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Abstract

There is a great interest to predict the long- term evolution of the track irregu-
larities for a given track stretch of the high-speed train network, in order to be
able to anticipate the start off of the maintenance operations. In this paper, a
stochastic predictive model, based on big data made up of a lot of experimental
measurements performed on the French high-speed train network, is proposed
for predicting the statistical quantities of a vector-valued random indicator re-
lated to the nonlinear dynamic responses of the high-speed train excited by
stochastic track irregularities. The long- term evolution of the vector-valued
random indicator is modeled by a discrete non-Gaussian nonstationary stochas-
tic model (ARMA type model), for which the coefficients are time-dependent.
These coefficients are identified by a least-squares method and fitted on long
time, using experimental measurements. The quality assessment of the stochas-
tic predictive model is presented, which validates the proposed stochastic model.

Keywords: Railway track irregularities, train dynamics, stochastic prediction,
nonstationary, non-Gaussian

Notations

A lower case letter, such as x or α, is a real deterministic variable.
A boldface lower case letter, such as x or α, is a real deterministic vector.
An upper case letter, such as X or A, is a real random variable.
A boldface upper case letter, X or A, is a real random vector.
A letter between brackets such as [x] or [A], is a real deterministic matrix.
A boldface letter between brackets such as [x] or [A], is a real random matrix.
E: Mathematical expectation.
X: Track irregularities random vector.
τ : Discrete long time, corresponding to the long-term evolution of a stretch of
the track.
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C: Vector-valued random indicator of the dynamic response of the train.
Cmod: Vector-valued random indicator of the dynamic response of the train,
obtained by computation of the train response submitted to the track irregu-
larities that are measured and in taking into account the model uncertainties
induced by modeling errors.

1. Introduction

Industrial context. The track geometry, which describes the relative positions
of the rails, deteriorates over long time because of the train passages and of
the environmental conditions. This degradation of the track geometry is char-
acterized by four track irregularities and impacts the dynamic response of the
train by reducing the passengers comfort and the train stability. To monitor
the track conditions, SNCF company regularly measures the track geometry of
the high-speed lines using a recording train, and perform maintenance works on
the track when the track irregularities exceed a standardized threshold. The
maintenance work s on railway tracks are very costly for the railway companies
which are permanently seeking to improve the ir maintenance strategy. In par-
ticular, the prediction of the long- term evolution of the dynamic response of
the train and of the track geometry would help railway companies to anticipate
their maintenance operations and to improve their planning. Several approaches
for improving the track maintenance strategy have been studied in [1, 2, 3, 4, 5].
Actually, the dynamic response of the train on the track being nonlinear, it is
necessary to take into account both the track irregularities and the train re-
sponse for the maintenance planning. The dynamic response of the train on a
given stretch of the railway track is usually computed using a computational
model, but no indicator currently exists in order to assess the long-term evolu-
tion of the dynamic response of the train. In this paper, the evolution of a given
stretch of the track over a long time, denoted by τ , is characterized by the evo-
lution of a vector-valued random indicator related to the dynamic responses of
the train and denoted by C(τ). Measurements of the track irregularities of this
track stretch are performed for K discrete long times τ1, τ2, . . . , τK . The goal is
to build and to identify a stochastic predictive model of the long- term evolution
of the vector-valued random indicator C(τ) by using the experimental data
generated at discrete long times {τ1, τ2, . . . , τK}. This model should allow for
predicting the statistics of the vector-valued random indicator C(τK+1) at long
time τK+1.

Setting the problem to be solved and methodology used. The adopted method-
ology is summarized by the diagram displayed in Figure 1, which corresponds
to the proposed stochastic predictive model for the long-term evolution of a
vector-valued indicator of the dynamic response of the train, with respect to
the long-term evolution of the track irregularities. The construction of the
stochastic predictive model for the random indicator (framed part of the dia-
gram) is the problem addressed in this paper. The computation of the dynamic
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Figure 1: Scheme summarizing the methodology.

response of the train from the measured track irregularities is summarized in
Section 2. For the construction of the stochastic predictive model, the following
hypotheses are used:

• The prediction is performed for a given stretch of the railway track.

• Measurements of the track geometry of this track stretch are carried out
at discrete long times {τ1, τ2, . . . , τK}.

• A stochastic computational model of the dynamic responses of the high-
speed train is used to estimate the statistics of random quantities of in-
terest, that are the vector-valued random indicator represented by the
R

N -valued time series Cmod(τ1), . . . ,C
mod(τK). The main steps for the

construction of the stochastic computational model are summarized here-
inafter:

– A stochastic model of the track irregularities is constructed using
experimental measurements of the track geometry as explained in
[6, 7] on the base of the works published in [8, 9, 10].

– A stochastic model of the uncertainties induced by the modeling er-
rors introduced in the computational model of the train dynamics
is constructed using simultaneously experimental measurements of
the track geometry and experimental measurements of the dynamic
responses of the train as explained in [11, 7].

For preserving the readability of this paper, in Section 2, we give a brief
summary of these stochastic modelings, which are directly used in Sec-
tion 3 for the prediction of the long- term evolution of the vector-valued
random indicator.

• At each discrete long time τk, for k = 1, . . . ,K, the statistics of the vector-
valued random indicatorCmod(τk) are calculated using the stochastic com-
putational model of the dynamic responses of the high-speed train.
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• Using the statistics of the vector-valued random indicators Cmod(τ1),
. . . ,Cmod(τK), which have been calculated for all long time s τ1, . . . , τK ,
a stochastic predictive model of the long- term evolution of this vector-
valued indicator with respect to the track irregularities is constructed and
then identified. The vector-valued random indicator, that is predicted by
the stochastic predictive model, is represented by the R

N -valued time se-
ries Ck (also denoted by C(τk)). If the stochastic predictive model were
perfect (no error), we would have Cmod(τk) = C(τk) for k = 1, . . . ,K
(which is not the case).

• Using the stochastic predictive model identified with Cmod(τ1), . . . , C
mod

(τK), the statistics of the vector-valued random indicator CK+1 are cal-
culated at the discrete long time τK+1, with CK = Cmod(τK) as initial
condition. An estimation of the error induced by the stochastic predictive
model is finally given.

Organization of the paper. In Section 2, the stochastic computational model
of the dynamic response of the high-speed train is summarized. Section 3 is
devoted to the construction of the stochastic predictive model. Section 4 deals
with the identification procedure of the proposed stochastic predictive model.
In Section 5, we present the prediction of the vector-valued indicator at long
time τK+1. Finally, Section 6 is devoted to an application of the predictive
model to the French railway network for the high-speed train s.

