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Abstract. The paper is devoted to model uncertainties (or model foroerainties) induced
by modeling errors in computational sciences and engimggsuch as in computational struc-
tural dynamics, fluid-structure interaction, and vibroastics, etc.) for which a parametric
high-fidelity computational model (HFM) is used for addragoptimization problems (such as
a robust design optimization problem), which are solvedibypducing a parametric reduced-
order model (ROM) constructed using an adapted reduced+drdsis (ROB) derived from the
parametric HFM. Two main methodologies are available tcetako account such modeling
errors. The first one is the usual output-predictive errortimoel that has been introduced for
many years. This approach can induce some difficulties secne parametric HFM and ROM
do not learn from data. The second one is the nonparametabatilistic approach of model
uncertainties introduced in the framework of structurahdgnics fifteen years ago. This ap-
proach is adapted, but is mainly limited to linear operatofshe parametric HFM. The present
paper deals with this challenging problem and proposes a&ehownparametric probabilistic
approach of the modeling errors for any parametric nonlinedM for which a parametric
nonlinear ROM can be constructed from the HFM. The methagobvoposed consists in sub-
stituting the deterministic ROB with a stochastic ROB foicltthe probability measure in
constructed on a subset of a compact Stiefel manifold. THohastic model depends on a small
number of hyperparameters for which the identification isfggened by solving a statistical
inverse problem. An application is presented in nonlineamputational structural dynamics.
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1 INTRODUCTION
1.1 Short overview on the high-dimensional and projectiorbased reduced-order models

The potential of Partial Differential Equation (PDE)-bdséligh-Dimensional computa-
tional Models (HDMs) for enhancing system performance amdlipting the unknown is rec-
ognized in almost every field of science and engineering. é¥aw in many computational
mechanics applications, nonlinear, time-dependent nicalesimulations based on HDMs re-
main so cost-prohibitive that they cannot be used as oftemeaded. For this reason, non-
linear, projection-based Model Order Reduction (MOR) hexently emerged as a promis-
ing if not indispensable numerical tool for parametric @ggions such as, to name only a
few, design, design optimization, statistical analysisg gimulation-based decision making
[1,12,[3,04,5] 6] 7,8,19, 10]. In general aparametric, high-fidelity, physics-based compu-
tational model is high-dimensional because its underlgipatial discretization is performed
priori. On the other hand, the projection of such a computationaehaf dimensionV onto
a subspace of low dimension < N represented by an associated x n) Reduced-Order
Basis (ROB)[V| leads to a Reduced-Order Model (ROM) of much lower dimensioWhen
[V] is carefully constructed posteriorj the corresponding ROM can capture the dominant be-
havior of the underlying:-parametric HDM and therefore retain most of its fidelitygeneral,
knowledge about the system response is obtained dutirageng procedure that is performed
offline During this procedure, the model parameters represemrtedldy the parameter vector
n = (p1,...,p1y,) belonging to the parameter spagg are sampled at gew points using a
greedy but effective sampling strategy (for example, s&§ [and a set of problems related to
the main problem of interest are solved to obtain a set ofrpanac solution snapshots. Then,
these snapshots are compressed using, for example, thé8ixglue Decomposition (SVD) to
construct gylobal ROB. In general, the sampling strategy is designed so teajltdbal ROB is
reliable in a large region of the model parameter domainotinhately, despite its low dimen-
sion, the resulting global (qe-parametric) ROM does not necessarily guarantee compuotti
feasibility. This is because the construction of this pcogn-based ROM scales not only with
its sizen, but also with that of the underlying HDMY > n. In the deterministic setting, this
issue is particularly problematic for nonlinear problenesduse the ROM needs to be repeat-
edly reconstructed to address, for example, time-depeaydanNewton iterations for implicit
solution strategies. This caveat is remedied by equippM@& method with a rigorous proce-
dure for approximating the resulting reduced operatorsselommputational complexity scales
only with the small size: of the ROM [1,/3] 12 13]. Such a procedure is also known in the
literature as hyper reduction [14]. It transforms the noedir ROM into a hyper reduced ROM
that guarantees feasibility, while maintaining as much@ssible a desired level of accuracy.
From these reasons, a nonlinear ROM or hyper reduced ROMiisliee modeling errors and
associated uncertainties of its underlying HDM, includimgdel form uncertainties. It is also
tainted by additional errors introduced by the reductioocpsses highlighted above. Hence,
if MOR is essential for enabling simulation-based decismaking, Uncertainty Quantification
(UQ) for ROMs is critical for certifying the decisions thegable.

1.2 Parametric probabilistic approach of uncertainties usng the p-parametric ROM

Theu-parametric ROM has been used in the context of the paranpetbabilistic approach
of uncertainties, which consists in constructing prior grudterior stochastic models of the
uncertain model-parameters (geometry, boundary comditimaterial properties, etc) of the
p-parametric HFM and of the associatgeparametric ROM (see for instance [15] 16} 17, 18,
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19,20, 21| 22, 23, 24, 25]). Such an approach is very well tediagnd very efficient to take
into account the uncertainties in tipeparametric HFM and/or in tha-parametric ROM (see
for instancel[26, 4, 27]), and for large scale statisticakise problems, see [28,129,/ 30] 31,
32,3334/ 35]). However, the parametric probabilisticrapph has not the capability to take
into account model uncertainties induced by modeling ertbat are introduced during the
construction of thgs-parametric HFM and of the associatgeparametric ROM[[25, 27, 36].

