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Abstract. The paper is devoted to model uncertainties (or model form uncertainties) induced
by modeling errors in computational sciences and engineering (such as in computational struc-
tural dynamics, fluid-structure interaction, and vibroacoustics, etc.) for which a parametric
high-fidelity computational model (HFM) is used for addressing optimization problems (such as
a robust design optimization problem), which are solved by introducing a parametric reduced-
order model (ROM) constructed using an adapted reduced-order basis (ROB) derived from the
parametric HFM. Two main methodologies are available to take into account such modeling
errors. The first one is the usual output-predictive error method that has been introduced for
many years. This approach can induce some difficulties because the parametric HFM and ROM
do not learn from data. The second one is the nonparametric probabilistic approach of model
uncertainties introduced in the framework of structural dynamics fifteen years ago. This ap-
proach is adapted, but is mainly limited to linear operatorsof the parametric HFM. The present
paper deals with this challenging problem and proposes a novel nonparametric probabilistic
approach of the modeling errors for any parametric nonlinear HFM for which a parametric
nonlinear ROM can be constructed from the HFM. The methodology proposed consists in sub-
stituting the deterministic ROB with a stochastic ROB for which the probability measure in
constructed on a subset of a compact Stiefel manifold. The stochastic model depends on a small
number of hyperparameters for which the identification is performed by solving a statistical
inverse problem. An application is presented in nonlinear computational structural dynamics.
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1 INTRODUCTION

1.1 Short overview on the high-dimensional and projection-based reduced-order models

The potential of Partial Differential Equation (PDE)-based, High-Dimensional computa-
tional Models (HDMs) for enhancing system performance and predicting the unknown is rec-
ognized in almost every field of science and engineering. However, in many computational
mechanics applications, nonlinear, time-dependent numerical simulations based on HDMs re-
main so cost-prohibitive that they cannot be used as often asneeded. For this reason, non-
linear, projection-based Model Order Reduction (MOR) has recently emerged as a promis-
ing if not indispensable numerical tool for parametric applications such as, to name only a
few, design, design optimization, statistical analysis, and simulation-based decision making
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In general, aµ-parametric, high-fidelity, physics-based compu-
tational model is high-dimensional because its underlyingspatial discretization is performeda
priori . On the other hand, the projection of such a computational model of dimensionN onto
a subspace of low dimensionn ≪ N represented by an associated(N × n) Reduced-Order
Basis (ROB)[V ] leads to a Reduced-Order Model (ROM) of much lower dimensionn. When
[V ] is carefully constructeda posteriori, the corresponding ROM can capture the dominant be-
havior of the underlyingµ-parametric HDM and therefore retain most of its fidelity. Ingeneral,
knowledge about the system response is obtained during atraining procedure that is performed
offline. During this procedure, the model parameters represented here by the parameter vector
µ = (µ1, . . . , µNp

) belonging to the parameter spaceCµ are sampled at afew points using a
greedy but effective sampling strategy (for example, see [11]), and a set of problems related to
the main problem of interest are solved to obtain a set of parametric solution snapshots. Then,
these snapshots are compressed using, for example, the Singular Value Decomposition (SVD) to
construct aglobalROB. In general, the sampling strategy is designed so that the global ROB is
reliable in a large region of the model parameter domain. Unfortunately, despite its low dimen-
sion, the resulting global (orµ-parametric) ROM does not necessarily guarantee computational
feasibility. This is because the construction of this projection-based ROM scales not only with
its sizen, but also with that of the underlying HDM,N ≫ n. In the deterministic setting, this
issue is particularly problematic for nonlinear problems because the ROM needs to be repeat-
edly reconstructed to address, for example, time-dependency or Newton iterations for implicit
solution strategies. This caveat is remedied by equipping aMOR method with a rigorous proce-
dure for approximating the resulting reduced operators whose computational complexity scales
only with the small sizen of the ROM [1, 3, 12, 13]. Such a procedure is also known in the
literature as hyper reduction [14]. It transforms the nonlinear ROM into a hyper reduced ROM
that guarantees feasibility, while maintaining as much as possible a desired level of accuracy.
From these reasons, a nonlinear ROM or hyper reduced ROM inherits the modeling errors and
associated uncertainties of its underlying HDM, includingmodel form uncertainties. It is also
tainted by additional errors introduced by the reduction processes highlighted above. Hence,
if MOR is essential for enabling simulation-based decisionmaking, Uncertainty Quantification
(UQ) for ROMs is critical for certifying the decisions they enable.

1.2 Parametric probabilistic approach of uncertainties using the µ-parametric ROM

Theµ-parametric ROM has been used in the context of the parametric probabilistic approach
of uncertainties, which consists in constructing prior andposterior stochastic models of the
uncertain model-parameters (geometry, boundary conditions, material properties, etc) of the
µ-parametric HFM and of the associatedµ-parametric ROM (see for instance [15, 16, 17, 18,
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19, 20, 21, 22, 23, 24, 25]). Such an approach is very well adapted and very efficient to take
into account the uncertainties in theµ-parametric HFM and/or in theµ-parametric ROM (see
for instance [26, 4, 27]), and for large scale statistical inverse problems, see [28, 29, 30, 31,
32, 33, 34, 35]). However, the parametric probabilistic approach has not the capability to take
into account model uncertainties induced by modeling errors that are introduced during the
construction of theµ-parametric HFM and of the associatedµ-parametric ROM [25, 27, 36].

1.3 Nonparametric probabilistic approach of uncertainties using theµ-parametric ROM

The nonparametric probabilistic approach of model uncertainties induced by modeling er-
rors has been introduced in 1999 [36, 37, 38, 39] for linear structural dynamic systems. It is
organized around two steps. The first one consists in constructing a linear reduced-order model
(ROM) of dimensionn, from a linear HFM withN degrees-of-freedom (dofs), by using an
adapted ROB represented by the(N × n) matrix [V ]. The second step consists in constructing
a SROM by substituting the deterministic matrices of the ROM(such as the mass, the damping,
and the stiffness reduced matrices) with random matrices for which the probability distribu-
tions are constructed using the Maximum Entropy (MaxEnt) principle [40, 41, 42] under the
constraints defined by available information assocaited with algebraic properties (such as lower
bounds, positiveness, integrability of the inverse, etc) and statistical information (such as the
mean value equals to the nominal values, etc), and for which advanced algorithms have been
developed for the high dimensions [39, 43, 44]. This approach has been extended to differ-
ent ensembles of random matrices (see [38, 45]), static boundary value problems [46], and
has been experimentally validated and applied in many areas, including: dynamics of com-
posite structures [47] and viscoelastic structures [48, 49], dynamic substructuring techniques
[50, 51, 52, 53, 54], vibroacoustic systems [48, 55, 56, 57],soil-structure interactions and
earthquake engineering [58, 59, 60], robust design and optimization [61, 62], to name only
a few. More recently, this nonparametric probabilistic approach has been extended in struc-
tural dynamics to nonlinear geometrical effects [63, 64]. Such an extension is very efficient
but is strongly related to the mathematical properties of the nonlinear elasticity operator. Such
an extension cannot,a priori, be carried out for any nonlinear operator and the nonparamet-
ric probabilistic approach of model uncertainties inducedby modeling errors has not received
yet a solution for general nonlinear dynamical systems in computational solid mechanics and
computational fluid dynamics. Hence, the objective of this paper is to propose a nonparamet-
ric probabilistic approach for such nonlinear dynamical systems, for which the framework is
detailed below.

