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Abstract 
 

In this paper, we present a concurrent 

implementation of a powerful topological thinning 

operator. This operator is able to act directly over 

grayscale images without modifying their topology. We 

introduce an adapted parallelization methodology 

which combines split, distribute and merge (SDM) 

strategy and mixed parallelism techniques (data and 

thread parallelism). The introduced strategy allows 

efficient parallelization of a large class of topological 

operators including, mainly, �-leveling, skeletonization 

and crest restoring algorithms. To achieve a good 

speedup, we cared about coordination of threads. 

Distributed work during thinning process is done by a 

variable number of threads. Tests on 2D grayscale 

image (512*512), using shared memory parallel 

machine (SMPM) with 8 CPU cores (2× Xeon E5405 

running at frequency of 2 GHz), showed an 

enhancement of 6.2 with a maximum achieved cadency 

of 125 images/s using 8 threads.   

 

1. Introduction 
 

      In many computer vision applications, standard 

techniques of pattern recognition are thinning 

algorithms. As a preprocessing stage, these algorithms 

have been used for the recognition of handwriting or 

printed characters, fingerprints, chromosomes and 

biological cell structures, etc. [1]. Topological thinning 

and skeletonization are ones of the most cardinal 

operators for this kind of preprocessing, especially 

since the development, by our team, of an efficient 

thinning algorithm able to act directly over grayscale 

image [2]. Using topological operators allows topology 

preservation which results in conservation of important 

significant information [3]. This conservation was 

impossible in the case of binary image processing [4]. 

Early thinning algorithms were designed for serial 

implementations, but since parallel computers are 

available several approaches have been developed with 

parallel processing [5,6]. In [5], Heydorn presents a 

concept for an implementation of different parallel 

thinning algorithms on parallel processors. The 

emphasis is put on a good parallelization using fine 

granularity and the simultaneous usage of 

vectorization. 

 

This paper describes an adapted parallelization 

methodology combining split, distribute and merge 

(SDM) strategy based upon the well-known principle 

of divide-and-conquer and thread coordination which 

allows an efficient parallelism for introduced thinning 

operator on shared memory machines. Proposed 

strategy can also be applied for any topological 

operator having the same characteristics based on 

elementary operations of point characterization and 

similar algorithmic structure as we will demonstrate 

later.  

 

This paper is organized as follows: in section 2, 

some basic notions of topological operators are 

summarized; the original algorithm of thinning is 

introduced. We define also the class of operators that 

our parallelization strategy may cover. In section 3, 

parallelization strategy, that has been adopted, is 

introduced. In section 4, Thread coordination and 

synchronization is discussed. In section 5, as a concrete 

example of introduced strategy and threads 

synchronization techniques, a parallel version of 

thinning algorithm is presented. Experimental analyzes 

results of different implementations are also presented 

and discussed. Finally, we conclude with summary and 

future work in section 6.    



2. Topological thinning operator 
 

Skeletonization and thinning are major applications 

of topology in image processing. A great number of 

thinning algorithms for binary images have been 

developped [7]. The use of this kind of images assumes 

a prior segmentation which implies a loss of 

information. Some attention has been given to the 

development of thinning algorithms acting directly 

over grayscale images. Dyer and Rosenfeld [8] 

proposed an algorithm based on a weighted notion of 

connectedness. The thinning is done directly over the 

graylevels of the points but, as the authors showed, the 

connectivity of objects is not always preserved.  Other 

works [9] use an implicit image binarization into a 

background and a graylevel foreground. The graylevel 

information guides the removal of points of the 

foreground that are simple, in the binary sense. This 

technique makes it possible to obtain certain desired 

geometric properties. Inspired by this technique, M. 

Couprie and G. Bertrand [2] propose a filtered thinning 

method that allows to selectively simplify the 

topology, based on a local contrast parameter  λ .To 

achieve this simplification; they introduce the notion of 

λ-destructible point which is more flexible then the 

notion of destructible point. This algorithm is the one 

we are going to present en details in the following to 

illustrate our parallelization strategy.  