1.3 Nonparametric probabilistic approach of uncertainties using theu-parametric ROM

The nonparametric probabilistic approach of model ung#rés induced by modeling er-
rors has been introduced in 1999 [36] 37,38, 39] for linearcttiral dynamic systems. It is
organized around two steps. The first one consists in carnstgia linear reduced-order model
(ROM) of dimensiomn, from a linear HFM with N degrees-of-freedom (dofs), by using an
adapted ROB represented by (€ x n) matrix [V]. The second step consists in constructing
a SROM by substituting the deterministic matrices of the R@Mth as the mass, the damping,
and the stiffness reduced matrices) with random matricesvfoch the probability distribu-
tions are constructed using the Maximum Entropy (MaxEnit)qiple [40,/41, 42] under the
constraints defined by available information assocaited algebraic properties (such as lower
bounds, positiveness, integrability of the inverse, eta) statistical information (such as the
mean value equals to the nominal values, etc), and for whighreced algorithms have been
developed for the high dimensions [39, 43] 44]. This apdndaas been extended to differ-
ent ensembles of random matrices (see [38, 45]), staticdaynvalue problems [46], and
has been experimentally validated and applied in many areelsiding: dynamics of com-
posite structures [47] and viscoelastic structures [43, dghamic substructuring techniques
[50, 51,152, 53] 54], vibroacoustic systems|[48] 55, 56, S@]l-structure interactions and
earthquake engineering [58,159,/ 60], robust design andanigdtion [61, 62], to name only
a few. More recently, this nonparametric probabilistic rmagh has been extended in struc-
tural dynamics to nonlinear geometrical effects! [63, 64{iciSan extension is very efficient
but is strongly related to the mathematical properties efrtbnlinear elasticity operator. Such
an extension cannog priori, be carried out for any nonlinear operator and the nonparame
ric probabilistic approach of model uncertainties indubgdnodeling errors has not received
yet a solution for general nonlinear dynamical systems mpmatational solid mechanics and
computational fluid dynamics. Hence, the objective of tlapgr is to propose a honparamet-
ric probabilistic approach for such nonlinear dynamicatsgns, for which the framework is
detailed below.

1.4 Model uncertainties induced by the use of a-independent ROB for constructing the
p-parametric ROM

As explained at the end of Sectibnll.1, despite all the madtieail analyses and the ad-
vanced methodologies that have been developed, and daBtite precautions taken to build
a p-parametric nonlinear ROM from a-parametric nonlinear HFM, the efficiency of tipe
parametric nonlinear ROM depends on the sampling pgints. ., i, chosen for in C,, for
constructing the ROBV], and depends on the accuracy of the constructed approrimati
other words, it depends of the dimensierchosen for thq:-parametric ROM. Even if the-
parametric nonlinear ROM that is constructed has the chfyabigive a good approximation of
the p-parametric nonlinear HFM, the CPU-time consideratiomiset limiting the sizen,, of
the sampling points for and the dimension of the ROB, which induces an error between the
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p-parametric nonlinear ROM and theparametric nonlinear HFM whem runs througlit,,.

1.5 Objective and organization of the paper

To this effect, the objective of this paper is to propose graoametric probabilistic approach
for model uncertainties induced by two types of modelingesr

e The first type of modeling errors is associated with the ustgehe purpose of compu-
tational efficiency, of the.-parametric nonlinear ROM as a surrogate ofghparametric
nonlinear HFM. The dimensiom,, of the parametep can be small or large. When the
dimensionn of the p-parametric nonlinear ROM goes 16 and the numbenm,, of the
sampling points ofx in C,, (used for constructing/]) goes to infinity, the modeling error
between theu-parametric nonlinear ROM and theparametric nonlinear HFM goes to
zero.

e The second type of modeling errors is due to the modelingemiroduced in the con-
struction of theu-parametric nonlinear HFM itself. This means that the HFM<loot
perfectly predict the experimental data for the quantitieisiterest.

Consequently, the distance between the predictions ofitparametric ROM and the experi-
mental data are due to the two types of modeling errors.

In this paper, we give a short presentation of a novel nompeiigc probabilistic approach
that is detailed in[[65]. Sectidd 2 deals with a presentatibtihe nonparametric probabilistic
approach for model uncertainties induced by the modelirgy®in the nonlinear reduced-order
models. Sectiohl3 is devoted to the probabilistic consmnabf the stochastic reduced-order
basis (SROB). The theory is presented in a discrete fornctrabe immediately exploited by
computational models. Sectibh 4 is devoted to a simple egidin in nonlinear computational
structural dynamics that is easy to reproduce by the irttedlegader.

2 NONPARAMETRIC PROBABILISTIC APPROACH FOR UNCERTAINTY AN  AL-
YSIS OF NONLINEAR MODEL ORDER REDUCTION METHODS

An example of gu-parametric nonlinear HFM is chosen in order to explain wh#te non-
parametric probabilistic approach proposed for taking atcount the two types of modeling
errors:

o the errors induced by the use of theparametric nonlinear ROM instead of theparametric
nonlinear HFM,
o the modeling errors introduced during the constructiornefit-parametric nonlinear HFM.

2.1 Description of the u-parametric nonlinear HFM in the field of nonlinear structur al
dynamics

We consider qu-parametric nonlinear computational dynamical modeRdncorresponding
to the finite element discretization of a structure,

[M]Y(t) +a(y(@),y(t); m) =f(t; ) , t €Jto,T], 1)

with the initial conditions
y(tO) = yO ) y(tO) = yl ) (2)
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and with NV, < N constraint equations that are written in a matrix form as
[B]Ty(t) = ONCD ) t e [t07 T] ) (3)

in whicht, andT" are given such thatoo < ¢y < T' < 400, wherey, andy, are two given
vectors inRY satisfying the constraint equation. In Egl (1),is the parameter that belongs
to C,, C R™ introduced before; denotes the time variablg(t) = (v1(t),...,y~(t)) is the
RY vector of theN dofs,y(t) = dy(t)/dt andy(t) = d*y(t)/dt* are the velocity and the
acceleration vectorg)/] is the mass matrix that belongs ¥, and which is assumed to be
independent of andu, whereg(y(t),y(t); i) is theR" vector representing the internal forces
at timet, which depends og(t), y(t), andu, and finally, where (¢; ) is the R vector of
the external forces at timg which depends on parameter In Eq. (3),[B] is a given matrix

in My n.,, Which defines theV,, constraints ory, and which is assumed to be independent
of t andp and such thatB)” [B] = [Iy,,]. TheR -valued solution{y(t; u),t € [to,T]} of
Egs. (1) to[(B) depends gm. At time ¢, the quantity of interest (Qol) is a vectoft; u) =
(o1(t; ), - . ., 0m (t; ) with values inR™, depending om, which is written as

o(t; ) = h(y(t; ), y(t; ), f(ts ), G )t € [to, T, (4)
in which h is a given mapping.