1.4 Model uncertainties induced by the use of aµ-independent ROB for constructing the
µ-parametric ROM

As explained at the end of Section 1.1, despite all the mathematical analyses and the ad-
vanced methodologies that have been developed, and despiteall the precautions taken to build
a µ-parametric nonlinear ROM from aµ-parametric nonlinear HFM, the efficiency of theµ-
parametric nonlinear ROM depends on the sampling pointsµ1, . . . ,µmµ

chosen forµ in Cµ for
constructing the ROB,[V ], and depends on the accuracy of the constructed approximation. In
other words, it depends of the dimensionn chosen for theµ-parametric ROM. Even if theµ-
parametric nonlinear ROM that is constructed has the capability to give a good approximation of
theµ-parametric nonlinear HFM, the CPU-time consideration leads to limiting the sizemµ of
the sampling points forµ and the dimensionn of the ROB, which induces an error between the
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µ-parametric nonlinear ROM and theµ-parametric nonlinear HFM whenµ runs throughCµ.

1.5 Objective and organization of the paper

To this effect, the objective of this paper is to propose a nonparametric probabilistic approach
for model uncertainties induced by two types of modeling errors:

• The first type of modeling errors is associated with the usage, for the purpose of compu-
tational efficiency, of theµ-parametric nonlinear ROM as a surrogate of theµ-parametric
nonlinear HFM. The dimensionmµ of the parameterµ can be small or large. When the
dimensionn of theµ-parametric nonlinear ROM goes toN and the numbermµ of the
sampling points ofµ in Cµ (used for constructing[V ]) goes to infinity, the modeling error
between theµ-parametric nonlinear ROM and theµ-parametric nonlinear HFM goes to
zero.

• The second type of modeling errors is due to the modeling errors introduced in the con-
struction of theµ-parametric nonlinear HFM itself. This means that the HFM does not
perfectly predict the experimental data for the quantitiesof interest.

Consequently, the distance between the predictions of theµ-parametric ROM and the experi-
mental data are due to the two types of modeling errors.

In this paper, we give a short presentation of a novel nonparametric probabilistic approach
that is detailed in [65]. Section 2 deals with a presentationof the nonparametric probabilistic
approach for model uncertainties induced by the modeling errors in the nonlinear reduced-order
models. Section 3 is devoted to the probabilistic construction of the stochastic reduced-order
basis (SROB). The theory is presented in a discrete form thatcan be immediately exploited by
computational models. Section 4 is devoted to a simple application in nonlinear computational
structural dynamics that is easy to reproduce by the interested reader.

2 NONPARAMETRIC PROBABILISTIC APPROACH FOR UNCERTAINTY AN AL-
YSIS OF NONLINEAR MODEL ORDER REDUCTION METHODS

An example of aµ-parametric nonlinear HFM is chosen in order to explain whatis the non-
parametric probabilistic approach proposed for taking into account the two types of modeling
errors:
⋄ the errors induced by the use of theµ-parametric nonlinear ROM instead of theµ-parametric
nonlinear HFM,
⋄ the modeling errors introduced during the construction of theµ-parametric nonlinear HFM.

2.1 Description of theµ-parametric nonlinear HFM in the field of nonlinear structur al
dynamics

We consider aµ-parametric nonlinear computational dynamical model onRN corresponding
to the finite element discretization of a structure,

[M ] ÿ(t) + g(y(t), ẏ(t);µ) = f(t;µ) , t ∈ ]t0, T ] , (1)

with the initial conditions
y(t0) = y0 , ẏ(t0) = y1 , (2)
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and withNCD < N constraint equations that are written in a matrix form as

[B]T y(t) = 0NCD
, t ∈ [t0, T ] , (3)

in which t0 andT are given such that−∞ < t0 < T < +∞, wherey0 andy1 are two given
vectors inRN satisfying the constraint equation. In Eq. (1),µ is the parameter that belongs
to Cµ ⊂ Rmµ introduced before,t denotes the time variable,y(t) = (y1(t), . . . , yN(t)) is the
RN vector of theN dofs, ẏ(t) = dy(t)/dt and ÿ(t) = d2y(t)/dt2 are the velocity and the
acceleration vectors,[M ] is the mass matrix that belongs toM+

N and which is assumed to be
independent oft andµ, whereg(y(t), ẏ(t);µ) is theRN vector representing the internal forces
at timet, which depends ony(t), ẏ(t), andµ, and finally, wheref(t;µ) is theRN vector of
the external forces at timet, which depends on parameterµ. In Eq. (3),[B] is a given matrix
in MN,NCD

, which defines theNCD constraints ony, and which is assumed to be independent
of t andµ and such that[B]T [B] = [INCD

]. TheRN -valued solution{y(t;µ), t ∈ [t0, T ]} of
Eqs. (1) to (3) depends onµ. At time t, the quantity of interest (QoI) is a vectoro(t;µ) =
(o1(t;µ), . . . , omo(t;µ)) with values inRmo, depending onµ, which is written as

o(t;µ) = h(y(t;µ), ẏ(t;µ), f(t;µ), t;µ) , t ∈ [t0, T ] , (4)

in which h is a given mapping.

2.2 Construction of aµ-parametric nonlinear ROM associated with theµ-parametric
nonlinear HFM

Let [V ] ∈ MN,n be a ROB independent ofµ, wheren ≪ N is the dimension of the ROB that
is assumed to be constructed for representing the solution{y(t;µ), t ∈ [t0, T ]} for all µ ∈ Cµ
(as explained before), and satisfies[V ]T [M ] [V ] = [In]. By construction, this ROB satisfies also
the constraint equation[B]T [V ] = [0NCD,n]. It is assumed that theµ-parametric nonlinear ROM
is constructed via the Galerkin method which yields

y(n)(t) = [V ] q(t) , t ∈ [t0, T ] , (5)

q̈(t) + [V ]Tg([V ] q(t), [V ] q̇(t);µ) = [V ]T f(t;µ) , t ∈ ]t0, T ] , (6)

with the initial conditions

q(t0) = [V ]T [M ] y0 , q̇(t0) = [V ]T [M ] y1 . (7)

TheRn-valued solution{q(t;µ) , t ∈ [t0, T ]} of Eqs. (6) and (7) depends onµ, and{y(n)(t;µ),
t ∈ [t0, T ]} is then-order approximation of{y(t;µ) , t ∈ [t0, T ]}. The corresponding approxi-
mationo(n) of o is given by

o(n)(t;µ) = h(y(n)(t;µ), ẏ(n)(t;µ), f(t;µ), t;µ) , t ∈ [t0, T ] , µ ∈ Cµ . (8)

For a given reduced-ordern, the error induced by the use of theµ-parametric nonlinear ROM
instead of theµ-parametric nonlinear HFM could,a priori, be estimated (in theL2 sense) by

ε(n) =

∫

Cµ

∫ T

t0

‖o(t;µ)− o(n)(t;µ)‖2 dt dµ . (9)
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It should be noted that the estimation ofε(n) defined by Eq. (9) must require the computation
of the solution of the HFM for a very large number of sampled values of the vector-valued
parameterµ in Cµ in order to correctly estimate the integral inµ overCµ. In practice, such a
computation cannot be done and Eq. (9) must be replaced by

ε(n) =

mµ∑

i=1

∫ T

t0

‖o(t;µi)− o(n)(t;µi)‖
2 dt , (10)

in whichµ1, . . . ,µmµ
are the sampling points used for constructing the ROB[V ].