 

2.1. Theoretical background 
 

First, we recall some basic notions of grayscale 

images. A 2D grayscale image may be seen as a 

map  � from  �� to  �. For each point � ∈ ��,  �(�) is 

the graylevel value of �. We denote by � the set 

composed by all maps from �� to  �. Let  Ϝ ∈ �, the 

section of Ϝ at the level � is the set �� composed of all 

point � ∈ �� such that �� ≥ �. As for the binary case, 

if we use the n-adjacency for the section �� of  Ϝ , we 

must use �-adjacency for the section �� with (�, �) = 

(8,4) or (4,8). We remind that for two points  �(��, ��),
�(��, ��) � ��, we consider that � is 4-adjacent to � 

if |�� − ��| + |�� − ��| ≤ 1, and � is 8-adjacent to � 

if max (|�� − ��|, |�� − ��|) ≤ 1. In the following, we 

consider the two neighborhoods relations Γ� and Γ� 

defined by, for each point  x ∈ Z�, 

 !�(�) = #� ∈  �� | � $% 4 adjacent -. �/, 
 !�(�) = #� ∈ �� | � $% 8 adjacent -. �/.  

For more general presentation, we will 

define Γ2∗(x) =  Γ2(x)\#x/. We will also denote by Ϝ 

the complementary map of  Ϝ. We note that the 

complementary sets of the section of Ϝ are section of Ϝ. 

In all the rest of this paragraph, we will note n=8 for 

the section of  Ϝ , thus we must use �=4 for Ϝ. It is also 

important to mention that a non-empty connected 

component 5 of a section  �� of  � is a (regional) 

maximum for  � if  5 ∩  ��7� = ∅ and a set 5 ⊂ ��is a 

regional minimum for � if it is a regional maximum 

for Ϝ. Let F ∈ φ, the point x ∈ Z� is destructible (for F) 

if x is a simple for F<, with k = F(x). We remind that a 

point x is said simple for  X ⊂  Z� if T(x, X) = 1 and 

T(x, X) = 0 with T(x, X) and T(x, X) the two 

connectivity numbers defined as follows (# 5stands for 

the cardinal of  5):  D(�, 5) = #EF[�, Γ�∗(�) ∩ 5]; 
D(�, 5) = #EF[�, Γ�∗(�) ∩ 5]; So we can define the 

four neighborhoods: 

 !77(�, �) = #� ∈ !�∗(�); �(�) > �(�)/ 
 !7(�, �) = #� ∈ !�∗(�); �(�) ≥ �(�)/ 
 !KK(�, �) = #� ∈ !�∗(�); �(�) < �(�)/ 
MK(�, �) =  NOP�#�(�), � ∈  !KK(�, �), $Q!KK(�, �)  ≠ ∅/

�(�)                                                      .-ℎTUV$%T W 
 

We define also some associated connectivity numbers:  
  D7(�, �) = #EF[�, !7(�, �)] 
  D77(�, �) = #EF[�, !77(�, �)] 

          DKK(�, �) = #EF[�, !KK(�, �)] 
 

Furthermore, the connectivity numbers allow the 

classification of the topological characteristics of a 

point: 

 � is a peak point if  T7(�, �) = 0. 

 � is a k-divergent if  TKK(�, �) = � V$-ℎ � > 1. 

 

A point is said to be a λ-deletable point (for F), λ 

being a positive integer, if it is either a λ-destructible 

point, or a peak point such that F(x) − αK(x, F) ≤ λ. 

We remind that a point x is said λ-destructible if it 

satisfies one of the two following conditions:  x is 

destructible or x is k-divergent and at least k-1 

connected components  cY of Γ—(x, F) are such 

that F(x) − FK(cY) ≤ λ, with i = #1, … , k − 1/. 