2.2 Construction of a u-parametric nonlinear ROM associated with the p-parametric
nonlinear HFM

Let[V] € My, be a ROB independent f, wheren < N is the dimension of the ROB that
is assumed to be constructed for representing the sol{jionu), ¢t € [ty, 7]} forall p € C,
(as explained before), and satisfig3” [M] [V] = [I,,]. By construction, this ROB satisfies also
the constraint equatiogiB]”[V] = [Ox,, ). Itis assumed that the-parametric nonlinear ROM
is constructed via the Galerkin method which yields

y"W(e) = [Viqt) , te [to,T], (5)
act) + [VITa([V]a), V1at); w) = [VI™f(t;pw) , t €]to, 17, (6)

with the initial conditions
q(te) = [VI"IM]y, ,  G(te) = [V]"[M]y, . (7)

TheR"-valued solutiof{q(t; 1) , t € [to, T]} of Egs. [6) and(7) depends @i and{y™ (¢; u),
t € [to, T} is then-order approximation ofy(t; i) , t € [to, T|}. The corresponding approxi-
mationo™ of o is given by

o (t; ) = h(y™ (t; ), Y (4 ) F(ts ), ) £ € [to,T] . pECL. (8)

For a given reduced-order, the error induced by the use of tpeparametric nonlinear ROM
instead of theu-parametric nonlinear HFM could, priori, be estimated (in thé? sense) by

) = [ ot ) = 0t )|t dy. )
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It should be noted that the estimationsgf.) defined by Eq.[(9) must require the computation
of the solution of the HFM for a very large number of sampletuga of the vector-valued
paramete in C,, in order to correctly estimate the integralgnoverC,,. In practice, such a
computation cannot be done and Eq. (9) must be replaced by

m# T
)= 3 [ ot ) — 0 e ) P (10)
i=1 Yto
inwhichpy, ..., p,, are the sampling points used for constructing the ROB

2.3 Construction of a stochastic ROB (SROB) with the proposnonparametric proba-
bilistic approach

The proposed nonparametric probabilistic approach of inouertainties induced by mod-
eling errors consists in substituting the deterministidBR®] with a stochastic ROBW| that
is independent oft, which is a random matrix with values M ,, for which the support of its
probability distribution is the subset &, corresponding to the constraifW/|” [M] [W] =
[1,] and[B]T[W] = [0x,,..] almost surely. The probability distribution of the randomatrix
W] depends on a vector-valued hyperparametet (o, ..., «,,,) belonging to a subsét,
of R™= where the dimensiom,, will be chosen small in order for the statistical inversegem
for identifying « to be feasible. The construction of the SROB is presente@ai@3.

2.4 Construction of theu-parametric nonlinear SROM associated with theu-parametric
nonlinear ROM using the proposed nonparametric probabiligic approach

The p-parametric nonlinear SROM associated with th@arametric nonlinear ROM is de-
duced from Eqs[{5) t618) by replacimy] with the random matrifW]. Consequently™, q,
ando™ become the stochastic proces¥é8, Q, andO™, and the SROM is written as

YO () = WIQ(t) , t € [to, T], (11)
Qt) + W] (W] Q(t), W] Q(t); ) = WIT(t; ) . ¢ EJto, T], (12)

with the initial conditions
Q(to) = WI"[M]y, , Q(to) = W|"[M]y,. (13)

The R"-valued stochastic solutiofQ(¢; u, ), t € [to, T]} of Egs. [12) and[(13) depends
onp € C, anda € C,. The stochastic proceddy " (t; u, @), t € [to, T]} is then-order
approximation of stochastic proce§¢(t; ), t € [to, T|}. The corresponding approximation
{0 (t; w, @), t € [ty, T]} of the random quantity of intere$O(t; ) , t € [to, T]} is given,
forall t € [to, T], p € Cp, anda € Cq, by

o (n)

O (t; ) = h(Y W (t; p, ), Y (5 o, 00) (1 ) 1 ) (14)

2.5 lIdentification of hyperparameter a of the probability distribution of [W/]

The identification of the hyperparameterc C, C R™= can be performed using the max-
imum likelihood method or a nonlinear least-squares mefbothe Qol. For instance, a non-
linear least-squares method can be formulated as follomhéotwo types of modeling errors.
Let /() be the cost function defined aly, by

J(a) = wy Jpean () + (1 —wy) Jsq () , (15)
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in which w; is a weight such thal < w; < 1, and where/ . (o) and Jy, (o) allow for
controlling the identification ofx with respect to the mean value and the statistical fluctnatio

1
Jnean () = / 07 (1 ) — B{O (1, )}, (16)
Cmearl 15 - - - Hom,, ) ;
JS x) = / V rEfn 7/’1’1 ( ) 7”"@7 dt (17)
a (@) CSM(%_”,% Z H (t: iy @)
The positive constant$uead i1 - - - ; Ky, ) @NACsta(feys - - -5 pyy, ) Ar€ Written as
My T
Cmean(/'l’lv ) /’l’mﬂ) = Z/ |’0r8f<t; /'l’i)”Q dtv (18)
i=1 vt
my T
Cod s - s M) = D / IV (5 ) |1 dit (19)
i—1 to

wherev(e™ (¢ p.) = (0™ (¢ w,), ..., 05 (¢; w,;)) is such that,

U(refn) (t7 /J’z> = |0'ef( 7/1,1.) — 0§n) (t; /’l’z)‘ , J=1,...mg, (20)

and wherey > 0 allows for controlling the amplitude of the target relatedthe statistical
fluctuations. In EqLATN™ (¢; p,, @) = (W (& p;, @), ..., v (t; b, @) is such that

ot g, ) = {E{O] (t: i )’} = (E{OJ” (1 i, )P} Y2 =1 oma. (20)

In Eqgs. [16), [(IB) and (20)* is defined as a function of the type of the modeling errors that
are taken into account:

o If only the errors induced by the use of tiweparametric nonlinear ROM instead of the
p-parametric nonlinear HFM are taken into account, th€n= o.

o If the two types of modeling errors are simultaneously talkeéa account (the modeling
errors induced by the use of theparametric nonlinear ROM instead of theparametric non-
linear HFM and the modeling errors introduced during thestaction of theu-parametric
nonlinear HFM), ther™ = o** in which 0®® corresponds to experimental data for the Qol.

With such a formulation, in the cost function,
© 0" appears as the target for the mean value with a weight
o V(=) appears as the target for the standard deviation with a weigho ;.

