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OPTIMAL CLAIMING STRATEGIES IN BONUS MALUS SYSTEMS

AND IMPLIED MARKOV CHAINS

ARTHUR CHARPENTIER, ARTHUR DAVID, AND ROMUALD ELIE

Abstract. In this paper, we investigate the impact of the claim reporting strategy of drivers,

within a bonus malus system. We exhibit the induced modification of the corresponding class

level transition matrix and derive the optimal reporting strategy for rational drivers. The hunger

for bonuses induces optimal thresholds under which, drivers do not claim their losses. A numer-

ical algorithm is provided for computing such thresholds and realistic numerical applications are

discussed.

1. Introduction

Bonus-Malus systems are well established tools used in motor insurance pricing based on past

experience of drivers. A Bonus - a premium discount (with some lower bound) - is guaranteed

by the policy when the driver reports no claims during a predetermined period of time. A Malus

- an additional charge to the premium (with some upper bound) - is required when claims are

reported. The obvious purpose of this mechanism is to penalize the bad (or unlucky) drivers and to

provide incentives for drivers to try to reduce their claims frequency, as discussed in [4] or [6]. From

a mathematical perspective, standard Bonus-Malus systems are convenient because they might

be modeled using Markov chains (see [8] and [10] for a description of various existing systems).

Markov chains properties (and associated invariant measures) can be used to describe the long term

equilibrium of the system. But, as a by-product, this mechanism also generates some hunger for

bonuses (as described in [7]): drivers might overtake small claims and not report them to their

insurance companies, in order to obtain a reduced premium (and avoid also the additional charge).

In this paper, we exhibit the optimal reporting strategy and address the problem of updating the

Markov chain transition probability of class levels, in order to take into account the probability of

not reporting a claim.

1.1. Discrete Bonus Malus System. The optimal claiming strategy for insured drivers was

already addressed in [12], where a continuous time version of k-class bonus malus systems was con-

sidered: drivers are switched to a lower class if no claim were filed during a period T (that might

depend on the previous class), while whenever a claim is filed, the insured is immediately switched

to a higher level (as in [3]). Here, we want to integrate this realistic feature in the more standard

approach based on Markov chains modeling on a finite number of classes, discussed e.g. in [9].

Namely, we intend to incorporate the optimal strategy for drivers not to report a loss whenever the

considered amount is too small.

Nevertheless, in a discrete model, if the transition is based on the number of claims, and not the

occurrence (or not) of claims within a given period (usually one year), modeling hunger for bonus

is much more complex. Intuitively, the optimal decision to report and claim a loss is not the same

if the policy renewal (and associated premium level update) is either in 360 days, or only in 5 days.

Moreover, insured drivers may (and often should) choose to regroup several minor claims and declare

them as a large one. In order to avoid those issues and stick to a simple and easily interpretable

model, we assume that only one claim per year might occur.
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1.2. Advantages of a Discrete Bonus Malus System. The continuous-time model described in

[12] has nice mathematical properties, but on the other hand discrete-time Bonus Malus systems are

interesting since they are easily interpretable, and can naturally be formalized via Markov chains.

In order to illustrate this our model, let consider a benchmark very simple Bonus-Malus system,

with 3 classes, similar to the one discussed in Section 6 of [12]. A different premium Pi is associated

to each class i = 1, 2, 3. If no claim occurs during one year, a driver is upgraded from class i to class

i− 1, as long as i ≥ 2. In case of claim report, the driver is downgraded from class i to class i+ 1,

as long as i ≤ 2. See Table 1 for a description of that scheme.

class premium claim no claim

3 P3 3 2

2 P2 3 1

1 P1 2 1
Table 1. Transition rules for the 3 classe Bonus Malus system.

Suppose that claims occurrence is driven by an homogeneous Poisson process, with intensity λ, given

some initial class at time t = 0, as in standard actuarial models. Then the trajectory of classes for

the driver can be described by a discrete Markov process. If p := e−λ denote the probability to have

no claim over a year, the transition probability matrix of the Markov chain is given by

M =

p 1− p 0

p 0 1− p
0 p 1− p


for the classes 1, 2 and 3 (in that order).