Let X ⊂ Z� and x ∈ X, x is an end point (for X) if 

#(Γ2∗(x) ∩ X)=1. Let F ⊂ φ and x ϵ Z�, x is an end 

point (for F) if it is an end point for the set  F< with k =
F(x). A point is said to be λ-end point (for F) if it is an 
end point for F and if: F(x) − αK(x, F) > �.  

 

2.2. Original algorithm 

 ∀ F ∈ φ, we say that G ∈ φ is a skeleton of F if G is 

obtained from F by iteratively selecting a destructible 

and non-end point in F and lowering it down 

to αK(x, F), until stability. In order to get a filtered 

skeleton, that is to eliminate non significant branches 

and regional minima, Bertrand and Couprie allow λ-



deletable and not λ-end to be lowered. It is important to 

mention that each time that a pixel is lowered, its eight 

neighbors must be reexamined to be sure that topology 

is still preserved. In Figure 1, we illustrate this method 

on a gradient image (a) obtained from a 2D grayscale 

image of an MRI brain section by Deriche gradient 

operator. (b) is obtained by a filtered thinning with 

λ = 10.    
Algorithm : λ –Skeleton (input : Ϝ ∈ �, � ∈ Ν; output : Ϝ) 

1. Repeat until stability  

2.     Among all the points which are λ–deletable and not λ–end 

3.            Select a point x of minimal value ; 

4.            Ϝ(�) ≔ MK(�, �); 
 

 
(a)                                      (b) 

Fig. 1. (a): after Deriche gradient operator; (b) filtered 

skeleton with λ = 10 .   

2.3. Class of operators based upon point 

characterization in the grayscale image case   
 

Bertrand [1,10] introduced connectivity numbers 

for grayscale image as showed in section 2.1. These 

numbers describe locally (in a neighborhood of 3*3) 

the topology of a point. According to this description 

any point can be characterized following its topological 

characteristics. He also introduced some elementary 

operations able to modify gray level of a point without 

modifying image topology. These elementary 

operations of point characterization present the 

fundamental link of large class of topological operators 

including, mainly, skeletonization and crest restoring 

algorithms [2]. This class can also be extended, under 

condition, to homotopic kernel and leveling kernel 

transformation [11], topological 2D and 3D object 

smoothing algorithm [12] and topological watershed 

based on w-thinning algorithm [13]. All mentioned 

algorithms get also many algorithmic structure 

similarities. In fact associated characterizations 

procedures evolve until stability with induce common 

recursivety between different algorithms. Also the grey 

level of any point can be lowered or enhanced more 

than once.  Finally, all the mentioned algorithms get a 

pixel’s array as input and output. It is important to 

mention that, to date, this class has not been efficiently 

parallelized like other classes as connected filter of 

morphological operator which recently has been 

parallelized in Wilkinson’s work [14]. 

 

3. Parallelization strategies 
 

Multiprocessor chips make computing more 

efficient by exploiting parallelism which is one of the 

outstanding challenges of modern computer sciences. 

Exploiting such parallelism depends on the way of 

scheduling tasks to different processors such that the 

tasks can be computed simultaneously in parallel [15]. 

Computing each individual task in parallel using all the 

processors and computing tasks one after the other is 

Data Parallelism [16]. For both strategies, 

programming challenges arise at all scales of 

multiprocessor systems: at the small scale, processors 

within a single chip need to coordinate access to shared 

memory locations; at the large scale, processors in a 

super computer need to coordinate routing of data. It is 

also possible to combine the mentioned strategies for 

better scheduling [17]; such strategy is called Mixed 

Parallelism. In this case, challenges are also related to 

the asynchronous criteria of modern computers: 

activities can be halted without warning by interrupts, 

preemption or frequently by cache misses. 