2. Stochastic computational model of the dynamic response of the

train

2.1. Local stochastic model of the track irregularities

As explained in [7], a global stochastic model of the track irregularities is
first constructed and then adapted to the given local stretch of the railway
track. This global stochastic model has been developed in [9] and detailed in
[12, 13, 14, 15]. It is independent of the track stretch and of long time τk,
and is constructed using the measurements of the track irregularities of all the
track stretches of the French high-speed lines. Due to the very large number of
measured data, this model is considered as very robust.

For each stretch of the track, the track irregularities are measured by a
recording train at each discrete long time τk for k = 1, . . . ,K, providing a large
amount of experimental data. The measurements of the four track irregularities
are carried out at Ns + 1 sampling points along each stretch of the track. The
track irregularities vector is then modeled by a centered random variable X =
(X1,X2,X3,X4) with values in R

4(Ns+1). For the global stochastic modeling,
the centered random vectorX is written (using a truncated principal component
s decomposition) as

X ≃
Nη∑

ℓ=1

√
λℓ u

ℓ ηℓ , (1)
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in which Nη ≪ 4(Ns + 1), where λ1 ≥ . . . ≥ λNη
are the largest eigenvalues,

and where u1, . . . ,uNη are the associated eigenvectors of the covariance matrix
[CXX] of X, which is estimated using the experimental measurements of the
track irregularities at a fixed long time τk. The random coefficients η1, . . . , ηNη

are uncorrelated, centered and normalized non-Gaussian and statistically de-

pendent random variables such that ηℓ = λ
−1/2
ℓ XTuℓ. Let [λ] be the diagonal

matrix whose diagonal entries are λ1, . . . , λNη
. Let [Q] be the rectangular real

matrix of dimension (4(Ns + 1), Nη) such that

[Q] = [u1 λ
1/2
1 . . .uNη λ

1/2
Nη

] , [Q]T [Q] = [λ] . (2)

Then random vector of track irregularities X can be rewritten as

X ≃ [Q]η . (3)

The global stochastic model has to be adapted to the given local track stretch,
in constructing a local stochastic model of the track irregularities for the given
track stretch. This local stochastic model takes into account uncertainties
induced by (i) the measurement noise associated with local measurements xmeas

τ1 ,
xmeas
τ2 , . . . of the track irregularities of the given track stretch, and (ii) the

local variability of the given track stretch in order to decrease the “statistical
distance” between the global stochastic model and the local measurements. The
local stochastic model is constructed in introducing a random field noise for
which the spatial properties are driven by the global stochastic model and whose
intensity of the statistical fluctuations is identified using measurement xmeas

τ1 at
long time τ1. It is then assumed that the optimal value computed for the random
noise intensity at long time τ1 is representative of the level of uncertainties
(measurement noise and variability) for all the values of the long time τk of
this given track stretch. For κ = 1, . . . , 4, let Xκ be the random vector of
dimension Ns + 1, which represents one type of track irregularities and which
is written (using Eq. (3)) as

Xκ = [Qκ]η , (4)

in which the ((Ns+1)×Nη) real matrix [Qκ] is extracted from matrix [Q]. The
proposed adapted stochastic model is written as

X̃κ(δκτ1) = [Qκ]
(
η + δκτ1 G

κ
)

, κ = 1, 2, 3, 4 , (5)

in which δτ1 = (δ1τ1 , δ
2
τ1 , δ

3
τ1 , δ

4
τ1) is the vector-valued hyperparameter allowing

the uncertainty level to be controlled, and which has to be identified for each
stretch of the track using experimental data xmeas

τ1 at τ = τ1. For fixed κ, Gκ

is a R
Nη -valued Gaussian second-order centered random variable, defined on

the probability space (Θ,F ,P), for which the covariance matrix is the identity
matrix. In the following, we will also use the notation G = (G1,G2,G3,G4)
that is a Gaussian second-order centered random vector defined on (Θ,F ,P)
with values in R

4Nη . The optimal value δoptτ1 = (δ1,optτ1 , δ2,optτ1 , δ3,optτ1 , δ4,optτ1 ) of
hyperparameter δτ1 is estimated by using the maximum log-likelihood method
and the experimental measurements, as explained in [7].
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2.2. Stochastic model of uncertainties induced by modeling errors in the com-

putational model of the train dynamics

2.2.1. Definition of the vector-valued indicator of the high-speed train dynamics

A vector-valued indicator is defined to characterize the dynamic response
of the high-speed train on a given track stretch of length S. This indicator is
inspired by criteria (accelerations and forces) related to the dynamic response
of the high-speed train that are described in UIC 518 leaflet [16] for the cer-
tification of railway vehicles. Experimental measurements of the components
of the indicator have been performed and can be used to validate the simula-
tion results. To compute the N components of the indicator, N quantities of
interest, denoted by y1(s), . . . , yN (s), s in [0, S], are calculated from forces and
accelerations at different locations inside the train. For the given track stretch,
the vector-valued indicator c = (c1, . . . , cN) is then defined by

cj = max
s∈[0,S]

|yj(s)| , j = 1, . . . , N . (6)

For a given stretch of the track, the track geometry and the indicator of the train
dynamics are simultaneously measured. For the νp track stretches for which
measurements are performed, the measured indicators of the train dynamics
are denoted by cexp,1, . . . , cexp,νp . Using the computational model of the train
dynamics and the measured track irregularities of each measured track stretch,
νp simulated indicators of the train dynamics, denoted by csim,1, . . . , csim,νp , are
computed. The νp vector-valued indicators csim,1, . . . , csim,νp are considered as
νp independent realizations of the vector-valued random indicator denoted by
Csim.

2.2.2. Stochastic modeling of the random indicator taking into account model

uncertainties induced by modeling errors

Let Cmod = (Cmod
1 , . . . , Cmod

N ) be the random indicator deduced from Csim

for which the model uncertainties induced by modeling errors (see [17]) are
taken into account. The stochastic model of Cmod is obtained by introducing a
non-Gaussian second-order multiplicative output noise Bout = (Bout

1 , . . . , Bout
N )

defined on the probability space (Θ′,F ′,P ′) with values in R
N , which is statis-

tically independent of Gaussian random vector G, and which is written as

C mod
j = C sim

j exp(Bout
j ) , j = 1, . . . , N . (7)

Non-Gaussian second-order random vector Bout is identified as explained in [7]
in introducing its polynomial chaos representation (see for instance [18, 19, 17])
for which the coefficients are identified by using the maximum-likelihood method
and the experimental measurements cexp,1, . . . , cexp,νp of the indicator.