Based on this transition probability matrix, a quantitative figure of interest is the corresponding

stationary distribution, describing the repartition of drivers within the classes in a stationary regime.

Given this stationary distribution, one can then compute the corresponding average premium in the

(long term) stationary state, see e.g. [10] and related studies. But, unfortunately, this (standard)

study of Bonus Malus schemes is almost always based on the unrealistic assumption that all car

accidents are claimed to the insurance company. However, it might not be optimal for a client to

claim all losses.

For instance, suppose that an insured in class 2 suffers a loss of level `. Then,

• if the loss is claimed, next year premium will be P3 as he will downgrade from class 2 to

class 3;

• if the loss is not claimed, he will loose ` and next year premium will be P1, as he will upgrade

from class 2 to class 1.

So a basic short term economic reasoning indicates here that it is rational to not to claim a loss as

soon as P3 > ` + P1, i.e. ` < P3 − P1. It is common knowledge that this type of reasoning is even

suggested by the insurance company, as soon as a driver intends to report a reasonable claim. It

indeed happened recently to one of the authors of the paper.

1.3. A simplistic version of the Optimal Claiming Strategy. Any less short-term minded

driver should take into account today’s implications of a class level upgrade or downgrade on all the

future premiums. Namely, a slightly more complex decision process can be obtained by considering

not only next year premium, but premium over all the following years. Consider for example the

same system as the one described above. Suppose that a driver suffers a claim of level ` while he

was in class s at time t. Then,

• if he claims the loss, he will get a reimbursement as well as a some premium downgrading,

making him start at time t+ 1 in a class (s+ 1);
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• if he does not claim the loss, he will not get a reimbursement (so he will face a loss `), but

he will not get the previous downgrading and hereby will start at time t+ 1 from the class

of level (s− 1).

A naive approach may hence conclude that it is rational not to claim the loss whenever

` ≤
∞∑
h=1

(1 + r)−hPs+1+h −
∞∑
h=1

(1 + r)−hPs−1+h ,

where r denotes the economic discount factor of the agent. Observe that we used here a slight abuse

of notation, by denoting Pk := Pc̄, for k larger than the highest class level c̄ as well as Pk := Pc, for

k smaller than the smallest class level c.

For instance, consider the Bonus Malus system described in Table 1, and focus once again on a

driver currently in class 2. Applying this reasoning, the discounted value of future premia when

claiming a loss is

V (3) =
P3

1 + r
+

P2

(1 + r)2
+

P1

(1 + r)3
+

P1

(1 + r)4
+ · · · ,

whereas the discounted value of future premia when not reporting the claim is

V (1) =
P1

1 + r
+

P1

(1 + r)2
+

P1

(1 + r)3
+

P1

(1 + r)4
+ · · · .

Following this reasoning, it is rational not to claim loss ` as soon as

` ≤ d?2 := V (3)− V (1) =
P3 − P1

1 + r
+
P2 − P1

(1 + r)2
,

where d?2 interprets as an implied deductible, as in [1] and [2].

But this approach is obviously too simple (or naively over-optimistic) since the driver assumes a

deterministic trajectory for future bonus malus classes and related premia. He does not take into

account the occurrence of new claims in the following years.

1.4. Agenda. Alternatively, a more natural and rational decision would be not to declare the claim

whenever in class s, as soon as

(1) ` ≤ 1

1 + r
(Vt+1(s+ 1)− Vt+1(s)) ,

where the function Vt+1(k) represents the expected value of all future discounted claims and premia

for the driver, whenever he starts from class k at time t + 1. This function V must integrate the

occurrence of claims in the future, as well as the corresponding probabilistic evolution of the class-

level Markov Chain (St+h)h≥1 given St, considering that the driver sticks to the optimal reporting

strategy designed by (1).