 

In a more global frame, better strategies taking 

advantage of such parallelism to improve 

computational speed are based on the well known 

principle of divide and conquer. The application of this 

principle cannot be independent from the type of 

algorithm [18]. Indeed, application of this principle to 

divide the initial problem and then application of 

Mixed Parallelism strategy during parallel sub-

problems processing seems to be sufficient. But it is 

only true for static parallel algorithms in which each 

thread can achieve its work “independently” from the 

other. Low-level image processing algorithms are a 

good example of this class because they have a high 

degree of locality allowing different segments of the 

image to be treated independently by different 

processors [19]. Other global operators like Fourier 

transform and Euclidean distance transform are 

separable, allowing parallelization by defining a 

direction for computing pixels [20].  

 

For target algorithms, as we shown in section 2.3, 

get some iterative criteria and evolutes until stability. 

Intermediate results need also to be stored. Each time, 

that a pixel is lowered, a new process for inserting its 

neighborhoods is launched. So threads need 

imperatively to communicate and to share the same 



queue; this is why we return to dynamically parallel 

algorithms in which threads can interact with one 

another. Through parallelization strategies presented in 

the beginning of this section, we see that for an inter-

processor parallelism based on divide and conquer 

principle; better performance can be achieved by the 

use of mixed parallelism, since it allows us to combine 

SDM-Strategy and coordination of threads.  And as our 

processing continues until stability, we primarily focus 

on an approach where data parallelism is used at upper 

levels. At lower levels of the processing, we will 

switch to threads parallelism and coordination to 

compute parallel read/write for managing cache-

resident data. If we observe carefully the studied class, 

we see that there are two fundamental stages: the first 

one is to characterize a point. Then, according to the 

nature of this point, we decide to eliminate it (modify 

its value) or not. If one pixel is lowered, it becomes 

necessary to re-examine its eight neighbors. So we can 

follow these steps to apply divide and conquer 

principle for our class of algorithms.     

 

3.1. How to Split 
 

In upper level, search space is subdivided into 

smaller regions, and bounds are found on all solutions 

contained in each sub-region under consideration. 

Usually, dividing original image is not advised, when 

dealing with topological operators, warning topology is 

not preserved. But pixel characterization procedure can 

be split into sub-procedures. So we can characterize in 

parallel more than one point during a single iteration.  

 

3.2. How to distribute 
 

All algorithms associated to our class are executed 

in a loop until stability for example: no more λ–

deletable and not λ–end for thinning. Thus we can 

specify translation states. The initial system will 

undergo an evolution until reaching a stable state.  

During the evolution, sub-procedures defined in 

section 3.1 are distributed among used threads. Usually 

thread evolution is uniform, but, due to data 

dependency, thread evolution must be dynamic. The 

number of threads is changing during the whole 

processing procedure. So the second stage of the 

algorithm can be realized. If a point is characterized, its 

value is lowered and its eight neighbors will be 

inserted in a FIFO queue. Since one thread terminates, 

it will generate a new thread to repeat the same work 

with new inserted neighbors. This is how we can plan 

distribution. 

 

3.3. How to merge 
 

The key problem of each parallelization is merging 

obtained results. Normally this phase is done at the end 

of the process when all results are returned by all 

threads what usually means that only one output 

variable is declared and shared between all threads. But 

as we mentioned in section 3.2, we are dealing with a 

dynamic evolution so we can plan the following: since 

two threads finished, they directly merge and a new 

thread is created. This implies the creation of some 

shared FIFO queue containing all inserted neighbors 

by both two parent threads. Only one shared data 

structure will contain pixels lowered by all threads. In 

threads merging, there is no hierarchical order, the only 

criteria is finish time. It is also important to mention 

that only newly created threads can modify the created 

FIFO queue and one neighbor cannot be inserted twice. 

It is a precaution in order to minimize consumed cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Merging of threads and associated area of activities. 

 

In Fig. 2, we illustrate the introduced SDM-

strategy. The original shared data structure, containing 

all pixels, is divided in n research 

zones #z� , z�, . .  z2K�, z2/. We associate one thread 

from the following list #T�, T�, . . T2K�, T2/ to each zone. 

