, V. Umanità, and S. Villa, A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization, Journal of Complexity, vol.27, issue.2, pp.188-200, 2011.
DOI : 10.1016/j.jco.2011.01.003

J. Eckstein and D. P. Bertsekas, On the Douglas???Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, vol.29, issue.1, pp.293-318, 1992.
DOI : 10.1007/BF01581204

I. I. Eremin and L. D. Popov, Fej??r processes in theory and practice: Recent results, Russian Mathematics, vol.53, issue.1, pp.36-55, 2009.
DOI : 10.3103/S1066369X09010022

Y. M. Ermol-'ev and A. D. Tuniev, Random Fejér and quasi-Fejér sequences, Theory of Optimal Solutions? Akademiya Nauk Ukrainsko? ? SSR Kiev, Selected Translations in Mathematical Statistics and Probability, pp.76-83, 1968.

D. Gabay, Applications of the method of multipliers to variational inequalities Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, pp.299-331, 1983.

R. Glowinski and P. L. Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, 1989.
DOI : 10.1137/1.9781611970838

H. S. Hundal, An alternating projection that does not converge in norm, Nonlinear Analysis: Theory, Methods & Applications, vol.57, issue.1, pp.35-61, 2004.
DOI : 10.1016/j.na.2003.11.004

F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, Asynchronous distributed optimization using a randomized alternating direction method of multipliers, 52nd IEEE Conference on Decision and Control, pp.3671-3676, 2013.
DOI : 10.1109/CDC.2013.6760448

URL : https://hal.archives-ouvertes.fr/hal-00868412

M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, 1991.
DOI : 10.1007/978-3-642-20212-4

P. L. Lions and B. Mercier, Splitting Algorithms for the Sum of Two Nonlinear Operators, SIAM Journal on Numerical Analysis, vol.16, issue.6, pp.964-979, 1979.
DOI : 10.1137/0716071

M. Lò-eve, Probability Theory II, 1978.

Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent methods, Mathematical Programming, vol.48, issue.1
DOI : 10.1007/s10107-014-0800-2

B. Mercier, Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, Tata Institute of Fundamental Research, issue.63, 1979.

J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A, vol.255, pp.2897-2899, 1962.

I. Necoara and A. Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Computational Optimization and Applications, vol.25, issue.1???3, pp.307-337, 2014.
DOI : 10.1007/s10589-013-9598-8

. Yu and . Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim, vol.22, pp.341-362, 2012.

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, 1970.
DOI : 10.1137/1.9780898719468

N. Papadakis, G. Peyré, and E. Oudet, Optimal Transport with Proximal Splitting, SIAM Journal on Imaging Sciences, vol.7, issue.1, pp.212-238, 2014.
DOI : 10.1137/130920058

URL : https://hal.archives-ouvertes.fr/hal-00816211

T. Pennanen and M. Kallio, A splitting method for stochastic programs, Annals of Operations Research, vol.10, issue.1, pp.259-268, 2006.
DOI : 10.1007/s10479-006-6171-1

J. Pesquet and N. Pustelnik, A parallel inertial proximal optimization method, Pac, J. Optim, vol.8, pp.273-305, 2012.

W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, Journal of Mathematical Analysis and Applications, vol.14, issue.2, pp.276-284, 1966.
DOI : 10.1016/0022-247X(66)90027-8

B. J. Pettis, On integration in vector spaces, Transactions of the American Mathematical Society, vol.44, issue.2, pp.277-304, 1938.
DOI : 10.1090/S0002-9947-1938-1501970-8

H. Raguet, J. Fadili, and G. Peyré, A Generalized Forward-Backward Splitting, SIAM Journal on Imaging Sciences, vol.6, issue.3, pp.1199-1226, 2013.
DOI : 10.1137/120872802

URL : https://hal.archives-ouvertes.fr/hal-00613637

E. Raik, Fejér type methods in Hilbert space, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat, vol.16, pp.286-293, 1967.

P. Richtárik and M. Taká?, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, vol.67, issue.1, pp.1-38, 2014.
DOI : 10.1007/s10107-012-0614-z

H. Robbins and D. Siegmund, A Convergence Theorem for Non Negative Almost Supermartingales and Some Applications, pp.233-257, 1971.
DOI : 10.1007/978-1-4612-5110-1_10

S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine Learning, 2011.

P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming, Mathematical Programming, vol.7, issue.1-3, pp.249-263, 1990.
DOI : 10.1007/BF01582258

P. Tseng, Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational Inequalities, SIAM Journal on Control and Optimization, vol.29, issue.1, pp.119-138, 1991.
DOI : 10.1137/0329006

S. Villa, S. Salzo, L. Baldassarre, and A. Verri, Accelerated and Inexact Forward-Backward Algorithms, SIAM Journal on Optimization, vol.23, issue.3, pp.1607-1633, 2013.
DOI : 10.1137/110844805

B. C. V?uv?u, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput . Math, vol.38, pp.667-681, 2013.

D. C. Youla, Mathematical theory of image restoration by the method of convex projections, Image Recovery: Theory and Application, pp.29-77, 1987.

E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, 1986.