The main purpose of this paper is to identify the optimal strategy for reporting losses. Applying

this optimal reporting strategy, we observe that the corresponding level class process (St)t remains

a Markov chain, with modified transition probabilities. In Section 2, we formalize the problem

of interest and describe the related Markov chains. In Section 3, we derive and characterize the

optimal reporting strategy of the driver and provide a simple algorithmic routine to approximate

it. The algorithm will in particular be tested in a 5-state Spanish Bonus Malus scheme, see Section

4. Extensions including the addition of deductibles, as well as the consideration of heterogeneous

or risk adverse drivers are presented in Section 5.
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2. Problem formulation

2.1. Bonus Malus based on loss occured. Classical Bonus Malus transition probabilities are

usually computed under the assumption that every claim is reported, as in e.g. [10]. This gives rise

to a Markov Chain dynamics for the class level of any driver. For example, a standard model for

claims occurrence is the Poisson process. With an homogeneous Poisson process, with intensity λ,

the Markov process is also homogenous.

Consider for instance the classical 3-classe Bonus Malus scheme described in Section 1.2 above.

Recall that, in such system,a driver is upgraded whenever to claim occurs and is downgraded at the

arrival of any claim, see Table 1. Whenever all losses are claimed to the insurance company, the

level-class Markov chain associated to such Bonus-Malus system has the following transition matrix

M =

p 1− p 0

p 0 1− p
0 p 1− p

 ,

where p denotes the probability to have no claim on a one year period. Observe that the probability

that a loss occurs does not depend on the class level s. This classical feature is due to the no-memory

property of the Poisson process.

In a stationary regime, the invariant probability measure µ characterizing the repartition of the

drivers within the 3 classes is given by

µ :=
1

κ2 + κ+ 1
(κ2;κ; 1)T, where κ :=

p

1− p
.

It can be visualized on Figure 1 for several values of p, associated to different level of claim frequency

λ in a Poisson model.
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Figure 1. Invariant probability measure as a function of λ, with p = e−λ.

In addition, we deduce the average premium in the stationary regime, which is given by

P̄ :=
κ2P1 + κP2 + P3

κ2 + κ+ 1
.

In the numerical illustration, this asymptotic premium is used in order to enforce actuarial equi-

librium between the driver and the insurer in the sense that

P̄ = (1− p) · E(L),

where L denotes the (random) loss amount of a claim.
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2.2. Impact of claim reporting strategies. Observe that the previous stationary distribution of

drivers within classes only depends on the frequency of the claims, via the probability parameter p.

In particular, it is not connected to the levels of the premiums (Pk)k or the possible severity of the

claims. This feature relies on the fact that we unfortunately did not take into account the economic

behavior of drivers, and in particular the fact that they may choose not to report small claims.

They shall do this whenever the gain from reporting a claim does not compensate the impact of the

class level downgrade on the future premia.

A loss reporting strategy for a driver is hereby given by a collection of thresholds ds, associated to

any class s. Let A denote the collection of such strategies, i.e.

A := {(ds)s∈S , with ds ≥ 0 , for any s ∈ S} ,

where S denotes the collection of class levels. A driver will decide to report a claim while in class

s, if and only if the severity of the claim ` exceeds the threshold ds, i.e. if and only if ` > ds.

The choice of the reporting strategy d ∈ A for the driver has an important impact on the trajectory

of his associated class level Markov chain, that we denote (Sdt )t. This can be precisely quantified, as

the reporting strategy directly impacts the transition probabilities of the class level Markov chain

Sd. Let indeed denote by πds the probability to report a loss (that indeed occurred) for a driver in

class s ∈ S, whenever he follows a reporting strategy d ∈ A. Then, πd is given by

πds := P[L > ds], s ∈ S , d ∈ A ,

where L is the level of the random loss. Focusing again on the classical 3-classes Bonus Malus

scheme described above, the transition matrix of the class level Markov chain is modified in the

following way

Md =

p+ (1− p)(1− πd1) (1− p)πd1 0

p+ (1− p)(1− πd2) 0 (1− p)πd2
0 p+ (1− p)(1− πd3) (1− p)πd3

 , d ∈ A .