Each thread can browse freely its zone and if it detects 

target types, it lowers the characterized pixel and it 

pushes its eight neighbors in one of the shared 

concurrent FIFO queues. One queue cannot be shared 

by more than two threads. There is no hierarchical 

order in merging of threads. Queues are attributed for 

the first two threads which have arrived (first-come, 

first-served). Since two threads finish their work, a 

new thread is created to browse their FIFO queue. For 

storing new value of possibly found target point, the 

new thread has full access to both original zones. 

Example, thread Th merging from T� and T� got access 

to Zh with  Zh = Z� + Z�. 

Z1 

Z2 

Zn-1 

Zn 

T1 

T2 

Tn-1 

Tn 

Ta 

Tz 
Zz 

Za 

Fn 

F1 

Data structure Concurrent FIFO queues  

Insert neighbors 
Lower pixel in Z1..n 
Lower pixel in Za..z 



4. Coordination of threads 
 

Here is the second major challenge in multi-core 

multithread architecture programming. In an ideal case, 

moving from one-core to multi-core should provide n-

fold increase in computational power. But practically, 

it is something that never happened. In fact, all existing 

computational problems cannot be efficiently 

parallelized without incurring the costs of inter-

processor coordination. Let’s come back to our 

algorithm, consider eight threads which cross eight 

search spaces in order to characterize pixels then push 

its eight neighbors in a FIFO queue.   

 

This kind of analysis was evoked in many 

researches. Let’s focus on Amdahl’s Law [21]. It 

captures the notion that the extent to which we can 

speed up any complex work is limited by percentage of 

the sequential part in the executed work. Definition of 

the speedup S of a work is the ratio between the time it 

takes one processor to complete the work versus the 

time it takes � concurrent processors to complete the 

same work. Amdahl’s Law defines the maximum 

speedup j that can be achieved by � processors 

collaborating on an application, where k is the fraction 

of the work that can be executed in parallel. Assume, 

for simplicity, that a single processor completes the 

work in one second. With n concurrent processors, the 

parallel part takes (k �)⁄  seconds and the sequential part 

takes (1 − k) seconds. Overall, the parallelized 

computation takes (1 − k + m
F ) seconds. 

 

So the speedup is: (�) = �
�Km7n

o
 . 

 

Through this formula, for the given problem and an 

eight-core machine, Amdahl’s law says that even if we 

parallelize 90% of the solution, but not the remaining 

10%, then we end up with only four-fold speedup, and 

not the expected eight-fold speedup. In fact, these 

additional parallel parts involve substantial 

communication and coordination.  

 

In our dynamic parallelization strategy, as we 

explained in section 3.3, each two threads will share 

only one FIFO queue in order to push neighbors of 

lowered pixels. Intuitively we are going to opt towards 

a solution with a simple lock-based shared FIFO 

queue. Associated push and pop methods will be 

synchronized by a mutual exclusion lock. Even if this 

implementation is a correct concurrent FIFO queue, 

because each method accesses and updates fields while 

holding an exclusive lock, the method calls take effect 

sequentially. And according to Amdahl’s law, this 

sequential communication can substantially affect the 

performance of our program as a whole. In multi-core 

architecture, such synchronization technique can also 

be the origin of costly overheads. 

   

Even if we opt to second method based on lock-free 

solution [22] in order to minimize the overheads, it is 

demanded that at least one thread (of all the threads 

that are executing the push or pop function at one 

moment) is progressing (inserting or extracting pixels 

from or to the FIFO queue). Unfortunately, we do not 

know in advance how many parallel threads will call 

push or pop functions. And method calls still take 

effect sequentially. Other solution is wait-free 

technique [23], it is required that a process finishes 

within a finite number of execution steps. Something 

that we cannot also guarantee because we cannot 

predict how many points will be characterized and then 

how many pixels will be inserted in the FIFO queue.  