2.3 Construction of a stochastic ROB (SROB) with the proposed nonparametric proba-
bilistic approach

The proposed nonparametric probabilistic approach of model uncertainties induced by mod-
eling errors consists in substituting the deterministic ROB [V ] with a stochastic ROB[W] that
is independent ofµ, which is a random matrix with values inMN,n for which the support of its
probability distribution is the subset ofMN,n corresponding to the constraints[W]T [M ] [W] =
[In] and [B]T [W] = [0NCD,n] almost surely. The probability distribution of the random matrix
[W] depends on a vector-valued hyperparameterα = (α1, . . . , αmα

) belonging to a subsetCα
of Rmα where the dimensionmα will be chosen small in order for the statistical inverse problem
for identifyingα to be feasible. The construction of the SROB is presented in Section 3.

2.4 Construction of theµ-parametric nonlinear SROM associated with theµ-parametric
nonlinear ROM using the proposed nonparametric probabilistic approach

Theµ-parametric nonlinear SROM associated with theµ-parametric nonlinear ROM is de-
duced from Eqs. (5) to (8) by replacing[V ] with the random matrix[W]. Consequently,y(n), q,
ando(n) become the stochastic processesY(n), Q, andO(n), and the SROM is written as

Y(n)(t) = [W]Q(t) , t ∈ [t0, T ] , (11)

Q̈(t) + [W]Tg([W]Q(t), [W] Q̇(t);µ) = [W]T f(t;µ) , t ∈ ]t0, T ] , (12)

with the initial conditions

Q(t0) = [W]T [M ] y0 , Q̇(t0) = [W]T [M ] y1 . (13)

The Rn-valued stochastic solution{Q(t;µ,α) , t ∈ [t0, T ]} of Eqs. (12) and (13) depends
on µ ∈ Cµ andα ∈ Cα. The stochastic process{Y(n)(t;µ,α) , t ∈ [t0, T ]} is then-order
approximation of stochastic process{Y(t;µ) , t ∈ [t0, T ]}. The corresponding approximation
{O(n)(t;µ,α) , t ∈ [t0, T ]} of the random quantity of interest{O(t;µ) , t ∈ [t0, T ]} is given,
for all t ∈ [t0, T ], µ ∈ Cµ, andα ∈ Cα, by

O(n)(t;µ,α) = h(Y(n)(t;µ,α), Ẏ
(n)

(t;µ,α), f(t;µ), t;µ) . (14)

2.5 Identification of hyperparameterα of the probability distribution of [W]

The identification of the hyperparameterα ∈ Cα ⊂ Rmα can be performed using the max-
imum likelihood method or a nonlinear least-squares methodfor the QoI. For instance, a non-
linear least-squares method can be formulated as follows for the two types of modeling errors.
Let J(α) be the cost function defined onCα by

J(α) = wJ Jmean(α) + (1− wJ) Jstd (α) , (15)
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in which wJ is a weight such that0 ≤ wJ ≤ 1, and whereJmean(α) andJstd (α) allow for
controlling the identification ofα with respect to the mean value and the statistical fluctuations,

Jmean(α) =
1

cmean(µ1, . . . ,µmµ
)

mµ∑

i=1

∫ T

t0

‖oref(t;µi)− E{O(n)(t;µi,α)}‖2 dt , (16)

Jstd (α) =
1

cstd(µ1, . . . ,µmµ
)

mµ∑

i=1

∫ T

t0

‖v(ref,n)(t;µi)− v(n)(t;µi,α)‖2 dt . (17)

The positive constantscmean(µ1, . . . ,µmµ
) andcstd(µ1, . . . ,µmµ

) are written as

cmean(µ1, . . . ,µmµ
) =

mµ∑

i=1

∫ T

t0

‖oref(t;µi)‖
2 dt , (18)

cstd(µ1, . . . ,µmµ
) =

mµ∑

i=1

∫ T

t0

‖v(ref,n)(t;µi)‖
2 dt , (19)

wherev(ref,n)(t;µi) = (v
(ref,n)
1 (t;µi), . . . , v

(ref,n)
mo (t;µi)) is such that,

v
(ref,n)
j (t;µi) = γ |oref

j (t;µi)− o
(n)
j (t;µi)| , j = 1, . . .mo , (20)

and whereγ > 0 allows for controlling the amplitude of the target related to the statistical
fluctuations. In Eq. (17),v(n)(t;µi,α) = (v

(n)
1 (t;µi,α), . . . , v

(n)
mo (t;µi,α)) is such that

v
(n)
j (t;µi,α) = {E{O

(n)
j (t;µi,α)2} − (E{O

(n)
j (t;µi,α)})2} }1/2 , j = 1, . . .mo . (21)

In Eqs. (16), (18) and (20),oref is defined as a function of the type of the modeling errors that
are taken into account:

⋄ If only the errors induced by the use of theµ-parametric nonlinear ROM instead of the
µ-parametric nonlinear HFM are taken into account, thenoref = o.

⋄ If the two types of modeling errors are simultaneously takeninto account (the modeling
errors induced by the use of theµ-parametric nonlinear ROM instead of theµ-parametric non-
linear HFM and the modeling errors introduced during the construction of theµ-parametric
nonlinear HFM), thenoref = oexp in which oexp corresponds to experimental data for the QoI.

With such a formulation, in the cost function,
⋄ oref appears as the target for the mean value with a weightwJ ,
⋄ v(ref,n) appears as the target for the standard deviation with a weight 1− wJ .