In order to interpret this matrix, focus for the example on the first entry of the matrix Md. The

probability to remain in class 1 for a driver in class 1, is the sum of two disjoint probabilities: the one

of not facing a claim equal to p, and the one of having a loss and not reporting it, i.e. (1−p)(1−πd1).

Since the transition probabilities of the Markov Chain are affected, the stationary distribution of

driver within class will automatically also be modified. For instance, in the 3 classes Bonus Malus

scheme of interest, we obtain the corresponding stationnary repartition within classes, for any given

d ∈ A:

µd ∝
(
κ+ (1− πd2); πd1 ;

πd1π
d
2

κ+ (1− πd3)

)T

.

The reporting strategy of agents of course has a huge impact on the business model of the insurer

as the new average premium rewrites

P̄ d = Kd

(
(κ+ (1− πd2))P1 + πd1P2 +

πd1π
d
2

κ+ (1− πd3)
P3

)
, d ∈ A ,

where the renormalizing constant Kd is given by

Kd :=
κ+ (1− πd3)

(κ+ (1− πd2 + πd1))(κ+ (1− πd3)) + πd1π
d
2

, d ∈ A .

A numerical application, to illustrate those quantities, is detailed in section 4.

2.3. Towards an optimal claim reporting strategy. Now that the impact of the claim report-

ing strategy of the drivers has been clearly established and quantified from the insurer point of view,

let’s turn to the search of the optimal reporting strategy for drivers.
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We assume that all the drivers are rational and risk-neutral. Their objective is to minimize the

global cost of the insurance policy, which is characterized by the combination of all premia and non

reported losses. These expenses are reported up to a chosen fixed time horizon T , which may be

considered to be +∞, in particular if r is large. For ease of presentation, we do not consider here

the addition of a deductible payment, but this question will be discussed in Section 5 below.

The discounting rate of the representative driver is denoted by r and we recall that the class-level

Markov chain associated to reporting strategy d ∈ A is denoted Sd. Hence, starting at time 0 in

a class level s, the representative driver needs to solve at time 0 the following stochastic control

problem

(2) V0(s) = inf
d∈A

E

[
T∑
t=0

1

(1 + r)t

(
PSdt +

1

1 + r
Lt1Lt≤dSdt

) ∣∣∣Sd0 = s

]
,

where Lt denotes the loss occurred on the year t, which is simply valued 0 whenever no claim hap-

pens on this period, and is only reported whenever it exceeds the chosen threshold strategy (ds)s.

We assume that the premia are paid at the beginning of each period, whereas the unreported losses

are due at the end of the period.

The purpose of the next section is the resolution of this control problem and the numerical derivation

of the corresponding optimal reporting strategy d?.

3. Derivation of the optimal loss reporting strategy

3.1. A dynamic programming approach. In order to solve the control problem (2), the easiest

way is to focus on its dynamic version and to introduce the value function at any date t = 0, . . . , T

given by

(3) Vt(s) = inf
d∈A

E

[
T∑
k=t

1

(1 + r)k−t

(
PSdk +

Lk1Lk≤dSd
k

1 + r

)∣∣∣Sdt = s

]
, t = 0, . . . , T .

In order to characterize the value function V , let focus on one arbitrary interval [t, t+1] and suppose

that a driver starts in class s ∈ S at time t. We denote by s the new class in case of upgrade (i.e.

no loss reported) and s̄ the new class in case of downgrade. In order to decide wether he should or

note report the claim, the economically rational driver will compare Vt+1(s̄) and Vt+1(s). He should

report the claim if and only if the difference between the value functions exceeds the loss (which is

also paid at time t+ 1). This gives rise to the so-called implied deductible optimal strategy (d?s)s∈S
and the associated probability of reporting a claim (π?s )s∈S , where

d?s := Vt+1(s)− Vt+1(s) and π?s = P[L ≥ d?s] , s ∈ S .

On the time interval [t, t + 1], the driver may or not encounter a claim, and then may choose to

report it or not, depending on his threshold reporting strategy d?. This gives rise to the following

representation of the value function at time t in terms of the value function at time t+ 1.

