D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization , Second Edition, 2015.

J. C. Spall, Introduction to Stochastic Search and Optimization, 2003.
DOI : 10.1002/0471722138

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, F. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proceedings of the National Academy of Sciences, vol.102, issue.21, pp.7426-7431, 2005.
DOI : 10.1073/pnas.0500334102

R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis, vol.21, issue.1, pp.5-30, 2006.
DOI : 10.1016/j.acha.2006.04.006

R. Talmon and R. R. Coifman, Intrinsic modeling of stochastic dynamical systems using empirical geometry, Applied and Computational Harmonic Analysis, vol.39, issue.1, pp.138-160, 2015.
DOI : 10.1016/j.acha.2014.08.006

M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.13, issue.10, pp.123-214, 2011.
DOI : 10.1111/j.1467-9868.2010.00765.x

I. T. Jolliffe, Principal Component Analysis, 2002.
DOI : 10.1007/978-1-4757-1904-8

K. Karhunen, Uber lineare methoden in der wahrscheinlichkeits-rechnung, Annals of Academic Science Fennicade Series A1, Mathematical Physics, vol.37, pp.3-79, 1946.

R. Ghanem and P. D. Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal of Applied Mechanics, vol.57, issue.1, pp.197-202, 1990.
DOI : 10.1115/1.2888303

R. Ghanem and P. D. Spanos, Stochastic Finite Elements: A spectral Approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

R. H. Cameron and W. T. Martin, The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals, The Annals of Mathematics, vol.48, issue.2, pp.385-392, 1947.
DOI : 10.2307/1969178

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.395-410, 2004.
DOI : 10.1137/S1064827503424505

URL : https://hal.archives-ouvertes.fr/hal-00686211

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Karhunen???Lo??ve expansion revisited for vector-valued random fields: Scaling, errors and optimal basis., Journal of Computational Physics, vol.242, issue.1, pp.607-622, 2013.
DOI : 10.1016/j.jcp.2013.02.036

R. Tipireddy and R. Ghanem, Basis adaptation in homogeneous chaos spaces, Journal of Computational Physics, vol.259, pp.304-317, 2014.
DOI : 10.1016/j.jcp.2013.12.009

R. Ghanem and C. Soize, REMARKS ON STOCHASTIC PROPERTIES OF MATERIALS THROUGH FINITE DEFORMATIONS, International Journal for Multiscale Computational Engineering, vol.13, issue.4, 2015.
DOI : 10.1615/IntJMultCompEng.2015013959

URL : https://hal.archives-ouvertes.fr/hal-01162152

C. Thimmisetty, A. Khodabakhshnejad, N. Jabbari, F. Aminzadeh, R. Ghanem et al., Multiscale Stochastic Representation in High-Dimensional Data Using Gaussian Processes with Implicit Diffusion Metrics, Proceedings of the Dynamic Data-driven Environmental Systems Science Conference, 2014.
DOI : 10.1007/978-3-319-25138-7_15

C. Soize, Polynomial Chaos Expansion of a Multimodal Random Vector, SIAM/ASA Journal on Uncertainty Quantification, vol.3, issue.1, pp.34-60, 2015.
DOI : 10.1137/140968495

URL : https://hal.archives-ouvertes.fr/hal-01105959

N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, pp.335-341, 1949.
DOI : 10.1080/01621459.1949.10483310

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.57-97, 1970.
DOI : 10.1093/biomet/57.1.97

S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution and the Bayesian distribution of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, pp.721-741, 1984.

R. M. Neal, Slice sampling, The Annals of Statistics, vol.31, issue.3, pp.705-767, 2003.
DOI : 10.1214/aos/1056562461

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.1583-1611, 2008.
DOI : 10.1002/nme.2385

URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, World Scientific, vol.17, 1994.
DOI : 10.1142/2347

URL : https://hal.archives-ouvertes.fr/hal-00770411

R. Khasminskii, Stochastic Stability of Differential Equations, Series: Stochastic Modelling and Applied Probability Originally published in Russian, First English edition published in 1980 under R.Z. Has'minski in the series Mechanics: Analysis by Sijthoff & Noordhoff, 1969.

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differentials Equations, 1992.

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.94-120, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490

D. Talay, Simulation of stochastic differential systems, Probabilistic Methods in Applied Physics, pp.54-96, 1995.
DOI : 10.1007/3-540-60214-3_51

URL : https://hal.archives-ouvertes.fr/inria-00075246

D. Talay, Stochastic Hamiltonian system: exponential convergence to the invariant measure and discretization by the implicit Euler scheme, Markov Processes and Related Fields, vol.8, pp.163-198, 2002.

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01403326

K. Burrage, I. Lenane, and G. Lythe, Numerical Methods for Second???Order Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.29, issue.1, pp.245-264, 2007.
DOI : 10.1137/050646032

C. Soize and I. E. Poloskov, Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation, Computers & Mathematics with Applications, vol.64, issue.11, pp.3594-3612, 2012.
DOI : 10.1016/j.camwa.2012.09.010

URL : https://hal.archives-ouvertes.fr/hal-00746280

J. Guilleminot and C. Soize, Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media, Multiscale Modeling and Simulation, A SIAM Interdisciplinary Journal), vol.11, issue.3, pp.840-870, 2013.

D. Center and B. , Bureau of Ocean Energy Management