Consequently, the vector-valued random indicator Cmod is defined on the
product of the probability spaces (Θ,F ,P) and (Θ′,F ′,P ′). Let G(θ1), . . . ,
G(θν) be ν independent realizations of G and let Bout(θ′1), . . . ,B

out(θ′ν) be ν
independent realizations of output noise Bout. The family of the ν independent
realizations {Cmod(θℓ, θ

′
ℓ), ℓ = 1, . . . , ν} is such that, for all j = 1, . . . , N ,

C mod
j (θℓ, θ

′
ℓ) = C sim

j (θℓ) exp(B
out
j (θ′ℓ)) , j = 1, . . . , N . (8)
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3. Stochastic modeling of the long- term evolution for the vector-

valued random indicator

The long-term evolution of the vector-valued random indicatorsCmod(τ1), . . . ,
Cmod(τK), which have been computed in Section 2.2.2, is modeled by a time
series denoted by {C(τk), k ≥ 1} (or {Ck, k ≥ 1}) which has the same properties
asCmod(τk). The construction and the identification of the stochastic predictive
model of the vector-valued random indicator {Ck, k ≥ 1} are relatively difficult
for the following reasons:

• The long-term evolution of the indicator is strongly nonstationary (and
consequently statistics cannot be enriched by using time averaging esti-
mators).

• The experimental data are very limited because only one measurement of
the track geometry of the given track stretch is available at each discrete
long time τk.

• The value K of the number of discrete long times used for predicting the
statistics of the vector-valued random indicator CK+1 at discrete long
time τK+1 is very low (typically K is of order 10).

• The vector-valued random indicator C is a non-Gaussian random vec-
tor, in particular the initial value C1 = Cmod(τ1) is non-Gaussian, which
means that the time series {Ck, k ≥ 1} is non-Gaussian.

Two steps are required for predicting the statistics of the vector-valued ran-
dom indicator C at long time τK+1. The first one is related to the choice
and the construction of a stochastic predictive model and the second one con-
sists in identifying it by solving a statistical inverse problem. The time series
C(τ1), . . . ,C(τK), for which the discrete time-evolution stochastic model has to
be constructed using time series data Cmod(τ1), . . . ,C

mod(τK), is nonstationary,
and consequently the identification requires to solve a nonstationary statistical
inverse problem.

There exist several methods for constructing and identifying a nonstationary
stochastic predictive model:

• The first one belongs to the class of the ARMA models [20, 21]. Since
the vector-valued random indicator is nonstationary and non-Gaussian, a
nonstationary ARMA model has to be used (see for instance, [22, 23, 24]),
and the non-Gaussian character of the output is induced by the non-
Gaussian random initial condition C1 = Cmod(τ1).

• Since the probability distribution of the non-Gaussian random initial value
C(τ1) = Cmod(τ1) is known (estimated), the second method would consist
in using the Bayesian filtering [25, 26] based on one-order or higher-order
Markov chain models. A first choice could consist in choosing a one-
order Markov chain model and to directly identify the nonhomogeneous
transition kernel. Such an approach has been tested and has not given
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sufficiently robust predictions. A second one would be to use a Kalman
filter or an extended Kalman filter [25, 27, 28] taking into account the
non-Gaussian property of the vector-valued random indicator. Such an
approach cannot directly be used due to the lack of data.

The long-term evolution model Ck = C(τk), for k = 2, . . . ,K, with the initial
condition C1 = Cmod(τ1), of the vector-valued random indicator C, is thus
chosen as a nonstationary non-Gaussian one-order Markov chain. The long-
term evolution model is written as

Ck = ([IN ]−∆τk [A])C
k−1 +∆τk g

k + [hk] ∆Wk , k = 2, . . . ,K , (9)

with the initial condition
C1 = Cmod(τ1) , (10)

in which

• [IN ] is the identity matrix in R
N×N .

• [A] is a matrix in R
N×N , which has to be identified.

• ∆τk = τk−τk−1 represents the time step, that is not constant and depends
on k, and in which τk, k = 2, . . . ,K, is the measurement time of the track
irregularities.

• ∆Wk =
√
∆τk N

k, in which N
2, . . . ,NK are independent Gaussian nor-

malized random vectors defined on a third probability space (Θ′′,F ′′,P ′′),
with values in R

N (E{N k} = 0, E{N k (N k)T } = [IN ]). Therefore,
E{∆Wk⊗∆Wk} = ∆τk [IN ]. The family of random vectors {N k, k ≥ 2}
is statistically independent of random vectors G and Bout, and conse-
quently, is independent of Cmod(τ1).

• {g} = {g2, . . . ,gK} is a family of K − 1 vectors in R
N , which has to be

identified.

• {[h]} = {[h2], . . . , [hK ]} is a family of (K − 1) real matrices in R
N×N ,

which has to be identified. For all k, [hk] is chosen as a lower triangular
matrix with positive diagonal entries.

• in the initial condition, Cmod(τ1) is a non-Gaussian second-order R
N -

valued random variable whose probability distribution is known (estimated
using the stochastic computational model of the high-speed train dynamics
described in Section 2).

With respect to an ARMA model or to a Kalman filter, it should be noted that:

• The nonstationarity property is induced by the coefficients gk and [hk]
that depend on discrete time τk, represented by index k.

• The matrix [A] does not depend on discrete time k. It should be noted
that, if matrix [A] had been chosen as a function of k, the time series [Ak],
gk, and [hk] could not be identified because of the lack of data.
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• If the initial condition C1 = Cmod(τ1) were a deterministic vector or a
Gaussian random vector, then the nonstationary time series {Ck, k ≥ 1}
would be Gaussian. Nevertheless, since random vector Cmod(τ1) is not
Gaussian, time series {Ck, k ≥ 1} generated by the predictive model above
is a non-Gaussian nonstationary time series.

With such a proposed stochastic predictive model, [A], gk, and [hk] have to be
identified using data Cmod(τ1), . . . ,C

mod(τK), for which the joint probability
distribution is known (by estimation). Such an identification can be done using
the first- and second-order moments equations associated with Eq. (9).