The identification of hyperparameterα consists in calculatingαopt such that

α
opt = min

α∈Cα

J(α) . (22)

2.6 Justification

Why a random basis of the admissible set would be useful? Sucha question is fully licit
because it is well known that, with the Galerkin method, the solutiony(n) constructed using the
ROM for an ordern for which y(n) is close toy (convergence ofy(n) towards the solutiony of
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the HFM whenn goes toN), is independent of the choice of the vector basis of the admissible
set (such a statement is perfectly true forn = N). For a similar reason, for any SROB of the ad-
missible set, the stochastic solutionY(n) constructed using the SROM converges almost surely
towards the deterministic solutiony of the HFM, which is thus, at convergence, independent of
the choice of the stochastic basis. However, and as we have previously explained, forn ≪ N ,
and taking into account that the ROB[V ] is constructed forµ1, . . . ,µmµ

in Cµ, for all µ fixed
in Cµ, the solutiony(n) of the ROM is only an approximation ofy, and consequently, there is an
error introduced by the use of the ROM with ordern (the existence of such an error is the main
assumption of the method that is proposed). In such a case, for a fixed value ofn for which
the convergence is not reached, the value of the error depends on the choice of the basis of the
admissible set (if then vectors of the basis are extracted from another family that constitutes
another vector basis of the admissible set, then the solution y(n) of the ROM is modified). Con-
sequently, when the basis is substituted by the SROB[W], a stochastic familyY(n) is generated
using the SROM. The idea is then to adapt the statistical fluctuations ofY(n) for representing
the error between the ROM and the HFM, and also, as it has been explained before, to represent
the modeling errors introduced in the construction of theµ-parametric nonlinear HFM itself.

3 CONSTRUCTION OF A STOCHASTIC REDUCED-ORDER BASIS

The construction of the SROM is detailed in [65]. Only the main ideas of the construction are
given below. The ROB corresponds to a compact Stiefel manifold denoted bySN,n. Since the
nonparametric probabilistic approach consists in definingthe SROB by a probability measure
on SN,n, we have to construct a parameterization ofSN,n, which must be efficient for the high
dimensions.

3.1 Construction of a parameterization of the compact Stiefel manifold SN,n

Let [M ] ∈ M
+
N be a given positive-definite symmetric(N × N) real matrix (possibly,[M ]

can be[IN ]). The setMN,n of all the(N × n) real matrices is considered as an Euclidean space
equipped with the inner product≪ [V1] , [V2] ≫M = tr{[V1]

T [M ] [V2]} and the associated norm
‖V ‖M = {tr{[V ]T [M ] [V ]}}1/2. Let [V ] be a reduced-order basis (ROB) belonging to the
compact Stiefel manifoldSN,n defined (see for instance [66]) by

SN,n = { [V ] ∈ MN,n , [V ]T [M ] [V ] = [In] } ⊂ MN,n , (23)

for which the dimension isν S = Nn − n(n + 1)/2 = n(n − 1)/2 + n(N − n). The tangent
vector space,TV SN,n, to SN,n at point[V ] ∈ SN,n is defined by

TV SN,n = { [Z] ∈ MN,n : [V ]T [M ] [Z] + [Z]T [M ] [V ] = [0n,n] } . (24)

The dimension ofTV SN,n is ν S = n(n− 1)/2 + n(N − n). We are interested in constructing a
non classical parameterization ofSN,n, which does not require the construction of a big matrix
in MN,N−n, and which consists in using the projection[Z] = ProjTV SN,n

([A]) of any matrix
[A] ∈ MN,n ontoTV SN,n,

[Z] = ProjTV SN,n
([A]) := [A]− [V ] [D] , [D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (25)

in which [D] ∈ MS
n is a(n× n) symmetric matrix.

Let [Z] 7→ Rs,V ([Z]) be the smooth mapping from tangent vector spaceTV SN,n of SN,n at a
given point[V ] into SN,n,

[W ] = Rs,V ([Z]) , (26)
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which is constructed in order that

[V ] = Rs,V ([0N,n]) . (27)

Consequently, for any[Z] in TV SN,n, [W ] = Rs,V ([Z]) is such that[W ]T [M ] [W ] = [In]. The
construction ofRs,V is performed by using the polar decomposition (see for instance [67]), that
is adapted to Eq. (23). For any[V ] fixed inSN,n, mappingRs,V is written as

[W ] = Rs,V ([Z]) := ([V ] + s[Z]) [Hs(Z)] , [Z] ∈ TV SN,n , (28)

in whichs ≥ 0 is a real numbers ≥ 0 that is used for controlling the level of fluctuations of[Z]
in TV SN,n around[V ] in SN,n, and where the positive-definite matrix[Hs(Z)] in M+

n is defined
by

[Hs(Z)] = ([In] + s2[Z]T [M ] [Z])−1/2 . (29)

It should be noted that another construction could be performed in using the economy-size QR
decomposition (see for instance [68]), which is also computationally efficient forn ≪ N with
N very large.

A parameterization[W ] = Rs,V ([A]), defined onMN,n, of SN,n at a given point[V ] in SN,n is
constructed in substituting the parameterization of[Z] defined by Eq. (25) into[W ] = Rs,V ([Z])
that is defined by Eqs. (28) and (29). Consequently, the mapping [A] 7→ Rs,V ([A]) from MN,n

into SN,n is defined, for all[A] in MN,n, by

[W ] = Rs,V ([A]) := Rs,V ([A]− [V ] [D]) , [D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (30)

and consequently, we have

[W ]T [M ] [W ] = [In] , [V ] = Rs,V ([0N,n]) ∈ SN,n . (31)

3.2 Construction of a parameterization of the subsetSN,n of the compact Stiefel manifold
SN,n induced by the additional constraint [B]T [W ] = [0NCD,n]

We have now to construct a parameterization[W ] = Rs,V ([A]) in presence of an additional
constraint equation[B]T [W ] = [0NCD,n] on [W ]. Let us consider the case for which the ROB[V ]
belongs to the subsetSN,n of SN,n defined by

SN,n = { [V ] ∈ MN,n , [V ]T [M ] [V ] = [In] , [B]T [V ] = [0NCD,n] } ⊂ SN,n , (32)

in which 0 < NCD < N is the number of constraint equations and where[B] is a given matrix
such that

[B] ∈ MN,NCD
, [B]T [B] = [INCD

] . (33)

Such a parameterization is given by Eq. (30), in which[A] is any matrix that belongs to the
subsetMB

N,n of MN,n defined by

M
B
N,n = { [A] ∈ MN,n , [A] = ([IN ]− [B] [B]T ) [U ] , [U ] ∈ MN,n ,} . (34)

It can easily be seen that, for all[A] in MB
N,n, we have[B]T [A] = [0NCD,n] and consequently,

[B]T [W ] = [0NCD,n].

• From a numerical point of view, the parameterization of matrix [A] defined by Eq. (34)
can be rewritten as[A] = [U ]−[B] {[B]T [U ]} in which[B]T [U ] ∈ MNCD,n. Consequently,
the assemblage of the big(N ×N) matrix [B] [B]T is never done.

• If the constraint[B]T [W ] = [0NCD,n] does not exist, then Eq. (34) is replaced by[A] = [U ]
with [U ] ∈ MN,n.
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3.3 Construction of a stochastic reduced-order basis (SROB) associated with the ROB

The construction of the SROB, associated with ROB[V ], is performed forSN,n with the ad-
ditional constraint equation[B]T [W ] = [0NCD,n], which means that matrix[A] belongs toMB

N,n.
If the constraint equation[B]T [W ] = [0NCD,n] is removed, then the stochastic modeling pre-
sented hereinafter holds (simply write that[A] = [U ]). Consequently, the stochastic modeling
of matrix [U ] will be the same for the two cases (with or without the constraint equation).