Lemma 3.1. The value function of the driver is given by VT (s) = Ps together with

Vt(s) = (1− p) · πs ·
Vt+1(s)

1 + r︸ ︷︷ ︸
(1)

+ p · Vt+1(s)

1 + r︸ ︷︷ ︸
(2)

+ (1− p)(1− πs) ·
(
E[L|L ≤ d?s] +

Vt+1(s)

1 + r

)
︸ ︷︷ ︸

(3)

+ Ps︸︷︷︸
(4)

,

for t < T . The first part (1) is the probability to get a loss, and to claim it, with probability π?s , and

downgrade to class s; the second part (2) is the probability to get no loss and to upgrade to class

s; the third part (3) is the probability to get a loss and not to claim it. The expected loss is then

E[L|L ≤ d?s] where d?s is the implied deductible. And as discussed above

d?s = Vt+1(s)− Vt+1(s)

The last part (4) is the premium paid at time t.
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Proof. At terminal date T , it is always optimal to report a claim as upgrading or downgrading

classes is not important anymore. Hence, a driver always reports a claim, leading to the enhanced

terminal condition VT . The expression relating Vt and Vt+1 follows from the application of a dynamic

programming principle in its simplest form. It indeed suffices to study separately the 3 different

cases. If a claim does not occur (with probability p), the driver is upgraded to s and we obtain

p · Vt+1(s)

1 + r
.

If a claim occurs with probability (1− p) and the driver chooses to report it, because it is too large,

i.e. with probability π?s , he faces no immediate cost but is downgraded to level s̄. This gives rise to

the term

(1− p) · πs ·
Vt+1(s)

1 + r

Finally, the term (3) follows from the occurrence of a loss L which is too small to be claimed. This

happens with probability (1−p)(1−πs). Then, the driver pays the loss and is upgraded to s. Hence

we obtain

(1− p)(1− πs) ·
(
E[L|L ≤ d?s] +

Vt+1(s)

1 + r

)
� �

Recall that the implied deductible d? is defined in terms of the value function V itself. Hence, the

characterization of V is not complete yet. Besides, the attentive reader would have noticed that the

implied deductible d? depends on time in its current form, since it defines at any time t in terms of

the difference between the value functions at time t + 1. In order to bypass this issue, one simply

needs to focus on the stationary version of this problem, for which T = ∞. In this case, the value

function does not depend on time anymore and neither does the implied deductible d?. We simply

denote by V the stationary value function associated to the infinite horizon valuation problem. We

deduce the following characterization of V .

Proposition 3.2. In a stationary framework, the value function of the driver is given by

V (s) = (1− p) · [1− F (V (s)− V (s))] · V (s)− V (s)

1 + r

+
V (s)

1 + r
+ Ps + (1− p) · F (V (s)− V (s)) ·G(V (s)− V (s)) ,

for any s ∈ S, where F is the cumulative distribution function of the loss L and

G : d 7→ E[L|L ≤ d] .

Proof. For any horizon T , the value function of the driver satisfies

Vt(s) ≤
(
||P ||∞ +

µ

1 + r

) ∞∑
k=0

1

(1 + r)k
= (1 + r)||P ||∞ +

µ

r
,

since this upper bound corresponds to the case where the driver is always paying the highest pre-

mium, while never reporting any claim. Besides, the value function of the driver is obviously

increasing with the maturity T , so that it converges as T goes to +∞. Then, the value function

(Vt)t enters a stationary framework so that, at the limit, Vt does not depend on time anymore.

Recalling the expression of (d?s)s∈S and recalling that π?s = 1− F (d?s), a direct reformulation of the

expression presented in Lemma 3.1 provides the announced result. � �

3.2. Numerical Resolution. Observe that equations obtained in Proposition 3.2 yield a nonlinear

system of |S| equations. It may rewrite in the form V = H(V ), where V is the collection of the

(V (s))s∈S . A solution - defined as an optimal strategy - is a fixed point of that system of equations.
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In order to obtain a fixed point for such system, we consider some starting values V (0) = (V(s))s∈S
and set, at step i+ 1, V (i+1) = H(V (i)), i.e. V (i+1) is the solution of the linear system

V(i+1)(s) = (1− p) · [1− F (V(i)(s)− V(i)(s))] ·
V(i)(s)− V(i)(s)

1 + r

+
V(i)(s)

1 + r
+ Ps + (1− p) · F (V(i)(s)− V(i)(s)) ·G(V(i)(s)− V(i)(s)) ,

Starting values can for example be the myopic ones obtained as discussed in Section 1.3,

V(0)(s) =

∞∑
k=1

Pmax{s−k,1}

(1 + r)k
,

where, starting from class s, we assume that no claims are reported in the future.