Once the stochastic predictive model is identified, it can be used for predicting
the statistics of the random vectorCK+1 at long time τK+1. However, the values
of gK+1 and [hK+1], which are needed for the estimation ofCK+1, are unknown.
We then propose to represent gk and [hk] as the values gaff(τk) and [haff(τk)] at
τk, k ≥ 1, of affine functions gaff and [haff ] (a more higher-degree representations
for g and [h] could be introduced, but it has been seen that no gain is obtained
with respect to the one-degree (affine) representation). For the identification of
the parameters of such affine representations gaff and [haff ], two approaches can
a priori be used. The first one consists in introducing the affine representations
in Eq. (9) before the identification (as proposed, for instance, in [22]), and then
to identify [A] and the parameters involved in the affine representations gaff

and [haff ] of gk and [hk]. The second one consists in identifying the coefficients
gk and [hk] (as explained before) and then approximating them by the values
gaff(τk) and [haff(τk)]. The identification of the parameters of affine functions
gaff and [haff ] is performed using the least-squares method with constraints.
These two approaches have been tried and their results show that the second
one is more robust than the first one. Using the second approach, the prediction
CK+1 will be denoted by Caff,K+1.

4. Identification of the parameters of the stochastic model for the

long- term evolution

For the identification of the model parameters [A], {g} and {[h]}, the clas-
sical least-squares method with weights is used. The cost function of the least-
squares method is constructed using the first-order vector moment equation,
the second-order tensor moment equation, and the second-order cross-tensor
moment equations associated with Eq. (9).

4.1. First-order vector moment equation with weights used for constructing the

cost function

Taking the mathematical expectation of Eq. (9) yields the following K − 1
first-order vector moment equations,

fk([A], {g}) = 0N , k = 2, . . . ,K , (11)
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in which, for all k fixed in {2, . . . ,K}, the R
N -valued function fk is defined by

fk([A], {g}) = [Nk
f ]
(
E{Ck} − ([IN ]−∆τk[A])E{Ck−1} −∆τk g

k
)
, (12)

in which, for all i and j in {1, . . . , N}, the weights [Nk
f ]ij are introduced for

normalization reasons inside the cost function and for being in capability to
give a more important weight αj to certain components Ck

j of the vector-valued

indicator Ck in the cost function. The matrix [Nk
f ] of these weights is thus

defined by

[Nk
f ]ij =

αi

E{Ck
i }

δij , (13)

in which δij is the Kronecker symbol, where Ck
1 , . . . , C

k
N are the components

of the random vector Ck, and where {α1, . . . , αN} is the family of weight co-
efficients that have to be arbitrarily chosen (see Section 6.2) and belong to the
admissible set C1 defined by

C1 = {α1 ≥ 0, . . . , αN ≥ 0 ,
N∑

j=1

αj = 1 } . (14)

4.2. Second-order tensor moment equation with weights used for constructing

the cost function

For each k = 2, . . . ,K , Eq. (9) is right-tensorized by Ck and the math-
ematical expectation is applied, which gives the following second-order tensor
moment equation,

E{Ck ⊗Ck} = ([IN ]−∆τk[A])E
{
Ck−1 ⊗Ck

}
+∆τk g

k ⊗ E{Ck}
+ [hk]E{∆Wk ⊗Ck} . (15)

As ∆Wk and Ck−1 are statistically independent, and as ∆Wk is centered, the
term E{∆Wk ⊗Ck} can be expressed as

E{∆Wk ⊗Ck} = E{∆Wk ⊗ (([IN ]−∆τk [A])C
k−1 +∆τk g

k

+ [hk] ∆Wk)}
= E{∆Wk ⊗∆Wk} [hk]T

= [hk]T∆τk .

(16)

For all k in {2, . . . ,K}, Eq. (15) can be rewritten as

E{Ck ⊗Ck} = ([IN ]−∆τk[A])E{Ck−1 ⊗Ck}+∆τk g
k ⊗ E{Ck}

+ [hk] [hk]T∆τk . (17)

From Eq. (17), it can then be deduced that, for all k in {2, . . . ,K}, the second-
order tensor moment equation with weights is written as

[F k([A], {g}, {[h]})] = [0N,N ] , (18)
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in which the function [F k] with values in R
N×N is defined by

[F k([A], {g}, {[h]})] =
T
k :

(
E{Ck ⊗Ck} − ([IN ]−∆τk[A])E{Ck−1 ⊗Ck}

−∆τk g
k ⊗ E{Ck} − [hk] [hk]T∆τk

)
, (19)

in which the symbol ” : ” denotes the double contraction tensor operation. For
all i, j, i′, j′ in {1, . . . , N}, the weights {Tk}iji′j′ are introduced for the same
reasons as those given for Eq. (13). The fourth-order tensor Tk of these weights
is thus defined by

{Tk}iji′j′ =
√
αiαj

E{Ck
i C

k
j }

δii′δjj′ , (20)

in which {α1, . . . , αN} are the weights defined in Section 4.1 and where Ck
1 , . . . ,

Ck
N are the components of the random vector Ck.

4.3. Second-order cross-tensor moment equation with weights used for construct-

ing the cost function

For each k = 2, . . . ,K and for µ = 1, . . . , k − 1, Eq. (9) is right-tensorized
by Ck−µ and taking the mathematical expectation yield

E{Ck ⊗Ck−µ} =

([IN ]−∆τk[A])E{Ck−1 ⊗Ck−µ}+∆τk g
k ⊗ E{Ck−µ}

+ [hk]E{∆Wk ⊗Ck−µ} . (21)

As ∆Wk and Ck−µ are statistically independent for all k in {2, . . . ,K} and µ
in {1, . . . , k − 1}, and as ∆Wk is centered, it can be deduced that

E{∆Wk ⊗Ck−µ} = 0 , (22)

E{Ck⊗Ck−µ} = ([IN ]−∆τk[A])E{Ck−1⊗Ck−µ}+∆τk g
k⊗E{Ck−µ} . (23)

From Eq. (23), it can then be deduced that, for all k in {2, . . . ,K} and for all µ
in {1, . . . , k − 1}, the second-order cross-tensor moment equation with weights
can be written as

[Hk,k−µ([A], {g})] = [0N,N ] , (24)

in which function [Hk,k−µ] with values in R
N×N is defined by

[Hk,k−µ([A], {g})] = T
k :