The identification of hyperparametarconsists in calculating®* such that

%' = min J(a). (22)

acCq

(81

2.6 Justification

Why a random basis of the admissible set would be useful? Suplkestion is fully licit
because it is well known that, with the Galerkin method, thietsony™ constructed using the
ROM for an ordem for whichy™ is close toy (convergence of"™ towards the solutioy of
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the HFM whenmn goes tolN), is independent of the choice of the vector basis of the ssiivie

set (such a statement is perfectly truesdioe V). For a similar reason, for any SROB of the ad-
missible set, the stochastic soluti®ff”) constructed using the SROM converges almost surely
towards the deterministic solutignof the HFM, which is thus, at convergence, independent of
the choice of the stochastic basis. However, and as we havepsly explained, fon < N,

and taking into account that the RAB] is constructed fop, ..., p,, in Cy, for all p fixed

in C,,, the solutiory™ of the ROM is only an approximation gf and consequently, there is an
error introduced by the use of the ROM with ordefthe existence of such an error is the main
assumption of the method that is proposed). In such a case, fiwed value ofn for which

the convergence is not reached, the value of the error depenthe choice of the basis of the
admissible set (if the: vectors of the basis are extracted from another family tbasttutes
another vector basis of the admissible set, then the salutid of the ROM is modified). Con-
sequently, when the basis is substituted by the SR@B a stochastic family ) is generated
using the SROM. The idea is then to adapt the statisticalufaitins ofY ™ for representing
the error between the ROM and the HFM, and also, as it has bgdmmed before, to represent
the modeling errors introduced in the construction ofghparametric nonlinear HFM itself.

3 CONSTRUCTION OF A STOCHASTIC REDUCED-ORDER BASIS

The construction of the SROM is detailed(in [65]. Only the midieas of the construction are
given below. The ROB corresponds to a compact Stiefel miahdenoted bySy ,,. Since the
nonparametric probabilistic approach consists in defitiegSROB by a probability measure
onSy ., we have to construct a parameterizatiorsgf,,, which must be efficient for the high
dimensions.

3.1 Construction of a parameterization of the compact Stiefl manifold Sy ,,

Let [M] € M}, be a given positive-definite symmetiia/ x N) real matrix (possibly|//]
can be[/y]). The setMy, of all the (N x n) real matrices is considered as an Euclidean space
equipped with the inner produet [V1], [V5] >y = tr{[V4]” [M][V5]} and the associated norm
IVIlar = {tr{[V]T[M][V]}}/2. Let[V] be a reduced-order basis (ROB) belonging to the
compact Stiefel manifol8 ,, defined (see for instance [66]) by

Svn ={ V] € Mw,n , [VI'[M][V] = [I,] } C My, (23)

for which the dimension iss = Nn —n(n+1)/2 = n(n —1)/2 + n(N — n). The tangent
vector spacely Sy, to Sy, at point[V] € Sy, is defined by

TvSna = { [Z] € M+ [VI'IM][Z] + [Z]"[M] [V] = [On] }- (24)

The dimension of Sy, isvs = n(n —1)/2 4+ n(N — n). We are interested in constructing a
non classical parameterization®f,,, which does not require the construction of a big matrix
in My, v—n, and which consists in using the projectiffi = Proj, s ([A]) of any matrix
[A] € My, ontoTy Sy,

2] = Projp,s,,  ([A]) = [A] = [V][D] . [D]=(VI"[M][A] + [A]"[M][V])/2, (25)

inwhich[D] € M? is a(n x n) symmetric matrix.
Let [Z] — R v ([Z]) be the smooth mapping from tangent vector sge®y , of Sy, at a
given point[V] into Sy ,,,
W] = Rov(2)), (26)
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which is constructed in order that
V] = Rsv([On,)) - (27)

Consequently, for anjZ] in Ty'Sy.., [W] = Rsv([Z]) is such thatW|"[M] [W] = [L,]. The
construction ofR; - is performed by using the polar decomposition (see for its467]), that
is adapted to EqL(23). For any| fixed inSy ,,, mappingR; v is written as

(W] = Rov([2]) = (VI +s[2]) [H(Z)] (2] € TvSyn, (28)

in whichs > 0 is areal numbes > 0 that is used for controlling the level of fluctuations|&f
in TSy, around[V] in Sy ,,, and where the positive-definite matfid;(Z)] in M is defined
by

[Hy(2)] = ([L] + s*[Z]"[M] [2]) 712 (29)
It should be noted that another construction could be perarin using the economy-size QR
decomposition (see for instance [68]), which is also compomally efficient forn < N with
N very large.

A parameterizatiofi]| = R ([A]), defined oMy ,,, of Sy ,, ata given poinfV]in Sy ,, is
constructed in substituting the parameterizatiofZgtdefined by Eq[L(25) intgV]| = R, v ([Z])
that is defined by Eqd._(28) arld(29). Consequently, the mapgi — R, ([A]) from My,
into Sy, is defined, for all 4] in My ,,, by

(Wl=Rev([A]) == Ry ([A] = [V][D]) , [D]=(VI"[M][A]+[A]"[M][V])/2, (30)
and consequently, we have
WM W] = (L], [V]=Rsv([0nn]) € Snan- (31)

3.2 Construction of a parameterization of the subse&y ,, of the compact Stiefel manifold
S~ induced by the additional constraint [B]” [IW] = [0, .»)

We have now to construct a parameterizafidfii = R ([A]) in presence of an additional
constraint equatiofB]” [W] = [Ox.,»] on[W]. Let us consider the case for which the ROB
belongs to the subsély ,, of Sy, defined by

Snn={ VI €My . VI"IM][V]=[L] , [B]'[V] = [Onyn] } CSvns  (32)

in which0 < N, < N is the number of constraint equations and whéteis a given matrix
such that

(Bl € My, » [BI"[B]=[In.]. (33)
Such a parameterization is given by Hqg.l(30), in whidhis any matrix that belongs to the
subseMy, , of My, defined by

My, = { [A] € M. . [A] = ([In] = [B][B]") [U] , [U] € My} (34)

It can easily be seen that, for all] in M}, we have[B]"[A] = [O,,.] and consequently,
[B]T[W] = [ONCDJL]'

e From a numerical point of view, the parameterization of ixdgtd] defined by Eq.[(34)
can be rewritten asd] = [U]—[B] {[B]" [U]} inwhich[B]" [U] € M., .. Consequently,
the assemblage of the bigy x N) matrix [B] [B]” is never done.

e If the constrain{B]” [W] = [Oy,, »] does not exist, then Eq.(34) is replaced By = [U]
with [U] € MN,n-
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3.3 Construction of a stochastic reduced-order basis (SRORssociated with the ROB

The construction of the SROB, associated with ROB is performed foS ,, with the ad-
ditional constraint equatiofB]” [W] = [Ox,, ], which means that matrijd] belongs tdvI; ..
If the constraint equatiohB]” (W] = [O,,.] is removed, then the stochastic modeling pre-
sented hereinafter holds (simply write thaf = [U]). Consequently, the stochastic modeling
of matrix [UU] will be the same for the two cases (with or without the comstraquation).