For a given ROB that is represented by a matrix[V ] given inSN,n ⊂ SN,n (thus[B]T [V ] =
[0NCD,n]), the associated SROB consists in introducing a random matrix [W], defined on a prob-
ability space(Θ, T ,P), with values inSN,n, such that

[W]T [M ] [W] = [In] a.s. , [B]T [W] = [0NCD,n] a.s. , (35)

and possibly, verifying additional constraints that will be defined after. We then have to con-
struct the probability measureP[W] of the random matrix[W], onMN,n, for which its support is
the manifoldSN,n,

suppP[W] = SN,n ⊂ SN,n ⊂ MN,n .

The construction of such a probability measure on the manifold SN,n requires the introduction
of an adapted parameterization ofSN,n in order to release the difficulties induced by the support
of the measure. Below, we give a construction of the SROB in three steps, and the available
information is gradually introduced in the construction.

3.3.1 Step 1 of the construction of the SROB (introducing a parameterization)

The SROB is constructed by using the parameterization of[W ] defined by Eqs. (30) and
(34). Random matrix[W] can then be written as

[W] = Rs,V ([A]) = Rs,V ([A]− [V ] [D]) with [D] = ([V ]T [M ] [A]+ [A]T [M ] [V ])/2 , (36)

in which [A] is a random matrix defined on(Θ, T ,P), with values in subsetMB
N,n of MN,n,

[A] = ([IN ]− [B] [B]T ) [U] = [U]− [B] {[B]T [U]} , (37)

where the random matrix[U] = [U1 . . .Un] is defined on(Θ, T ,P), with values inMN,n, in
which the columns of[U] aren random vectorsU1, . . . ,Un with values inRN . The deterministic
mappingRs,V (from tangent vector spaceTV SN,n of SN,n at point[V ] into SN,n) is defined by
Eqs. (28) and (29). Note that[D] is a random matrix with values inMS

n.

3.3.2 Step 2 of the construction of the SROB (defining the available information)

Taking into account Eqs. (36) and (37), the stochastic modelof random matrix[W] and
its generator are completely defined by the stochastic modeland the generator of random ma-
trix [U].

(i) The construction of the SROB is performed in order that the statistical fluctuations of random
matrix [W] are around deterministic matrix[V ]. Taking into account that[W] = [V ] for [A] =
[0N,n], random matrix[A] must be a centered random variable, which is satisfied if[U] is also a
centered random matrix (due to Eq. (37)). Consequently, we must have,

E{[U]} = [0N,n] . (38)
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(ii) In order to minimize the number of hyperparameters in the stochastic model of the cen-
tered random matrix[U], theNn(Nn + 1)/2 components of the fourth-order symmetric co-
variance tensor{cjkj′k′}jkj′k′ of MN,n-valued random matrix[U] are not kept becauseN can be
very large, and consequently, the proposed stochastic model would be unusable. We therefore
choose the following reduced parameterization for tensorc, which exhibits only1+n(n+1)/2
hyperparameters, such that, for allj andj′ in {1, . . . , N}, and for allk andk′ in {1, . . . , n},

cjkj′k′ = E{UjkUj′k′} = [CN(β)]jj′[cn]kk′ , (39)

in which

• [CN(β)] ∈ M
+
N is a type-covariance matrix depending on a hyperparameterβ such that

0 < βd ≤ β ≤ βu < +∞, for which its construction is detailed in [65]. This covariance
matrix allows for introducing a correlation between the componentsUk

1 , . . . , U
k
N of each

random vectorUk such thatUk
j = [U]jk.

• [cn] ∈ M+
n is a type-covariance matrix and consequently, there is an upper triangular

matrix [σ] belonging toMu
n such that (Cholesky’s factorization),

[cn] = [σ]T [σ] . (40)

Matrix [cn] allows for describing the correlation between the random vectorsU1, . . . ,Un.

Using Eqs. (38), (39), and (40), the second-orderMN,n-valued random matrix[U] can be rewrit-
ten as[U] = [G] [σ] in which [G] is a second-order centeredMN,n-valued random matrix defined
on probability space(Θ, T ,P), such that, for allj andj′ in {1, . . . , N}, and for allk andk′ in
{1, . . . , n},

E{Gjk} = 0 , E{GjkGj′k′} = [CN(β)]jj′ δkk′ . (41)

It can be seen that

E{[G] [G]T} = n [CN(β)] , E{[G]T [G]} = (tr[CN (β)]) [In] .

Consequently, for the construction proposed, random matrix [U] is parameterized as

[U] = [G] [σ] , (42)

and is such that

E{[U] [U]T } = (tr[cn]) [CN(β)] , E{[U]T [U]} = (tr[CN(β)]) [cn] . (43)

3.3.3 Step 3 of the construction of the SROB (constructing the stochastic model of[W ] )

(i) About the stochastic model of random matrix[G ]. The stochastic model of the second-order
centered random matrix[G] with values inMN,n and its generator of independent realizations
is detailed in [65] for which[G] is a non-Gaussian random matrix. This construction is based
on the finite element discretization of a non-Gaussian random field whose trajectories are in-
definitely continuously differentiable functions almost surely in order to preserve the regularity
properties of the solution of the HFM. The stochastic model proposed is chosen in order that
it exhibits only a scalar hyperparameterβ and does not require the explicit construction of the
big matrix[CN(β)] for which the number of entries isN(N + 1)/2, that is unusable for a large
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value ofN .

(ii) Stochastic model and hyperparameters of random matrix[W ]. The stochastic representa-
tion of the second-order non-Gaussian and not centered random matrix[W] with values in the
manifoldSN,n ⊂ SN,n ⊂ MN,n is defined by Eqs. (36), (37), and (42), which are rewritten
(using Eqs. (28) and (29)) as

[W] = Rs,V ([Z]) = ([V ] + s [Z]) [Hs(Z)] , (44)

[Hs(Z)] = ([In] + s2 [Z]T [M ] [Z])−1/2 , (45)

[Z] = [A]− [V ] [D] , (46)

[D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (47)

[A] = [U]− [B] {[B]T [U]} , (48)

[U] = [G(β)] [σ] . (49)

in which

• [G(β)] is the second-order non-Gaussian centered random matrix with values inMN,n

detailed in [65], and for which the covariance tensor is defined by Eq. (41).

• [σ] is a given upper triangular matrix inMu
n (positive diagonal entries).

• [B] is a given matrix inMN,NCD
such that[B]T [B] = [INCD

].

• [V ] is a given matrix inSN,n.

For [V ] fixed inSN,n, the2 + n(n + 1)/2 hyperparametersof the stochastic model of random
matrix [W] with values inSN,n are:

• the deterministic real parameters is such thatε0 ≤ s ≤ 1 in which ε0 is given and such
that0 ≤ ε0 < 1 (if s = 0, then[W] = [V ] is deterministic and there are no statistical
fluctuations),

• the deterministic real parameterβ such that0 < βd ≤ β ≤ βu < +∞ in whichβd andβu

are given,

• the upper triangular matrix[σ] in Mu
n (positive diagonal entries), which is parameterized

by n(n + 1)/2 parameters, and such that the diagonal entries satisfy the constraintsε0 ≤
[σ]11, . . . , [σ]nn ≤ σu < +∞, in whichσu is given.