 

Finally we decide to move to spin-wait mechanism 

[24], for illustration we propose figure 4, a thread 

waiting to push an item might spin for a brief duration 

without being added to the queue of waiting threads. 

As a result, the thread is effectively put to sleep 

without relinquishing the remainder of its CPU time 

slot. It is potentially more efficient to spin and wait, 

instead of using either lock-free or wait-free 

mechanisms, because those force a thread context 

switch, which is one of the most expensive operations 

performed by the operating system.  

 

 

 

 

 

 

 

 

 

 

Fig. 4: Spin-wait Synchronization 

 

5. Performance testing 
 

5.1. Parallel p -Skeleton algorithm  
 

Now we present a parallel version of the thinning 

according to the concepts previously discussed. Let the 

map  F from  Z� to  Z represent the input grayscale 

image. For each point x ∈ Z�,  F(x) is the graylevel 

value of x. We denote by φ the set composed by all 

maps from Z� to  Z. Let  Ϝ ∈ φ, the section of Ϝ at the 

level k is the set F< composed of all point x ∈ Z� such 

that F< ≥ k. Let T be the set of type sought in the 

Thread 1 

Waiting room 

Lock() and access waiting room 

Unlock() and leave waiting room 

Push() 

Thread 2 



characterization of pixels. For thinning algorithm: T =
#λ– deletable and not λ– end points/. It is important 

to mention that points from T can also be end-point and 

isolate-point for crest restoring. We will refer to global 

search space by Ime, and associated map (from  Z� 

to  Z ) to each sub-space ImeY is FY . For each point x ∈
Z�,  FY(x) is the graylevel value of x in the search 

space ImeY. The following dynamically parallel λ–

Skeleton algorithm (it is adapted for two concurrent 

threads, but it can be easily extended to N threads) 

starts by dividing the search space. mY2u  and mvwx 

define sub-region bounds. Since the distributed work 

starts, each thread will lower each characterized pixel 

and then push its eight neighbors in Ev2.  Ev2 is the set 

of all selected neighbors and it is shared between only 

two threads.  Ev2 will be the newly defined set to 

explore since the threads finished. Newly characterized 

pixels are pushed in a private set called  E<Y. The pixel 

set assigned to the newly generated thread is nothing 

else than  Ev2 and the associated search space 

is ((ImeY ∪ ImeY7�) ∪ E<Y ∪ E<Y7�).  

 
Algorithm :Dynamically Parallel λ –Skeleton  

1. �.U P{{ k ∈ |OT }. 

2.   $Q ~O�F� < |OT�(k) < O��m�-ℎT� ��  ← �� ∪ #k/; 
3. �TkTP- ��-${ %-P�${$-� 

4.     ��F ← ∅; 
5.     �ℎ${T (� ≠ 0)-ℎT� 

6.        �.U P{{ k ∈ ��  }.      

7.             $Q (k ∈ D) -ℎT� ��(�) ← MK~�, ��(�)�; 
8.                                         ��F ← ��F ∪ #T$�ℎ- k �T$�ℎ�.U%/; 
9.                                T{%T ��� ← ��� ∪ #k/; 
10.             T�}$Q 

11.        �.U P{{ k ∈ ��7� }.      

12.             $Q (k ∈ D) -ℎT� |OT�7�(�) ← MK~�, |OT�7�(�)�; 
13.                                         ��F ← ��F ∪ #T$�ℎ- k �T$�ℎ�.U%/; 
14.                                T{%T ���7� ← ���7� ∪ #k/; 
15.             T�}$Q 

16.        �� ← ��F; 
17.        |OT� ← |OT� + |OT�7�;  
18.        |OT� ← |OT� ∪ ��� ∪ ���7�; 
19.        $Q (�� = ∅) -ℎT� � ← 0; 
20.        �{TP� #�� , ��� , ���7�/;    
21.     T�} Vℎ${T  

 