For a given ROB that is represented by a mafvik given inSy,, C Sy, (thus[B]T[V] =
[On.,.»]), the associated SROB consists in introducing a random xr&lttj, defined on a prob-
ability spacg©, T, P), with values inSy ,,, such that

WITIM] W] = [I] a.s., [B]"[W] = [One,in] a-s.. (35)

and possibly, verifying additional constraints that wid defined after. We then have to con-
struct the probability measuréy, of the random matri{W|, onMy,,, for which its support is
the manifoldSy,,

suppPw) = Snn C Sy C My, -

The construction of such a probability measure on the mihéa ,, requires the introduction
of an adapted parameterization®§ ,, in order to release the difficulties induced by the support
of the measure. Below, we give a construction of the SROB iieetlsteps, and the available
information is gradually introduced in the construction.

3.3.1 Step 1 of the construction of the SROB (introducing a pameterization)

The SROB is constructed by using the parameterizatiofilgf defined by Eqs.[(30) and
(34). Random matriYW] can then be written as

(W] =Ry ([A]) = Rov([A] = [V][D]) with [D] = ([V]"[M] [A]+[A]"[M][V])/2, (36)

in which [A] is a random matrix defined qi®, 7, P), with values in subseé¥ly, ,, of My ,,

(Al = ([Iv] = [B][B]") [U] = [V] = [BI{[B]" U]}, (37)
where the random matripy] = [U'...U"] is defined on©, T, P), with values inMy,,,, in
which the columns ofU] aren random vectort)’, . .., U™ with values inR". The deterministic

mappingR; v (from tangent vector spacg, Sy, of Sy, at point[V] into Sy,,) is defined by
Egs. [28) and(29). Note th&d] is a random matrix with values .

3.3.2 Step 2 of the construction of the SROB (defining the aviable information)

Taking into account Eqs[(86) and {37), the stochastic mofleandom matrix]W| and
its generator are completely defined by the stochastic nmattethe generator of random ma-
trix [U].

(i) The construction of the SROB is performed in order thatgtatistical fluctuations of random
matrix W] are around deterministic matrjk’]. Taking into account thgiWW| = [V] for [A] =
[0n.»], random matriXA] must be a centered random variable, which is satisfifid] ifs also a
centered random matrix (due to EQ.](37)). Consequently, wst imve,

E{[U]} = [Onn] - (38)
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(i) In order to minimize the number of hyperparameters ia #tochastic model of the cen-
tered random matrixU], the Nn(Nn + 1)/2 components of the fourth-order symmetric co-
variance tensofc;x;i }jxjw Of My ,,-valued random matrifJ] are not kept becaus€ can be
very large, and consequently, the proposed stochasticlmaaded be unusable. We therefore
choose the following reduced parameterization for tensahich exhibits onlyl +n(n+1)/2
hyperparameters, such that, for and;’ in {1, ..., N}, and for allt and%’ in {1, ... ,n},

ik = E{UjUj } = [Cn(B)]j5 [cnlir (39)
in which

e [Cn(B)] € MY, is a type-covariance matrix depending on a hyperparanseseich that
0 < Bqg < B < By, < +o0o, for which its construction is detailed in [65]. This covarce
matrix allows for introducing a correlation between the poments/f, . . ., U% of each
random vectotJ* such thatl/} = [U]};..

e [c,] € M} is a type-covariance matrix and consequently, there is aermuiangular
matrix (0] belonging toM}: such that (Cholesky’s factorization),

[ea] = [0]"[0].- (40)
Matrix [c,] allows for describing the correlation between the randoatorsU', . .. U™,

Using Eqgs.[(3B)[(39), an{ (40), the second-ofder,,-valued random matrifJ] can be rewrit-
ten agU] = [G] [o] in which [G] is a second-order centerdfly ,,-valued random matrix defined
on probability spacé®, 7, P), such that, for allj andj’ in {1,..., N}, and for allk and%’ in
{1,...,n},

It can be seen that
E{[G][G]"} =n[Cx(B)] . E{[G]"[G]} = (r[Cw(B)]) [Iu].
Consequently, for the construction proposed, random ridfiis parameterized as
U] = [G][0], (42)
and is such that

E{[U][U]"} = (tle.]) [Cx(B)) . B{V]"[U]} = (r[Cn(B)]) [en] - (43)

3.3.3 Step 3 of the construction of the SROB (constructing #stochastic model ofW |)

(i) About the stochastic model of random maff®{. The stochastic model of the second-order
centered random matri%] with values inM ,, and its generator of independent realizations
is detailed in[[65] for whichG] is a non-Gaussian random matrix. This construction is based
on the finite element discretization of a non-Gaussian ranfleld whose trajectories are in-
definitely continuously differentiable functions almostealy in order to preserve the regularity
properties of the solution of the HFM. The stochastic modeppsed is chosen in order that

it exhibits only a scalar hyperparameteand does not require the explicit construction of the
big matrix[Cy(/5)] for which the number of entries (/N + 1)/2, that is unusable for a large
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value of V.

(i) Stochastic model and hyperparameters of random métvik The stochastic representa-
tion of the second-order non-Gaussian and not centere@manaktrix|W| with values in the
manifold Sy, C Sy, C My, is defined by Eqs[(36)[(B7), and {42), which are rewritten
(using Egs.[(ZB) and (29)) as

(W] = R.v([2]) = (V] + s [Z]) [Ho(2)], (44)
[H(2)] = (1] + 5* [Z]"[M] [Z]) 72, (45)
2] = [A] = [V][D], (46)
D] = ([VI"[M][A] + [A]"[M] [V])/2, (47)
Al =[U] - [BI{[B]" U]}, (48)
U] = [G(B)] [o] - (49)

in which

e [G(B)] is the second-order non-Gaussian centered random mattixvaiues inM ,,
detailed in[[65], and for which the covariance tensor is defihy Eq.[(41).

e [0] is a given upper triangular matrix M (positive diagonal entries).
e [B]is a given matrix ifVly ., such thaf B]” [B] = [In,,]-
e [V]is agiven matrix inSx,,,.