Proposition 3.3. The sequence of value functions (V(n))n∈N constructed by the above algorithm

converges to the stationary value function V of the driver, as described in Proposition 3.2.

Proof. Observe that the algorithm presented above is built in such a way that the nth value function

V(n) has a nice re-interpretation in terms of solution to a stochastic control problem.

Fix n ∈ N. Consider a driver with horizon T = n and trying to solve

V̄ n0 (s) := inf
d∈A

E

[
n−1∑
k=0

1

(1 + r)k

(
PSdk +

Lk1Lk≥dSd
k

1 + r

)
+ V(0)(S

d
n)|Sd0 = s

]
, s ∈ S .

Then, according to Lemma 3.1 and the constructing algorithm for V(n), the value function V̄ n0 at

time 0 exactly coincides with V(n). Besides, following the same reasoning as in Proposition 3.2,

V̄ n0 converges to the stationary limit V as n goes to infinity, since the horizon hereby converges

to infinity and the terminal condition V(0) has no impact on the limit. Therefore, the algorithm

produces a sequence of functions (V(n))n∈N which converges to the stationary limit V of interest.

� �

3.3. Reformulation of the algorithm for some parametric loss distributions. In order to

provide a numerical illustration of the algorithm, an important quantity that we need to compute

is G(V (s)− V (s)), based on the loss distribution. For convenience, let us consider some (standard)

parametric loss distribution. Recall that for numerical applications, µ = E(L) = P̄ /(1− p).
If L has an exponential distribution with mean µ, the cumulative density function F is given by

F (`) = 1− e−`/µ when ` > 0. In that case, we compute

G : d 7→ µ− d · e−d/µ

1− e−d/µ
.

If L has a Gamma distribution with shape parameter α and β, then its average is valued µ = αβ,

and its density is given by

f : x 7→ xα−1

Γ(α)βα
e−

x
β .

In that case, we can compute

E[X1X<d] =

∫ d

0

xα

Γ(α)βα
e−

x
β dx =

βdα

Γ(α)βα
e−

d
β +

∫ d

0

αβ

Γ(α)βα
xα−1e−

x
β dx

=
β1−αdα

Γ(α)
e−

d
β + αβF (d) .

And we deduce from the expression of the cumulative density function F that

G : d 7→ β1−αdα

Γ(α, d/β)
e−

d
β + αβ .

where Γ : (a, z) 7→
∫ z

0

ta−1e−tdt.
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4. Illustration on the ‘Spanish Bonus-Malus’ system

In order to provide a realistic illustration of our methodology, we consider the ‘Spanish Bonus-

Malus’ scheme, as described in [9], Appendix B-18. In this scheme, each driver is highly penalized

in case of reported claims as they automatically downgrade to the worst possible class, independently

of their current premium. This is summarized in the following transition rules table:

Class Premium Class After 0 Claim Class After 1 Claim

5 100 4 5

4 100 3 5

3 90 2 5

2 80 1 5

1 70 1 5
Table 2. Transition rules for the ‘Spanish Bonus-Malus’ scheme.

Therefore, the associated transition is matrix is given by

M =


p 0 0 0 1− p
p 0 0 0 1− p
0 p 0 0 1− p
0 0 p 0 1− p
0 0 0 p 1− p


where p denotes the probabity to have no-claim over a year. The associated Markov chain has

a (unique) invariant probability measure µ that can be obtained numerically. For instance, when

claims occurrence is driven by an homogeneous Poisson process, with intensity λ = 0.08, we compute

p = 92.6% and the stationary measure whenever every driver reports his claims is given by(
0.735 0.059 0.063 0.069 0.074

)
.