The hyperparameter is thusα = (s, β, {[σ]kk′, 1 ≤ k ≤ k′ ≤ n}) with lengthmα = 2 + n(n+
1)/2, which belongs to the admissible setCα defined by

Cα = {s ∈ [ε0 , 1] , β ∈ [βd, βu] , ε0 ≤ [σ]11, . . . , [σ]nn ≤ σu , [σ]kk′ ∈ R , k < k′} . (50)

4 APPLICATION IN NONLINEAR COMPUTATIONAL STRUCTURAL DYNAM ICS

In this section, a verificaton problem for the theory exposedabove is presented. The cho-
sen HFM corresponds to a finite element model of a three-dimensional slender damped elastic
bounded medium with nonlinear barriers that induce nonlinearities in the dynamical system.
Additional applications for a more deeper validation of theproposed theory can be found in
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[65]. The problem is intentionally chosen to be sufficientlysimple so that it can be easily repro-
duced by the interested reader. Nevertheless, it is representative of difficult problems as far as
ROM model form uncertainties are concerned. In the frequency domain, the excitation has an
energy located in a narrow frequency band within in a broad frequency band of analysis. The
differences between the HFM and the ROM are very small in the frequency band of excitation
(small uncertainties), but are large outside this frequency band (large uncertainties). These large
uncertainties are due to the transfer of the energy outside the frequency band of excitation due
to the nonlinearities in the dynamical system. Consequently, they correspond to second-order
contributions. This application shows how such second-order contributions, which are located
outside the frequency band of excitation, can be predicted using the nonparametric probabilistic
approach of model uncertainties.

4.1 Description of the mechanical system

The mechanical system is made up of a 3D linear elastic structure with two elastic barriers
that induce impact non-linearities. It is defined in a cartesian coordinate systemOx1x2x3 (see
Fig. 1). The cylinder has lengthL1 = 1.20m and a rectangular section with heightL2 = 0.12m
and widthL3 = 0.24 m. The two end sections are located atx1 = 0 andx1 = L1. The elastic
medium is made of a homogeneous and isotropic elastic material for which the Young modulus
is 1010 N/m2, the Poisson coefficient is0.15 and the mass density is1500Kg/m3. A damping
term is added and is described by a global damping rate ofξd = 0.01 for each elastic mode of
the structure without the elastic barriers, and will be introduced at the ROM level. The nonlinear
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Figure 1: Scheme of the mechanical system: slender elastic structure with elastic barriers.

forces are due to elastic barriers that induce two nonlinearpoint forces on the structure, one in
directionx2 applied to the point(x1 = 0.66, x2 = 0, x3 = L3/2), and another one in direction
x3 applied to the point(x1 = 0.66, x2 = L2/2, x3 = L3) (see Fig. 1) of intensity−fNL,2 and
−fNL,3 that are assumed to be independent of the velocity and such that

fNL,2(η) = kb,2 (η + εb,2) 1R+(−η − εb,2) , η ∈ R , (51)

fNL,3(η) = kb,3 (ζ − εb,3) 1R+(ζ − εb,3) , ζ ∈ R , (52)

wherekb,2 = kb,3 = 2 × 109N/m is the elasticity constant of the barriers andεb,2 = εb,3 =
2 × 10−4 m are the two gaps (positive values). A time-dependent point force is applied at the



C. Soize, C. Farhat

boundary of the slender structure at the point(x1 = 0.46, x2 = 0, x3 = 0.2) (see Fig. 1) in
the directionsx2 andx3. Thex2- andx3-components of this point force are equal to a square
integrable real-valued functionfe defined by

fe(t) =
f0
π t

{sin(t(ωc +∆ωc/2))− sin(t(ωc −∆ωc/2)} , t ∈ [t0, T ] , (53)

wheref0 = 100 N is the amplitude,ωc = 2 π × 470 rad/s is the central frequency band,
and∆ωc = 2 π × 300 rad/s is the bandwidth. The signal energy of this excitation is mainly
concentrated in the frequency band[320 , 620]Hz. An observation line of equation{0 ≤ x1 ≤
L1 ; x2 = 0 ; x3 = L3} for t ∈ [t0, T ] is introduced. In order to limit the number of figures, o
nly thex2- andx3-displacements of2 observation points belonging to the observation line (see
Fig. 1) are considered and are denoted by Obs34 and Obs51 for which thex1-coordinates are0.66
and1.00. At initial time t0 = −0.0403 s, the system is at rest. The final time isT = 0.3790 s.
The frequency band of observationis chosen asBo = [0 , ωo] with ωo = 2 π × 1550 rad/s.
The time sampling is defined by the frequencyωmax = 2 π × 12, 400 rad/s. There are10, 400
time steps and the sampling time step is∆t = π/ωmax = 4.032 × 10−5 s. There are10, 400
frequency steps in the frequency band[−ωmax, ωmax] and the sampling frequency step is∆ω =
2 π × 2.38 rad/s.

4.2 HFM, numerical solver, and results

(i) High fidelity computational model. A 3D computational model is constructed with a finite
element mesh made up of60×6×12 = 4 320 three-dimensional 8-nodes solid elements. There
are5 551 nodes andN = 16, 653 dofs. The number of zero Dirichlet conditions isNCD = 78
(the displacements are zero for2 × 13 nodes). For this HFM, the equations Eqs. (1) to (4) are
rewritten as follows:

[M ] ÿ(t) + g(y(t), ẏ(t)) = f(t) , t ∈ ]t0, T ] , (54)

g(y(t), ẏ(t)) = [D] ẏ(t) + [K] y(t) + fNL(y(t)) , (55)

with the zero initial conditions at timet0,

y(t0) = 0N , ẏ(t0) = 0N , (56)

and theNCD < N constraint equations written in matrix form as

[B]T y(t) = 0NCD
, t ∈ [t0, T ] , (57)

where[B] is a given matrix inMN,NCD
such that[B]T [B] = [INCD

] , which is constructed by using
theNCD zero Dirichlet conditions defined in Section 4.1. A construction of [D] is detailed in [65]
for which the numerical complexity of the product of[D] by a vector inRN is of the order of
the one corresponding to the product of[M ] by a vector inRN , which is much less thanN2

because[M ] is a sparse finite element matrix. In the frequency bandBo = [0 , ωo], the QoI is
the vector̂o(ω) = (ô1(ω), . . . , ômo(ω)) ∈ Cmo defined as follows:

• For plotting and analyzing the responses of the SROM,mo = 2× 2 = 4 dofs in direction
x2 andx3 of the2 observation nodes Obs34 and Obs51.
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• For the identification of the hyperparameterα of the SROB,mo = 2× 61 = 122 dofs in
directionx2 andx3 of all the61 nodes belonging to the observation line.