(
E{Ck ⊗Ck−µ}

−([IN ]−∆τk[A])E{Ck−1 ⊗Ck−µ} −∆τk g
k ⊗ E{Ck−µ}

)
, (25)

in which the components of fourth-order tensor Tk are defined by Eq. (20).
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4.4. Formulation of the least-squares optimization problem for the identification

of the parameters

(i) Definition of the admissible sets for the optimization problem. In the frame-
work of the long- term evolution of the track irregularities, one or several com-
ponents of the vector-valued indicator are not bounded functions when time k is
increasing. Consequently, for any fixed value of K, it is not necessary to intro-
duce a convergence condition on maxk{∆τk} as a function of the spectral radius
of [A]. Therefore, no constraints are introduced for matrix-valued parameter [A]
in the optimization problem, and the admissible space for [A] is then defined by

CA = { [A] ∈ R
N×N } . (26)

The discrete time-dependent diffusion matrix of the Markov chain defined by
Eq. (9) is written as [σk] = [hk][hk]T that is a positive-definite matrix taking
into account the hypothesis introduced in Section 3. Consequently, the family
{[h]} = {[hk], k = 2, . . . ,K}, of lower triangular matrices [hk] must belong to
the following admissible set

Ch = { [hk] ∈ M
L
N for k = 2, . . . ,K } , (27)

in which M
L
N is the set of all the lower triangular (N × N) real matrices with

positive diagonal entries. No constraints are needed for the family of RN -values
vectors {g} = {gk, k = 2, . . . ,K}. The admissible space for {g} is thus

Cg = { gk ∈ R
N for k = 2, . . . ,K } . (28)

(ii) Definition of the target quantities for the optimization problem. The target
quantities introduced in Eqs. (11), (18) and (24) are, for k = 2, . . . ,K, the
vectors E{Ck} and E{Ck−1}, and, for µ = 0, . . . , k − 1, the tensors E{Ck ⊗
Ck−µ} and E{Ck−1 ⊗ Ck−µ}. For computing the cost function in the least-
squares problem, these target quantities are approximated by E{Cmod(τk)},
E{Cmod(τk−1)}, E{Cmod(τk)⊗Cmod(τk−µ)} andE{Cmod(τk−1)⊗Cmod(τk−µ)},
that are estimated using the stochastic computational model of the high-speed
train dynamics (see Section 2).

(iii) Formulation of the optimization problem for the identification of the pa-

rameters. Using Eqs. (11), (18) and (24), the optimal values [Aopt], {gopt}, and
{[hopt]} for parameters [A], {g}, and {[h]} of the stochastic predictive model
described by Eq. (9) are estimated using the least-squares method with con-
straints, for which the cost function is defined by

J([A], {g}, {[h]}) =
K∑

k=2

(‖fk([A], {g})‖22 + ‖[F k([A], {g}, {[h]})]‖2F

+

k−1∑

µ=1

‖[Hk,k−µ([A], {g})]‖2F ) , (29)
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in which ‖ · ‖2 is the Euclidean norm in R
N and ‖ · ‖F is the Frobenius norm in

R
N×N . The optimal values [Aopt], {gopt}, and {[hopt]} are constructed as the

solution of the following optimization problem.

{[Aopt], {gopt}, {[hopt]}} = arg min
[A]∈CA, {g}∈Cg, {[h]}∈Ch

J([A], {g}, {[h]}) . (30)

For this optimization problem, the number of variables is N2 + N(K − 1) +
(K − 1)N(N + 1)/2 (and will be 675, in the application presented after). This
optimization problem is solved with the trust-region-reflective algorithm with
constraints, for which the initial values, denoted by [A0], {g0}, and {[h0]}, are
computed by solving the simplified optimization problem described in Appendix
A.

5. Prediction of the long- term evolution with the stochastic model

As it has been explained in Section 3, the stochastic model identified in
Section 4 has to be adapted in order to be able to predict the long- term evolution
CK+1 = C(τK+1) of the indicator of the train dynamics at discrete long time
τK+1. In this section, the families {g} and {[h]} are considered as the values
of the functions τ 7→ g(τ) and τ 7→ [h(τ)] at discrete long times τk, k =
2, . . . ,K, such that g(τk) = gk and [h(τk)] = [hk]. Functions g and [h] are then
approximated (see Section 3) by

gaff(τk) = ag τk + bg , [haff(τk)] = [ah] τk + [bh] , (31)

in which ag and bg are vectors in R
N , where [bh] is a matrix in M

L
N , and where

[ah] is a lower triangular (N ×N) real matrix such that [ah] τk + [bh] is in M
L
N

for all k in {2, . . . ,K}. These conditions define the admissible set for [ah] and
[bh] denoted by Cahbh and ensure that the values of [haff ] are in Ch.

• For i = 1, . . . , N , the optimal value (a opt
gi , b opt

gi ) of (agi , bgi) is given as the
solution of the following optimization problem,

(aoptgi , boptgi ) = arg min
(agi

,bgi )∈R2

K∑

k=2

∆τk |gopt,ki − (agi τk + bgi)|2 . (32)

This unconstrained linear least-squares problem is solved with a classical
algorithm.

• The optimal value ([a opt
h ], [b opt

h ]) of ([ah], [bh]) is given as the solution of
the following optimization problem,

([aopth ], [bopth ]) =

arg min
([ah],[bh])∈Cahbh

K∑

k=2

∆τk |[hopt,k]− ([ah] τk + [bh])|2 . (33)

This constrained linear least-squares problem is solved using the trust-
region-reflective algorithm.
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The values gaff(τK+1) and [haff(τK+1)] are then calculated by

gaff(τK+1) = aoptg τK+1 + bopt
g , [haff(τK+1)] = [aopth ] τK+1 + [bopth ] . (34)

The predictionCaff,K+1 of the vector-valued random indicatorCK+1 = C(τK+1)
at long time τK+1 , given Cmod(τK), is then estimated using Eq. (9) that yields

Caff,K+1 = ([IN ]−∆τK+1 [A
opt])Cmod(τK) + ∆τK+1 g

aff(τK+1)

+ [haff(τK+1)]∆WK+1 . (35)

Remark. As explained in Section 1, Eq. (35) corresponds to Eqs. (9) and (10)
for which the initial condition is given at time τK :

Caff,k = ([IN ]−∆τk [A
opt])Caff,k−1 +∆τk g

aff(τk)

+ [h(τk)
aff ] ∆Wk , k = K + 1 , (36)

with the initial condition

Caff,K = Cmod(τK) , (37)

in which ∆τK+1 = τK+1 − τK .