Based on the premiums given in Table 2, this leads to a stationary average premium P̄ = 76.13.
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Figure 2. Invariant probability measure, as a function of λ, with p = e−λ.

The stationary distribution of the drivers together with the evolution of P̄ , for different choices of

λ are respectively given in Figure 2 and Figure 3. As expected, for higher values of λ, more drivers

are present in higher order classes. On the contrary, for λ = 0.04, we even have more than 90% of

the population in the best class, numbered 1. Similarly, the level of the average stationary premium

P̄ increases with λ, as shown on Figure 3.

Recall that, in order to enforce the actuarial equilibrium, we chose for numerical applications to

pick the average level of loss amount µ as

µ = E(L) = P̄ /(1− p) .
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Figure 3. Asymptotic premium P̄ , as a function of λ, with p = e−λ.

Hence, from λ and P̄ , we can derive µ, as well as the function G, and apply our numerical algorithm

in order to compute the stationary value function associated to each class as well as the optimal

reporting strategy, characterized by the implied deductible d?.

In Table 3, V(0) is the discounted value of future premiums under the naive assumption that no

claims will occur in the future. V∞ is the stationary discounted value of future premium when the

optimal strategy is considered. d? is the implied deductible, and P(L ≤ d?) is the probability to

declare no loss. Here µ = 993 and future values are discounted with a 5% interest rate.

Class V(0) V∞ d∗ P(L ≤ d?)
1 1481 1553 84 8.1%

2 1455 1527 84 8.1%

3 1428 1499 74 7.2%

4 1410 1480 54 5.3%

5 1400 1470 27 2.6%

Table 3. Impact of the optimal reporting strategy, Exponential losses, λ = 8%

and r = 5%.

Observe that the deductible d?s is increasing with the class level s ∈ S, as well as the premium.

A driver with a high premium will be more likely to declare any loss, while a driver with a low

premium will try to keep his (good) bonus and will avoid declaring losses on purpose.

The evolution of d?s as a function of the discount rate r, when λ = 8% and for exponentially dis-

tributed losses can be visualized on Figure 4. As the interest rate increases, the rational driver will

minimize the impact of a reported claim on his future costs, so that he will be eager to declare

more claims, even with smaller levels. Indeed, we observe that the implied deductible d?(s) is a

decreasing function of r, for any class level s ∈ S.

The evolution of d?s as a function of the claims frequency intensity λ, when r = 5% and claim sever-

ity is exponentially distributed can be visualized on Figure 5. Le minimal level for claim reporting

slowly increases with the frequency λ of the claims.

Whenever the interest rate r is fixed at 5% and the frequency of claims is fixed by λ = 8%, Figure

6 shows the evolution of d?s as a function of the coefficient of variation of losses,
√

Var[X]/E[X], for

Gamma distributed losses. We observe that high and low variance factors lead to higher deductible

levels, meaning that a too small or too large uncertainty on the possible level of claim, provides

incitations for the driver not to declare losses of small level.
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Figure 4. Value of the Deductibles, d?s as a function of r.
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Figure 5. Value of the Deductibles, d?s as a function of λ.

5. Possible extensions

The model considered so far has on purpose been chosen in its simplest form in order to empha-

size the effect of a rationally optimal claim reporting strategy. We now discuss several extension

possibilities, which can be encompassed in our framework of study.

5.1. Addition of Deductibles. In order for the model to be more realistic, one should take into

account that any driver also has to pay a deductible, whenever a claim is reported, see e.g. [12].

The level of deductible D depends on the current class level s and will be denoted Ds. In such a

case, the optimization problem of the agent is replaced by

V0(s) = inf
d∈A

E

[
T∑
t=0

1

(1 + r)t

(
PSdt +

1

1 + r
DSdt

1Lt>dSdt
+

1

1 + r
Lt1Lt≤dSdt

) ∣∣∣Sd0 = s

]
,
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Figure 6. Implied deductible d? as a function of the variance of losses.

where the extra term takes into account that one should pay the deductible DSdt
whenever a claim

is reported at time t.