For [V] fixed inSy .., the2 + n(n + 1)/2 hyperparametersf the stochastic model of random
matrix [W] with values inSy ,, are:

¢ the deterministic real parameteis such that, < s < 1 in which g is given and such
that0 < ¢y < 1 (if s = 0, then[W] = [V] is deterministic and there are no statistical
fluctuations),

¢ the deterministic real parametéisuch that < g; < g < 8, < +oo in which 5; andg,
are given,

e the upper triangular matrijs| in M (positive diagonal entries), which is parameterized
by n(n + 1)/2 parameters, and such that the diagonal entries satisfytistraints, <
[o]11, -+, [0)nn < 0y < +00, In Whicho, is given.

The hyperparameter is thus= (s, 5, {[o]w, 1 < k < k' < n}) with lengthm, =2 + n(n +
1)/2, which belongs to the admissible gkt defined by

Ca - {5 S [5071] ’ B S [Bdaﬁu] y €0 S [0]117"'7[0]7171 S Oy s [U]kk’ GRJ{: < k,} (50)

4 APPLICATION IN NONLINEAR COMPUTATIONAL STRUCTURAL DYNAM  ICS

In this section, a verificaton problem for the theory expoakdve is presented. The cho-
sen HFM corresponds to a finite element model of a three-doeal slender damped elastic
bounded medium with nonlinear barriers that induce noalities in the dynamical system.
Additional applications for a more deeper validation of greposed theory can be found in
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[65]. The problem is intentionally chosen to be sufficiersilyiple so that it can be easily repro-
duced by the interested reader. Nevertheless, it is repasee of difficult problems as far as
ROM model form uncertainties are concerned. In the fregueéomain, the excitation has an
energy located in a narrow frequency band within in a broaduency band of analysis. The
differences between the HFM and the ROM are very small inrbguency band of excitation
(small uncertainties), but are large outside this frequérand (large uncertainties). These large
uncertainties are due to the transfer of the energy outhel&équency band of excitation due
to the nonlinearities in the dynamical system. Consequethiey correspond to second-order
contributions. This application shows how such secone@ocdntributions, which are located
outside the frequency band of excitation, can be predictetyithe nonparametric probabilistic
approach of model uncertainties.

4.1 Description of the mechanical system

The mechanical system is made up of a 3D linear elastic stigtith two elastic barriers
that induce impact non-linearities. It is defined in a cast@goordinate syste@x,x,z35 (See
Fig.[d). The cylinder has length, = 1.20 m and a rectangular section with height= 0.12 m
and widthLs; = 0.24 m. The two end sections are locatedrat= 0 andx; = L;. The elastic
medium is made of a homogeneous and isotropic elastic rabteriwhich the Young modulus
is 101 N/m?, the Poisson coefficient is15 and the mass density 1600 K g/m?3. A damping
term is added and is described by a global damping ragg ef 0.01 for each elastic mode of
the structure without the elastic barriers, and will beadtrced at the ROM level. The nonlinear

Displacement lockec
on this line

Displacement locked
on this line

Figure 1: Scheme of the mechanical system: slender elasiittigre with elastic barriers.

forces are due to elastic barriers that induce two nonlipeant forces on the structure, one in
directionz, applied to the pointz; = 0.66,z2 = 0,23 = L3/2), and another one in direction
x3 applied to the poinfx; = 0.66, 22 = Ly/2, x5 = L3) (see Fig[ll) of intensity- f, » and

— fu 3 that are assumed to be independent of the velocity and sath th

fa2(m) = koo (n+ep2) Ipe(—n —ep2) , neER, (51)

Fas(m) = ko3 (C—ep3) Ir+(C —v3) » CER, (52)

wherek,, = k3 = 2 x 10° N/m is the elasticity constant of the barriers and = ¢;,; =
2 x 10~* m are the two gaps (positive values). A time-dependent poingfis applied at the
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boundary of the slender structure at the pdint = 0.46, 2, = 0,23 = 0.2) (see Fig[l) in
the directionsr, andxs. Thex,- andxzs-components of this point force are equal to a square
integrable real-valued functiofy defined by

Folt) = L2 fin(r(es + Awef2)) — snilwe — Awef2)) bl T],  (63)

where fo = 100 N is the amplitudew. = 27 x 470 rad/s is the central frequency band,
andAw,. = 27 x 300 rad/s is the bandwidth. The signal energy of this excitation isntai
concentrated in the frequency baBd0 , 620] Hz. An observation line of equatiof) < z; <
Li;x9 =0; 23 = Lg} fort € [ty, T] is introduced. In order to limit the number of figures, o
nly the z,- andxzs-displacements dt observation points belonging to the observation line (see
Fig.[d) are considered and are denoted by;Qasd Obs, for which thex;-coordinates are.c6
and1.00. Atinitial time ¢, = —0.0403 s, the system is at rest. The final timélis= 0.3790 s.
The frequency band of observatios chosen a3, = [0,w,] with w, = 27 x 1550 rad/s.
The time sampling is defined by the frequengy, = 27 x 12,400 rad/s. There arel0, 400
time steps and the sampling time stepNis = 7/wny = 4.032 x 107 5. There arel0, 400
frequency steps in the frequency bgrdv,..,, w..) and the sampling frequency stepAss =
27 x 2.38 rad/s.

4.2 HFM, numerical solver, and results

(i) High fidelity computational modelA 3D computational model is constructed with a finite
element mesh made up @i x 6 x 12 = 4 320 three-dimensional 8-nodes solid elements. There
areb5 551 nodes andV = 16,653 dofs. The number of zero Dirichlet conditionsig, = 78
(the displacements are zero foix 13 nodes). For this HFM, the equations Eqs. (1)o (4) are
rewritten as follows:

[M]y(t) +a(y(2),y(8) =f(t) , ¢ €lto, T], (54)

a(y(t),y(t)) = [D]y(t) + [K]y(t) + fu(y(t)), (55)
with the zero initial conditions at tim&),

Y(to) =0n , Y(to) =0n, (56)
and theN_, < N constraint equations written in matrix form as
[B]"y(t) = 0N, , t € [to,T], (57)

where[B] is a given matrix ifMly v, such thafB]”[B] = [Ix,,] , which is constructed by using
the N, zero Dirichlet conditions defined in Sectionl4.1. A condtiucof [D] is detailed in[[65]
for which the numerical complexity of the product [@f] by a vector inR” is of the order of
the one corresponding to the product[af] by a vector inR”, which is much less thai?
becauseé)] is a sparse finite element matrix. In the frequency b&nd- [0, w,], the Qol is
the vecto®(w) = (01(w), . . ., Oy (w)) € C™ defined as follows:

e For plotting and analyzing the responses of the SR@lI= 2 x 2 = 4 dofs in direction
9 andzs of the2 observation nodes Ohsand Obs; .
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e For the identification of the hyperparameteof the SROB;n, = 2 x 61 = 122 dofs in
directionz, andz3 of all the61 nodes belonging to the observation line.