For allω in Bo, the complex vector vector̂o(ω) is written as

ô(ω) = h(−ω2 ŷ(ω)) , ω ∈ Bo , (58)

in whichh is a linear mapping fromCN intoCmo, which extracts the dofs from vector−ω2 ŷ(ω) ∈
CN , and where

ŷ(ω) =
∫ T

t0

e−iω ty(t) dt , ω ∈ Bo . (59)

(ii) Numerical solver. The implicit Newmark time-integration scheme [69] is used(with pa-
rametersδ = 0.5 andα = 0.25(0.5 + δ)2 = 0.25) and with a fixed point method (without
relaxation) at each sampling time with a relative precisionof 10−6. In order to guaranty the
convergence of the fixed point method, a local adaptive time step is implemented (time step∆t
is locally decreased). Such a numerical method has been preferred to the other possible ones
due to the presence of contacts induced by the barriers, which require an adaptive time steps.

(iii) Results and quantification of the effects of the nonlinearities. In Fig. 2, the four figures
compare the graphsν 7→ log10(|ôj(2πν)|) computed with the HFM, with the graphs computed
with the linear HFM (that is to say, in removing the nonlinearelastic barriers in the HFM), for
thex2- andx3-accelerations of Obs51 and Obs34. These figures show the effects of the nonlinear
elastic barriers on the responses, in particular, it can be seen an important transfer of the energy
in the frequency band that is outside the main frequency band[320 , 620]Hz of the excitation.

4.3 ROM, numerical solver, and results

(i) Reduced-order computational model. Let {ϕ1, . . . ,ϕn} be the firstn elastic modes asso-
ciated with the firstn eigenfrequencies0 < ω1 < . . . < ωn of the linear undamped structure
associated with the nonlinear damped dynamical system, which are such that

[K]ϕk = λk [M ]ϕk , (60)

with the constraint equation

[B]Tϕk = 0NCD
, k = 1, . . . , n , (61)

and whereλ1 = ω2
1, . . . , λn = ω2

n. The elastic modes satisfy the usual orthogonality properties,

< [M ]ϕk ,ϕk′ >= δkk′ , < [K]ϕk ,ϕk′ >= λk δkk′ . (62)

For the nonlinear dynamical system, the ROB is chosen as[V ] = [ϕ1 . . .ϕn] ∈ MN,n, which is
such that

[V ]T [M ] [V ] = [In] , [B]T [V ] = [0NCD,n] . (63)

Using the ROB[V ] ∈ MN,n and Eq. (63), the ROM associated with the HFM defined by
Eqs. (54) to (57) is written as

y(n)(t) = [V ] q(t) , t ∈ [t0, T ] , (64)

q̈(t) + [V ]T [D][V ] q̇(t) + [V ]T [K][V ]q(t) + [V ]T fNL([V ]q(t)) = [V ]T f(t) , t ∈ ]t0, T ] , (65)
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Figure 2: Graphsν 7→ log10(|ôj(2πν)|) computed with the HFM (thick lines) and with the LINEAR HFM (thin
lines) for x2- andx3-accelerations of Obs51 (up left and up right figures), and forx2- andx3-accelerations of
Obs34 (down left and down right figures).

with the initial conditions
q(t0) = 0n , q̇(t0) = 0n . (66)

The approximation̂o(n)
(ω) of the QoIô(ω) defined by Eqs. (58) and (59) is written as

ô(n)
(ω) = h(−ω2 ŷ(n)(ω)) , ω ∈ Bo , (67)

ŷ(n)(ω) =

∫ T

t0

e−iω ty(n)(t) dt , ω ∈ Bo . (68)

(ii) Numerical solver. The algorithm described in Section 4.2-(ii) is used but is adapted to
Eq. (65) that is rewritten as̈q(t)+2 ξd [λ

(n)]1/2 q̇(t)+ [λ(n)] q(t) = [V ]T f(t)− [V ]T fNL([V ] q(t))
in which [λ(n)] is the positive-definite diagonal matrix whose diagonal entries areλ1, . . . , λn.

(iii) Choice of the reduced-order dimensionn, results, and quantification of the errors induced
by the use of the ROM instead of the HFM. Taking into account that a significative differ-
ence between the responses computed with ROM and with the HFMmust be generated (in
order to validate the capability of the nonparametric stochastic method proposed to take into
account this type of modeling errors), a good compromise between the numerical cost and
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the quality of the ROM leads us to choosen = 20 as the dimension of the ROM. We then have
ω1 = 2 π×96.69 rad/s, ω4 = 2 π×472 rad/s, ω5 = 2 π×720 rad/s, ω11 = 2 π×1474 rad/s,
ω12 = 2 π × 1754 rad/s, andω20 = 2 π × 2936 rad/s. Consequently, there are4 elas-
tic modes in the frequency band[0 , 620] Hz containing the main part of the excitation,11
elastic modes in the frequency band of observation[0 , 1550] Hz and9 elastic modes in the
frequency band[1550 , 3100] Hz. In Fig. 3, the four figures show a comparison of the graphs
ν 7→ log10(|ôj(2πν)|) computed with the HFM, with the graphsν 7→ log10(|ô

(n)
j (2πν)|) com-

puted with the ROM, for thex2- andx3-accelerations of Obs51 and Obs34. These figures show
that the differences between the HFM and the ROM are very small in the frequency band
[320 , 620] Hz of the excitation, but are significant outside this frequency band. Such differ-
ences could be reduced in increasing dimensionn of the ROM, but as we have explained above,
the reduced-order dimensionn is chosen in order that significant differences exist between the
ROM and the HFM.
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Figure 3: Graphsν 7→ log10(|ôj(2πν)|) computed with the HFM (thick lines) and graphsν 7→ log10(|ô
(n)
j (2πν)|)

computed with the ROM (thin lines) forx2- andx3-accelerations of Obs51 (up left and up right figures), and for
x2- andx3-accelerations of Obs34 (down left and down right figures).

4.4 SROM, stochastic solver, and results

(i) Stochastic reduced-order computational model. From Eqs. (11) to (14), the SROM asso-
ciated with Eqs. (64) to (68), is obtained in replacing[V ] by the random matrix[W]. Conse-
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quently,y(n)(t), q(t), andô(n)
(ω), become the random vectorsY(n)(t), Q(t), andÔ

n
(ω), and

the SROM is written as
Y(n)(t) = [W]Q(t) , t ∈ [t0, T ] , (69)

Q̈(t)+[W]T [D][W] Q̇(t)+[W]T [K][W]Q(t)+[W]T fNL([W]Q(t))=[W]T f(t) , t ∈ ]t0, T ] , (70)

with the initial conditions

Q(t0) = 0n , Q̇(t0) = 0n , a.s . (71)

Let Ô
(n)

(ω;α) be the random QoI with values inCmo with mo = 122, depending on hyperpa-
rameterα, such that

Ô
(n)

(ω;α) = h(−ω2 Ŷ
(n)

(ω;α)) , ω ∈ Bo , (72)

Ŷ
(n)

(ω;α) =

∫ T

t0

e−iω tY(n)(t;α) dt , ω ∈ Bo . (73)