This new formulation gives rise to an optimal strategy which takes the similar form as the one

obtained in the no-deductible case:

d?s = Vt+1(s)− Vt+1(s) ,

the only difference relying on the previous modification of the definition of the value function. The

characterization for the solution presented in Proposition 3.2 as well as the approximating algorithm

considered in Section 3.2 can be adapted to this setting in a straightforward manner.

5.2. Consideration of risk averse drivers. In the previous setting, the representative driver is

considered to be risk neutral, namely he is neither afraid nor eager to take some risk. The rational

behavior of the driver may also be represented using a utility function characterizing his choices

under uncertainty. In this framework, the new optimization problem of the agent is given by

V0(s) = inf
d∈A

E

[
T∑
t=0

1

(1 + r)t
U

(
PSdt +

1

1 + r
Lt1Lt≤dSdt

) ∣∣∣Sd0 = s

]
,

where U is the chosen risk adverse utility function of the agent. In such a case, once again, the

implied deductible is characterized in a similar fashion and only the computation scheme for the

value function is modified. Nevertheless, the dynamic programming principal allows us once again to

characterize the value function of the agent as the solution to a non linear system of equations. The

only difference is that each payment is computed via its utility value instead of solely its monetary

one.

5.3. Consideration of heterogeneous agents. A tempting extension is to try to incorporate

heterogeneity in the driver economic behavior. It is quite classical to consider that drivers may

have different probabilities of claim occurrence and severity but less in the actuarial literature to

incorporate different economic behavior for agents. In our framework, we could consider a collection

of driver types x ∈ X , so that each type x of driver is characterized by its own utility function Ux
together with his interest rate rx. In such a case, a driver of type x will solve the problem

V0(s) = inf
d∈A

E

[
T∑
t=0

1

(1 + rx)t
Ux

(
PSdt +

1

1 + r
Lt1Lt≤dSdt

) ∣∣∣Sd0 = s

]
.
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Hence, one can solve these problems separately of any x ∈ X and deduce the corresponding collection

of implied deductibles (d?s(x))s∈S,x∈X . Then, one can directly compute the corresponding stationary

distribution (νxs )s∈S associated to any class x ∈ X . Hence, the average premium should by derivedby

aggregating all the driver types and computing

P̄ =

∫
x∈X

∑
s∈S

Psν
x(s)f(x)dx ,

where f represents the density function of the types in the population.

6. Conclusion

We have seen in this paper how hunger for bonus can be incorporated in order to obtain the

‘true’ transition matrix for class levels, not only based on claims occurrence, but considering the

probability to report losses. The dynamic programming problem does not have simple and explicit

solutions, but a simple numerical algorithms can be used in order to approximate the solution. We

have observed the impact of the hunger bonus in the context of a simplistic bonus-malus scheme,

but it can be extended easily to more complex ones, as discussed in particular in Section 5. The

most difficult remaining task is clearly to obtain the extension to the case where the bonus-malus

scheme takes into account the number of reported claims within a period. A way to solve it is to

assume that the driver waits until the date of renewal, to decide how many losses are reported (and

which ones), but if equations can be explicitly written (and solved), this approach is not realistic.

This is clearly a difficult task for future research.

We chose in this paper not to consider the ex post or ex-ante moral hazard topics associated

to the design of optimal insurance policy. The main reason is that, as long as the bonus malus

policy is clearly announced in advance by the insurance company, the rational driver should not

have any reason to dissimulate his driving skills, other than the economic one presented above.

Finally, our model lacks realism since we assume that any driver is rational, able to take economies

decisions as the one described above, and only wishes to make his claim reporting on based on

solely economic reasoning, instead of e.g. more ethical ones. A natural extension of for such study

would be to consider a chosen distribution of ’rationally reporting’ type of drivers in the population.

Finally, the most difficult part is probably that λ is usually unknown by drivers, and this (possibly

heterogenous) ambiguity will indice an additional bias
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