For allw in B,, the complex vector vect@{w) is written as
Ow) =h(-w’y(w)) , we B, (58)

inwhichh s a linear mapping froft?" into C™°, which extracts the dofs from vectew,? y(w) €
C¥, and where .

V(w) :/ e “lytydt , weDB,. (59)

to

(i) Numerical solver The implicit Newmark time-integration scheme [69] is ugedth pa-
rametersi = 0.5 anda = 0.25(0.5 + §)? = 0.25) and with a fixed point method (without
relaxation) at each sampling time with a relative precisdbri0=°. In order to guaranty the
convergence of the fixed point method, a local adaptive tieye is implemented (time steft
is locally decreased). Such a numerical method has beeerpréfto the other possible ones
due to the presence of contacts induced by the barriershwhguire an adaptive time steps.

(iii) Results and quantification of the effects of the nonlinesxitin Fig.[2, the four figures
compare the graphs— log,,([o;(27v)|) computed with the HFM, with the graphs computed
with the linear HFM (that is to say, in removing the nonlinetastic barriers in the HFM), for
thex,- andxs-accelerations of Osand Obsg;. These figures show the effects of the nonlinear
elastic barriers on the responses, in particular, it careba an important transfer of the energy
in the frequency band that is outside the main frequency Egtd 620] H = of the excitation.

4.3 ROM, numerical solver, and results

(i) Reduced-order computational modélet {¢!, ..., "} be the firstn elastic modes asso-
ciated with the first: eigenfrequencie8 < w; < ... < w, of the linear undamped structure
associated with the nonlinear damped dynamical systenchadre such that

(K] " = X [M] ", (60)
with the constraint equation
B¢ =o0n, , k=1,...,n, (61)
and where\; = w?, ..., \, = w?. The elastic modes satisfy the usual orthogonality progsert
<M o >=b0 , < [K]@", 0" >= NG . (62)

For the nonlinear dynamical system, the ROB is chosgips- [ ... ¢"] € My, which is
such that
VITIM][VI=[L] , [B]"[V]= 0Nl (63)

Using the ROB[V| € My, and Eq. [(6B), the ROM associated with the HFM defined by
Egs. (54) to[(8l7) is written as

yor () =[Viat) , te€ [t T], (64)

G(t) + VITRI[V]a) + [VIT[K][V]a) + [V ([V]a() = V() , ¢ €]to, T], (65)
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Figure 2: Graphs — log;,(|o;(27v)|) computed with the HFM (thick lines) and with the LINEAR HFM{fh
lines) for x5- and xs-accelerations of ORs (up left and up right figures), and faf,- and x3-accelerations of
Obss, (down left and down right figures).

with the initial conditions

q(tO) =0, , q(tO) =0,. (66)
The approximatio@"™ (w) of the Qolo(w) defined by Eqs[(88) and (59) is written as
0" (W) = h(-=?§" (W) , we B,, (67)
T .
9" (w) = / ety dt | weB,. (68)
to

(i) Numerical solver The algorithm described in Sectién 14.2-(ii) is used butdamed to
Eq. (65) that is rewritten af(t) +2 &, [A\™]Y2 q(t) + A™] q(t) = [V]TT(1t) — [V]T T ([V]q(t))
in which [\(")] is the positive-definite diagonal matrix whose diagonatiestare), . .., \,,.

(iif) Choice of the reduced-order dimensienresults, and quantification of the errors induced
by the use of the ROM instead of the HFWaking into account that a significative differ-
ence between the responses computed with ROM and with the mMEB be generated (in

order to validate the capability of the nonparametric sastic method proposed to take into
account this type of modeling errors), a good compromisevéen the numerical cost and
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the quality of the ROM leads us to choase- 20 as the dimension of the ROM. We then have
wy =27x96.69rad/s,ws =27 x472rad/s,ws =27 x 720 rad/s, w;; = 27 x 1474 rad/s,

wiz = 27 x 1754 rad/s, andwsy = 27 x 2936 rad/s. Consequently, there areelas-
tic modes in the frequency band, 620] Hz containing the main part of the excitatioh]
elastic modes in the frequency band of observalion550] Hz and9 elastic modes in the
frequency band1550,3100] Hz. In Fig.[3, the four figures show a comparison of the graphs
v+ log,o([6;(2mv)|) computed with the HFM, with the graphs— log,o([\" (27v)|) com-
puted with the ROM, for the,- andxzs-accelerations of Osand Obg,. These figures show
that the differences between the HFM and the ROM are verylamdhe frequency band
(320, 620] H =z of the excitation, but are significant outside this freqyeband. Such differ-
ences could be reduced in increasing dimensiohthe ROM, but as we have explained above,
the reduced-order dimensianis chosen in order that significant differences exist betwibe
ROM and the HFM.

FRF modulus for xz—acceleration of Obs51 FRF modulus for x3—acceleration of Obs51
HFM (thick line), ROM (thin line) HFM (thick line), ROM (thin line)
3 i i 3 : :
2 L
1 L
? =
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o 1 =
o o
-2
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_4 L L 1 _4 1 L L
0 500 1000 1500 0 500 1000 1500
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Figure 3: Graphs — log; (|0, (27v)|) computed with the HFM (thick lines) and graphs-» logw(|6§") (27v)))
computed with the ROM (thin lines) fars- andxzs-accelerations of ORs (up left and up right figures), and for
x2- andzs-accelerations of Ols (down left and down right figures).