6. Application to a high-speed line of the French railway network

6.1. Constructing the vector-valued random indicator Cmod

The components of the vector-valued random indicator have been selected
by using the expertise of SNCF, are related to the certification standards for
railway vehicles [16], and correspond to quantities that are effectively measured
for characterizing the dynamic response of the train. The number of components
of the vector-valued indicator is N = 9. For j = 1, . . . , 9, these components are

• C1: the lateral acceleration of the first bogie in the train.

• C2: the vertical acceleration of the first bogie in the train.

• C3: the lateral acceleration of the third bogie in the train.

• C4: the lateral acceleration of the second coach in the train.

• C5: the sum of lateral forces on the ninth train wheelset.

• C6: the sum of vertical forces on the first train wheelset.

• C7: the sum of vertical forces of the second train wheelset.

• C8: the sum of vertical forces of the tenth train wheelset.

• C9: the difference between right-wheel and left-wheel vertical forces of the
tenth train wheelset.

14



In order to assess the quality of the dynamic response of the high-speed
train, for each component Cj , a value of the threshold c∗j is chosen according
to the expertise of the railway company and this value is close to the limit
value used for the certification of the vehicles given in [16]. The values of
the components of vector c∗ can be adapted depending on the maintenance
policy chosen by the railway company. All the numerical results presented
in the figures displayed in Section 6 are dimensionless concerning the values
of the components of the indicator (named as ”dimensionless indicator”). The
discrete long times τ1, . . . , τK+1 are transformed in dimensionless discrete long
times (named as dimensionless long time τ). A reference time-increment denoted
by ∆τref is chosen as

∆τref = ∆τK+1 , (38)

and the dimensionless long times are written as τk/∆τref , for k = 1, . . . ,K + 1.
All the results presented in Section 6 are related to a given stretch of the

track that corresponds to a stretch in alignment (the horizontal curvature is
null). The measurements of the track irregularities performed at the discrete
long times τ1, . . . , τK show that the track irregularities and their evolution are
mainly in the vertical direction. This is the reason why the components of the
vector-valued indicator Cmod which are related to the vertical direction (namely
Cmod

2 , Cmod
6 , Cmod

7 , Cmod
8 ) will present a significant long- term evolution, while

the long- term evolution of those related to the horizontal direction (namely
Cmod

1 , Cmod
3 , Cmod

4 , Cmod
5 , Cmod

9 ) will not be significant.
The construction of the vector-valued indicator is carried out as explained

in Section 2. For this track stretch and for discrete long times τk, k = 1, . . . ,K,
track irregularities vector xmeas

τk = (xmeas,1
τk ,xmeas,2

τk ,xmeas,3
τk ,xmeas,4

τk ) is measured
by a recording train (K = 12 measures are available for the given track stretch).
The optimal value δopt

τ1 = (δ1,optτ1 , δ2,optτ1 , δ3,optτ1 , δ4,optτ1 ) of hyperparameter δτ1 for

this track stretch is δopt
τ1 = (0.15, 0.9, 0.85, 0.8). The local stochastic model of

the track stretch is constructed using Eq. (5) that yields, for κ = 1, 2, 3, 4 and
for k = 1, . . . ,K,

X̃κ
τk(δ

κ,opt
τ1 ) = [Qκ]

(
ηmeas
τk + δκ,optτ1 Gκ

)
, (39)

in which, from Eqs. (2) and (3), it can be deduced that

ηmeas
τk = [λ]−1 [Q]Txmeas

τk , (40)

which is the projection of the measurement xmeas
τk on the global stochastic model.

The Monte-Carlo method is performed with ν = 2000 independent realiza-
tions of the stochastic model, and is summarized hereinafter.

• ν = 2000 independent realizations G(θ1), . . . ,G(θν) of G = (G1,G2,
G3,G4) are generated.

• These ν independent realizations of G are used for constructing, for each
k = 1, . . . ,K, the ν independent realizations of random vector X̃τk =

(X̃1
τk
, X̃2

τk
, X̃3

τk
, X̃4

τk
) by using Eq. (39). For each realization of the track

15



irregularities X̃τk , the deterministic dynamic response of the train induced
by this realization of the track irregularities is computed with a multibody
commercial software (Vampire), and the ν corresponding independent re-
alizations Csim(τk; θ1), . . .C

sim(τk; θν) of the vector-valued random indi-
cator Csim(τk) are computed.

• Then, ν independent realizations of the R
N -valued non-Gaussian second-

order random vector Bout introduced in Section 2.2.2 are generated.

• The ν corresponding independent realizations of the family Cmod of the
vector-valued random indicators {Cmod(τ1), . . . ,C

mod(τK)} are Cmod(θ1,
θ′1), . . . ,C

mod(θν , θ
′
ν) that are computed using Eq. (7), which is rewritten

as C mod
j (τk; θℓ, θ

′
ℓ) = C sim

j (τk; θℓ) exp(B
out
j (θ′ℓ)), with j = 1, . . . , N , k =

1, . . . ,K, and ℓ = 1, . . . , ν.

• As explained in Section 4.4-(ii), we need to estimate the target quan-
tities in order to perform the identification of the parameters (see Sec-
tion 6.3). Consequently, for k = 2, . . . ,K and for µ = 0, . . . , k − 1, the
vectors E{Cmod(τk)} and E{Cmod(τk−1)}, and the tensors E{Cmod(τk)⊗
Cmod(τk−µ)} and E{Cmod(τk−1) ⊗Cmod(τk−µ)}, are estimated by using
the classical statistical estimator of the mathematical expectation with
independent realizations Cmod(θ1, θ

′
1), . . . ,C

mod(θν , θ
′
ν).

In order to analyze the long- term evolution of the vector-valued random in-
dicator Cmod(τk) as a function of k = 1, . . . ,K, the mean function and the
confidence region at 90% of its components Cmod

j (τk), are calculated as a func-
tion of discrete long time τk. The mean function and the confidence region,
which depend on τk, are compared to the threshold level c∗j . For j = 2, 6, 7, 8
(components related to the vertical direction), a time evolution of the mean
value and of the confidence region can be observed. For the other values of j,
there is no significant time evolution. In order to limit the number of figures,
only the dimensionless results related to j = 2, 6, 7, 8 are plotted in Figure 2. In
this figure, the values of the components of the indicator rises faster and faster,
showing that the dynamic response of the train in the vertical direction deteri-
orates, and that the deterioration is accelerating in long time. A maintenance
operation is required at the end of the observed period. The confidence region
remains nearly constant for the observed components, except for the second
component, for which it increases and it is very large. Nevertheless the observa-
tion of the confidence region in global shows that the stochastic model for the
vector-valued indicator is well adapted.