(ii) Identification of the hyperparameter. The problem is the identification of hyperparameter
α = (s, β, σ) that is defined in Section 3.3.3-(ii), with lengthmα = 2+n(n+1)/2 = 212, and
which belongs to the admissible setCα = R+× [0.01 , 0.1]×Mu

n. For defining the cost function
J(α), we introduce the random functionω 7→ dB(n)(ω;α) = (dB(n)

1 (ω;α), . . . , dB(n)
mo

(ω;α))
defined onBo with valued inRmo such that, for allj = 1, . . . , mo (with mo = 122),

dB(n)
j (ω;α) = log10(|Ô

(n)
j (ω;α)|) , (74)

in which Ô
(n)

(ω;α) = (Ô
(n)
1 (ω;α), . . . , Ô

(n)
mo (ω;α)) is defined by Eq. (72). In order to de-

fine the target functions for constructing the cost function, we introduce the functionsω 7→

dbref(ω) = (dbref
1 (ω), . . . , dbref

mo
(ω)) andω 7→ db(n)(ω) = (db(n)1 (ω), . . . , db(n)mo

(ω)), defined on
Bo with values inRmo such that, for allj = 1, . . . , mo,

dbref
j (ω) = log10(|ôj(ω)|) , db(n)j (ω) = log10(|ô

(n)
j (ω)|) , (75)

in which ô(ω) = (ô1(ω), . . . , ômo
(ω)) is defined by Eq. (58) and wherêo(n)

(ω) = (ô
(n)
1 (ω), . . . ,

ô
(n)
mo(ω)) is defined by Eq. (67). The cost function is defined by Eq. (15) with

J(α) = wJ Jmean(α) + (1− wJ) Jstd (α) , (76)

in which

Jmean(α) =
1

cmean

mo∑

j=1

∫

Bo

|dbref
j (ω)−E{dB(n)

j (ω;α)}|2wj(ω) dω , (77)

Jstd (α) =
1

cstd

mo∑

j=1

∫

Bo

|v
(ref,n)
j (ω)− v

(n)
j (ω;α)|2wj(ω) dω , (78)

in which the positive constantscmeanandcstd are defined by

cmean=
mo∑

j=1

∫

Bo

|dbref
j (ω)}|

2wj(ω) dω , cstd =
mo∑

j=1

∫

Bo

|v
(ref,n)
j (ω)|2wj(ω) dω . (79)



C. Soize, C. Farhat

In these equations,v(ref,n)(ω) = (v
(ref,n)
1 (ω), . . . , v

(ref,n)
mo (ω)) andv(n)(ω;α) = (v

(n)
1 (ω;α), . . . ,

v
(n)
mo (ω;α)) are defined, forj = 1, . . .mo, by

v
(ref,n)
j (ω) = γ |dbref

j (ω)− db(n)j (ω)| , (80)

in whichγ > 0 is an amplitude factor and where

v
(n)
j (ω;α) = {E{dB

(n)
j (ω;α)2} − (E{dB

(n)
j (ω;α)})2} }1/2 . (81)

In Eqs. (77) to (79), forj = 1, . . .mo, the functionsω 7→ wj(ω) are bounded onBo with values
in R+ and are chosen such thatwj(ω) = |dbref

j (ω)−db(n)j (ω)| for all ω in Bo. The weight (in the
cost function) iswJ = 0.9, and the amplitude factor (for the target) isγ = 0.3. The optimization
problem

α
opt = (sopt, βopt, [σopt]) = min

α∈Cα

J(α) , (82)

is solved using the algorithm detailed in [65], which is based on the use of the interior-point
algorithm with constraints. The Monte Carlo solver is used with 1 000 independent realiza-
tions (mean-square convergence reached). The optimal value of s andβ aresopt = 0.0103 and
βopt = 0.0181 and the optimal value[σopt] of [σ] can be found in [65].

(iii) Results. In Fig. 4, the four figures that are displayed summarize the results obtained with
the SROM. These four figures are related to thex2- andx3-accelerations of Obs51 and Obs34.
Each figure displays the graphν 7→ log10(|ôj(2πν)|) computed with the HFM (the target for
the mean), the graphν 7→ log10(|ô

(n)
j (2πν)|) computed with the linear ROM, and the con-

fidence region (with a probabilitypc = 0.98) of the frequency sampled stochastic process
ν 7→ log10(|Ô

(n)
j (2πν)|) constructed with the SROM. The upper envelope of the confidence

region corresponds to the quantile for the probabilitypc and the lower envelope to the quantile
for the probability1 − pc. It can be seen that the results obtained are very good, except for the
x3-accelerations in the small part[270 , 438]Hz of the frequency band[0 , 1550]Hz of analysis.
Such a relatively bad prediction could certainly be improved using a much more sophisticated
optimization algorithm for the identification of the hyperparameters. Nevertheless, it can be
seen that the SROM allows for generating a confidence region,which is not centered around the
responses computed with the ROM, but which is approximatively well centered around the re-
sponses computed with the HFM, which is a relatively difficult problem for taking into account
contributions of second-order. Such a result demonstratesthe capability of method proposed.

5 CONCLUSIONS

In this paper, a novel nonparametric probabilistic approach has been presented for taking
into account modeling errors in any nonlinear high-fidelitymodel (HFM) for which a nonlinear
ROM can be constructed. The nonparametric probabilistic model is implemented in the nonlin-
ear ROM. The proposed stochastic model exhibits a small number of hyperparameters, which
allows their identification by solving a statistical inverse problem. The cost function is formu-
lated with respect to a given target related to given observations, which allows for specifying the
level of uncertainties induced by the use of the ROM instead of the HFM and/or by the model-
ing errors (model form uncertainties) introduced in the HFMwith respect to experimental data.
The least-square method that is used in the paper can be replaced by another statistical inverse
method such as the maximum likelihood method. A first validation of the proposed method
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Figure 4: Graphsν 7→ log10(|ôj(2πν)|) computed with the HFM (thick lines), graphsν 7→ log10(|ô
(n)
j (2πν)|)

computed with the ROM (thin lines), and confidence region forpc = 0.98 (yellow region with red upper and red
lower envelopes) computed forν 7→ log10(|Ô

(n)
j (2πν)|) computed with the SROM, forx2- andx3-accelerations

of Obs51 (up left and up right figures), and forx2- andx3-accelerations of Obs34 (down left and down right
figures).

has been obtained by analyzing a nonlinear dynamical problem. The proposed nonparamet-
ric probabilistic approach of modeling errors can simultaneously be used with the parametric
probabilistic approach of the uncertain parameters of the computational model, because, if the
construction of the ROB can depend on these random parameters, the construction of the SROB
does not directly depend on them (but depends indirectly through the ROB). In addition, if the
Monte Carlo method is used as stochastic solver, the realizations of the SROB and those of the
random parameters are constructed simultaneously. Consequently, the speed of convergence
(that does not depends on the dimension) is not altered if theparametric uncertainties are taken
into account in the computational model. The method can be extended to the case of a HFM for
which the level of model uncertainties is not the same in the different parts of the system.
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