4.4 SROM, stochastic solver, and results

(i) Stochastic reduced-order computational modetom Eqgs.[(111) to[ (14), the SROM asso-
ciated with Eqgs.[(64) td(68), is obtained in replaciig by the random matri{W]. Conse-
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quently,y™ (), q(t), ando™ (w), become the random vectors™ (t), Q(t), andﬁn(w), and
the SROM is written as
YO = WIQ(E) , t € [t T], (69)

Q(t)+[WIT[D]W] Q(t)+[WI"[K]WIQ(t)+WI] " fu (IW]Q(1) = [WI"f(t) , t €]to, T], (70)
with the initial conditions

Q(to) = On s Q(to) = On ,a.8 . (71)

Let 6("’ (w; @) be the random Qol with values @ with m, = 122, depending on hyperpa-
rametera, such that

(n)

O (w;a) =h(-w*Y "(w;a)) , w € B,, (72)

T
A (w; ) = / et (ta)dt , weDB,. (73)

to
(i) 1dentification of the hyperparametemhe problem is the identification of hyperparameter
a = (s, 3, 0)thatis defined in Sectidn 3.3.3-(ii), with length, = 2+n(n+1)/2 = 212, and
which belongs to the admissible ggt = R* x [0.01,0.1] x M. For defining the cost function
J(c), we introduce the random functian— dB™ (w; &) = (dB{" (w; ), ..., dB™ (w; )
defined onB, with valued inR™ such that, forallj = 1, ..., m, (with m, = 122),

dB!" (w; ) = logy, (|0 (w; ))) (74)

in which 6(n)(w; o) = (@5”)(@ a),. .., @ﬁ,’fﬁ(w; «)) is defined by Eq.L(72). In order to de-
fine the target functions for constructing the cost functiae introduce the functions —
db®(w) = (db(w), ..., db (w)) andw — db™ (w) = (db{” (w), ..., db (w)), defined on
B, with values inR™ such that, foralf =1,...,m,,

dbj* () = logo([0,(w)]) . dbf” () = logo([]" (). (79)

inwhichd(w) = (6 (w), . .., 0, (w)) is defined by Eq[{88) and whetd" (w) = (3\" (w), ..
5(,7?3( )) is defined by EqL(87). The cost function is defined by Eq. (1) w

*

J<a> = wy Jmean (a) + (1 - wJ) Jstd (a) ’ (76)
in which
1 & n
Jmean () = — > /B |d¥(w) — E{dBY” (w; ) }? w;(w) dw, (77)
mean j=1 >
1 - ref,nn n
Jan ) = =3 [ w) ol ) ) e @
std 525 "

in which the positive constants,..,andcgg are defined by

cmean—z |dUef 2 wj(w)dw cstd:Z/ |v](-'ef’n)(w)|2wj(w) dw . (79)
j=17Bo
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In these equation™ (w) = (L (w),..., o5 (W) andv™ (w; @) = (V" (w; ), ...,
") (w; @) are defined, foj = 1,...m,, by

/Umo

U‘gref,n)(w) = |dbf(w) — db(”)(w)| ; (80)

J

in which~ > 0 is an amplitude factor and where

v (wy @) = { E{dB\" (w; @)?} — (E{dB{" (w; a)})*} }'/2. (81)

J

In Egs. [7T) to[(79), foy = 1,...m,, the functionsv — w;(w) are bounded o3, with values
in R* and are chosen such thaf(w) = [db(w) — db§") (w)] for all w in B,. The weight (in the
cost function) iav; = 0.9, and the amplitude factor (for the target)is= 0.3. The optimization
problem

a® = (5% B [P} = min J(a), (82)

aECa

is solved using the algorithm detailed [n_[65], which is lthea the use of the interior-point
algorithm with constraints. The Monte Carlo solver is usathw 000 independent realiza-
tions (mean-square convergence reached). The optima e@kuand s are s = 0.0103 and
[t = 0.0181 and the optimal valug-*?] of [¢] can be found in [65].

(iii) Results In Fig.[4, the four figures that are displayed summarize ¢iselts obtained with
the SROM. These four figures are related to.theandxs-accelerations of Olsand Obsg,.
Each figure displays the graph— log,,(|o;(27v)|) computed with the HFM (the target for
the mean), the graph — 1og10(\o4j”>(2m)|) computed with the linear ROM, and the con-
fidence region (with a probability. = 0.98) of the frequency sampled stochastic process
v o log10(|5](”)(27w)|) constructed with the SROM. The upper envelope of the condiglen
region corresponds to the quantile for the probabgitynd the lower envelope to the quantile
for the probabilityl — p.. It can be seen that the results obtained are very good, efarepe
xg-accelerations in the small pa20 , 438] H z of the frequency ban{d , 1550] H z of analysis.
Such a relatively bad prediction could certainly be imprbusing a much more sophisticated
optimization algorithm for the identification of the hyparameters. Nevertheless, it can be
seen that the SROM allows for generating a confidence regioich is not centered around the
responses computed with the ROM, but which is approximigtiwell centered around the re-
sponses computed with the HFM, which is a relatively diffiqubblem for taking into account
contributions of second-order. Such a result demonsttiagesapability of method proposed.

5 CONCLUSIONS

In this paper, a novel nonparametric probabilistic appnoaas been presented for taking
into account modeling errors in any nonlinear high-fidefitgdel (HFM) for which a nonlinear
ROM can be constructed. The nonparametric probabilistidehis implemented in the nonlin-
ear ROM. The proposed stochastic model exhibits a small eumibhyperparameters, which
allows their identification by solving a statistical invensroblem. The cost function is formu-
lated with respect to a given target related to given obsiens, which allows for specifying the
level of uncertainties induced by the use of the ROM instdabdleoHFM and/or by the model-
ing errors (model form uncertainties) introduced in the HWwith respect to experimental data.
The least-square method that is used in the paper can beeddy another statistical inverse
method such as the maximum likelihood method. A first valadabf the proposed method
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Figure 4: Graphs — log,(|o,;(27v)|) computed with the HFM (thick lines), grapbs— 10g10(|5§-n)(2ﬂ'u)|)
computed with the ROM (thin lines), and confidence regionpfoe= 0.98 (yellow region with red upper and red
lower envelopes) computed for— 1og10(|(3§") (27v)|) computed with the SROM, fore- andxs-accelerations
of Obs;; (up left and up right figures), and far- and x3-accelerations of Olys (down left and down right
figures).

has been obtained by analyzing a nonlinear dynamical pmabl€he proposed nonparamet-
ric probabilistic approach of modeling errors can simudtausly be used with the parametric
probabilistic approach of the uncertain parameters of timepritational model, because, if the
construction of the ROB can depend on these random parantterconstruction of the SROB
does not directly depend on them (but depends indirecttyutyin the ROB). In addition, if the
Monte Carlo method is used as stochastic solver, the réializaof the SROB and those of the
random parameters are constructed simultaneously. Coesty the speed of convergence
(that does not depends on the dimension) is not altered gah@metric uncertainties are taken
into account in the computational model. The method can tenebed to the case of a HFM for
which the level of model uncertainties is not the same in tfferént parts of the system.
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