6.2. Choice of the family of the weight coefficients

The family {α1, α2, . . . , αN} of the weight coefficients (introduced in Sec-
tion 4) is chosen in order to increase or to decrease the weight of each component
in the cost function: high values of αj are given for components j = 2, 6, 7, 8
and low values are given for components j = 1, 3, 4, 5, 9. The condition ap-
pearing in Eq. (14) has also to be fulfilled. The chosen values for α are
α1 = α3 = α4 = α5 = α9 = 0.01, α2 = 0.35, and α6 = α7 = α8 = 0.2.
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Figure 2: Dimensionless long- term evolution of dimensionless random indicator Cmod
2

(up),
Cmod

6
(up middle), Cmod

7
(down middle), Cmod

8
(down). Confidence region with probability

90% (grey region), threshold (horizontal solid line), mean value (solid line).

6.3. Identification of the parameters of the stochastic model for the long- term

evolution

The optimal values {[Aopt], {gopt}, {[hopt]}} of the parameters of Eq. (9) are
computed by using the methodology presented in Section 4. The initial values
for the trust-region-reflective algorithm are computed as explained in Appendix
A. For the computation of the optimal values of the 675 unknown parameters
that have to be identified (see Section 4.4), the trust-region-reflective algorithm
stops when the number of iterations is greater than 200 times the number of
variables (135, 000), for which the norm of the residuals is 2.7× 10−5.

6.4. Comparison of Ck with Cmod(τk)

In this section, for k = 2, . . . ,K, we present a comparison of the vector-
valued random indicator Cmod(τk) constructed in Section 6.1, with Ck com-
puted with Eqs. (9) and (10) using the optimal parameters {[Aopt], {gopt},
{[hopt]}} identified in Section 6.3. In order to limit the number of figures,
we restrict the presentation to the component j = 6 of the vector-valued ran-
dom indicator. The results for the other components j = 2, 7, 8 are simi-
lar. For each quantity, Cmod(τk) and Ck, denoted hereinafter as D(τk), the
time evolution of the mean value E{D(τk)} and of the standard deviation
E{(D(τk)−E{D(τk)})2}1/2 are estimated using the classical statistical estima-
tor and are displayed in Figure 3. The time evolution of the probability density
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Figure 3: Second-order moments of the dimensionless long- term evolution for the dimension-
less indicator D(τk) = Cmod

6
(τk) (solid line) and D(τk) = Ck

6
(dashed line): mean value (left)

and standard deviation (right).
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Figure 4: Probability density function (pdf) of the dimensionless long- term evolution for the
dimensionless indicator D(τk) = Cmod

6 (τk) (up, solid line) and D(τk) = Ck
6 (down, dashed

line). Each curve corresponds to a given time τk . When k is increasing, the curves move to
the right.

function (pdf) pD(τk) is estimated by the Gaussian kernel density method and
is shown in Figure 4. Figure 5 displays the graph k 7→ di(τk) in which di(τk) is
such that Prob{D(τk) ≤ di(τk)} ≥ qi, in which qi is the quantile varying in the
interval [0.4, 0.98]. Figures 3, 4, and 5 show that the stochastic model of the
long- term evolution defined by Eqs. (9) and (10) is a good approximation for
representing the long- term evolution of vector-valued random indicator Cmod,
in particular for the time-evolution of the pdf (Figure 4) and the time-evolution
of the quantiles (Figure 5), because the long-term evolution of C is very close
to the long-term evolution of Cmod.

6.5. Prediction of the vector-valued random indicator CK+1

The prediction of vector-valued random indicator Ck for k = K + 1 is es-
timated by Caff,K+1, constructed with Eq. (35), for which the parameters are
[Aopt], gaff(τK+1) = aoptg τK+1 + bopt

g and [haff(τK+1)] = [aopth ] τK+1 + [bopth ] as
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Figure 5: Quantiles of the dimensionless long- term evolution for the dimensionless indicator
D(τk) = Cmod

6 (τk) (solid line) and D(τk) = Ck
6 (dashed line), graphs k 7→ di(τk), in which

di(τk) is such that Prob{D(τk) ≤ di(τk)} ≥ qi for different values in percent of the quantile
qi belonging to the interval [40%, 98%]. The horizontal line corresponds to the threshold level
c∗
6
.
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Figure 6: Probability density function of the prediction for dimensionless long-term evolution
of the dimensionless indicator C6

aff,K+1 at long time τK+1 (dashed line) given C6
mod(τK )

at long time τK (solid line).

explained in Section 5 (see Eq. (34)). Given the computed indicator Cmod(τK)
at long time τK , the prediction of the probability density function of Caff,K+1

at long time τK+1 is displayed in Figure 6 for the component j = 6 of the
vector-valued dimensionless indicator. This figure shows a significant evolution
of the pdf of C6

aff,K+1 at long time τK+1, which has been predicted from the
known pdf of C6

mod(τK) at long time τK . Such a pdf evolution is coherent with
the time evolution of the pdf that has been displayed in Figure 4. It should be
noted that the values predicted for the other statistical quantities such as the
mean value, the standard deviation, and the quantiles, show a similar significant
evolution.

6.6. Relevance of the stochastic predictive model

Two criteria are used in order to assess the relevance of the stocastic predic-
tive model that has been identified:
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Figure 7: Quality assessment of the stochastic predictive model comparing the pdf of Caff,k
6

(dashed line) with the pdf of Cmod
6

(τk) (solid line) for k = K − 1 and for k = K.

• For the quality assessment, the predictions Caff,K−1 and Caff,K are per-
formed given the known random vector Cmod(τK−2). This prediction is
carried out using Eq. (34) and Eq. (35) that is rewritten as

Caff,k = ([IN ]−∆τk [A
opt])Caff,k−1 +∆τk g

aff(τk)

+ [haff(τk)]∆Wk , k = K − 1,K , (41)

with the initial condition

Caff,K−2 = Cmod(τK−2) . (42)

The quality assessment is then evaluated in comparing Caff,K−1 with
Cmod(τK−1), and then in comparing Caff,K with Cmod(τK).

For the probability density function, the quality assessment of the stochas-
tic predictive model is displayed in Figure 7, in which the pdf of Caff,k

6

is compared with the pdf of Cmod
6 (τk) for k = K − 1 and for k = K.

For both long times K − 1 and K, the curves of both probability density
functions are very close, which shows that the stochastic predictive model
is good.

For the quantiles of the dimensionless indicator D(τk) = Cmod
6 (τk) and

D(τk) = Caff,k
6 for k = K − 1 and for k = K, the quality assessment can

be viewed in Figure 8 that displays the graphs k 7→ di(τk), in which di(τk)
is such that Prob{D(τk) ≤ di(τk)} ≥ qi for different values in percent
of the quantile qi belonging to the interval [40%, 98%]. Again, for each
quantile, the curve describing C6 is very close to the curve describing
Cmod

6 , which confirms that the stochastic predictive model is very good.

• The relevance of the stochastic predictive model can be obtained in com-
puting the modeling error induced by both the stochastic predictive model
itself (as described in Eq. (9)) and the approximations of functions g and
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Figure 9: Modeling error of the stochastic predictive model for C6

[h] by the affine functions gaff and [haff ]. For each k = 2, . . . ,K, Caff,k is
computed with Eq. (36), using Cmod(τk−1) as initial value, that is to say
by using the following equation

Caff,k = ([IN ]−∆τk [A
opt])Cmod(τk−1) + ∆τk g

aff(τk)

+ [haff(τk)]∆Wk . (43)

For component j of the vector-valued indicator and at time τk, the random
modeling error denoted by εkj is defined by

εkj =
Cmod

j (τk)− Caff,k
j

Cmod
j (τk)

. (44)

For the component j = 6, the mean value of εkj and its confidence interval
at 90% are plotted in Figure 9 for k = 1, . . . ,K. It should be noted that
the dispersion is 0 for k = 1 corresponding to the initial time τ1 for which
Caff,1

j = Cmod
j (τ1). Then, the dispersion lightly increases with long time

τ (that is coherent) but stays very small (smaller than 5%).

• For the long-term evolution, the quality assessment of the stochastic pre-
dictive model in terms of the pdf, in terms of the quantiles, and in terms
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of the confidence region of the modeling errors, shows that the stochas-
tic predictive model is good and can be used to predict the long-term
evolution of the vector-valued random indicator C.

7. Conclusion and Prospects

For the companies in charge of the maintenance of railway networks, there
is a great interest to predict the long- term evolution of the track irregularities
for a given track stretch of the network, in order to be able to anticipate the
start off of the maintenance operations. In this work, the long- term evolu-
tion of the track irregularities of the given track stretch has been evaluated
through a vector-valued random indicator related to the dynamic response of
the train induced by the random track irregularities. The long- term evolution
of this vector-valued random indicator is modeled by a discrete non-Gaussian
nonstationary stochastic model (ARMA type model), for which the coefficients
are time-dependent. These coefficients have been identified by a least-squares
method and fitted on long time, using experimental measurements.

The proposed stochastic predictive model, based on big data made up of
a lot of experimental measurements performed for the French high-speed train
network, allows for predicting the statistical quantities of the vector-valued ran-
dom indicator for long times for which no measurements have been performed
yet. It has been demonstrated that this proposed stochastic predictive model is
very good. This proposed model can help to determine the best time to start off
the maintenance operations as a function of a chosen threshold for the indicator.
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Appendix A. Simplified optimization problem for computing the ini-

tial values

Because there is no guarantee for the optimization problem introduced in
Section 4.4 to be convex, the initial values of the parameters in the optimiza-
tion algorithm have to be chosen close to the optimal values. That is why a
simplified formulation is proposed in order to compute the initial values of the
parameters. This simplified formulation consists in using Eqs. (12), (19), and
(25), in which full matrix [A] is replaced by a diagonal matrix with real diago-
nal entries A1, . . . , AN , and for k = 2, . . . ,K, the lower triangular matrix [hk]
is replaced by a diagonal matrix with positive diagonal entries hk

1 , . . . , h
k
N . For

fixed j in {1, . . . , N} and k in {2, . . . ,K} , Eqs. (12), (19), and (25) become

fk
j (Aj , {gj}) = [Nk

f ]jj
(
E{Ck

j } − (1−∆τkAj)E{Ck−1
j } −∆τk g

k
j

)
, (45)
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F k
j (Aj , {gj}, {hj}) =

{Tk}jjjj
(
E{(Ck

j )
2} − (1−∆τk Aj)E{Ck−1

j Ck
j }

−∆τk g
k
jE{Ck

j } − (hk
j )

2∆τk
)
, (46)

and, for µ = 1, . . . , k − 1,

Hk,k−µ
j (Aj , {gj}) =

{Tk}jjjj
(
E{Ck

j C
k−µ
j } − (1−∆τk Aj)E{Ck−1

j Ck−µ
j }

−∆τk g
k
j E{Ck−µ

j }
)
, (47)

in which [Nk
f ] and T

k are defined by Eqs. (13) and (20). Let Cgj and Chj
be the

admissible sets for {gj} and {hj} defined by

Cgj = {gkj ∈ R , for k = 2, . . . ,K} , (48)

Chj
= {hk

j > 0 , for k = 2, . . . ,K} . (49)

For all j fixed in {1, . . . , N}, the cost function Jj is introduced such that

Jj(Aj , {gj}, {hj}) =
K∑

k=2

(|fk
j (Aj , {gj})|2 + |F k

j (Aj , {gj}, {hj})|2

+

k−1∑

µ=1

|Hk,k−µ
j (Aj , {gj})|2) . (50)

In the computation of the cost function Jj , for j = 1, . . . , N , k = 2, . . . ,K and

for µ = 0, . . . , k − 1, the target quantities E{Ck
j }, E{Ck−1

j }, E{Ck
j C

k−µ
j }, and

E{Ck−1
j Ck−µ

j } are replaced byE{Cmod
j (τk)}, E{Cmod

j (τk−1)}, E{Cmod
j (τk)C

mod
j

(τk−µ)} and E{Cmod
j (τk−1)C

mod
j (τk−µ)}. The optimal values A0

j , {g0j }, and

{h0
j} of parameters Aj , {gj}, and {hj} are the solution of the following opti-

mization problem,

{A0
j , {g0j }, {h0

j}} = arg min
Aj∈R, {gj}∈Cgj

, {hj}∈Chj

Jj(Aj , {gj}, {hj}) . (51)

This optimization problem is solved with the trust-region-reflective algorithm
with constraints, for which the initial values are Aini

j = 0, ginij = 0, and hini
j =

10−12. The solution {[A0], {g0}, {[h0]}} of the simplified problem is used as
initial value to solve the optimization problem described in Eq. (30).
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