5.2. Experimental analyses  
 

The proposed parallel λ -Skeleton algorithm was 

implemented in C in two variants: the first 

implementation, based on a simple lock-based shared 

FIFO queue, using OpenMP critical directive. The 

second is based on a spin-wait FIFO queue. Wall-clock 

execution times for numbers of threads equal to 1, 2, 4, 

8, and 16, for each one of these implementations, were 

determined. The efficiency measure Ψ(�) is given by 

the following formula With n the number of 

processors: 

 

         Ψ(�) = %T��T�-$P{ -$OT (� ∗⁄ kPUP{{T{ -$OT) 
 

Times were performed on eight-core (2× Xeon 

E5405) shared memory parallel computer of the 

Faculty of Electrical Engineering and Communication 

of Brno University, on Intel Quad-core Xeon E5335, 

on Intel Core 2 Duo E8400 and Intel mono-processor 

Pentium 4 660. Each processor of the Xeon E5405 and 

E5335 runs at 2 GHz and both of the two machines 

have 4 GB of RAM. The E8400 processor runs at 3 

GHz. The Pentium processor runs at 3.6 GHz (see 

Table 1). The last two machines have 2 GB of RAM. 

The minimum value of 5 timings was taken as most 

indicative of the speed of the algorithm. The 

measurements were done on 2D grayscale image 

(512*512) of real brain MRI. Results of the two 

implementations are shown in Figure 5 and Figure 7.    

 

 P4 660 E8400 E5335 E5405 

CPU 

Speed 

3.6 

GHz 

3  

GHz 

2  

GHz 

2 

 GHz 

Bus 

Speed 

800 

MHz 

1333 

MHz 

1333 

MHz 

1333 

MHz 

L2 Size 4 MB 6 MB 8 MB 12 MB 

L2 Speed 3.6 

GHz 

3  

GHz 

2  

GHz 

2  

GHz 

Table 1. Characteristics of processors 

 

On the eight-core machine, wall-clock execution 

time for the first implementation using a lock-based 

shared FIFO queue drops from an average of 

40.211 ms for a single thread down to 28.458 ms at 

8 threads. For the second implementation using spin-

wait FIFO queue, wall-clock execution time drops 

from an average of 41.889 ms for a single thread down 

to 8.282 ms at 8 threads. As expected, the speed-up for 

the second implementation using Private-Shared FIFO 

queue is higher than for the one using lock-based 

shared FIFO queue, because context changing were 

nearly eliminated. 

 

A remarkable result shown in figure 6 and figure 8 

is the fact that the speed-up increases as we increase 

the number of threads beyond the number of 

processors in our machine (eight cores). For the first 

implementation, the speedup at 8 threads is 1.7 ± 0.05. 

However, for the second implementation the speedup 

has increased to 6.2 ± 0.01. Another common result 

between figure 5 and figure 7 is stability of execution 

time on each n-core machine since the code uses n or 

more threads. 



 
Fig. 5: wall-clock execution time for the first 

implementation using a lock-based shared FIFO queue. 

 
Fig. 6: Performance improvement for the first 

implementation using a lock-based shared FIFO queue.    

 
Fig. 7: wall-clock execution time for the second 

implementation using a spin-wait shared FIFO queue. 

 

For better readability of our results, we tested the 

efficiency of our algorithm on various architectures 

using the Ψ(�) formula introduced earlier with fixed 

serial time equal to 48.247 ms. For parallel time we use 

best parallel time obtained using 8 threads. As can be 

seen in Figure 9, second implementation is more 

efficient that the first one in all architectures. It is also 

suitable to return to Amdahl’s law, introduced in 

section 4, in order to explain obtained results. In fact 

the global speed up formula is j(�) = �(�)
�(F). Then the 

defined efficiency Ψ(�) = D� (� ∗⁄ Dm) can be written  

 
Fig. 8: Performance improvement for the second 

implementation using a spin-wait FIFO queue. 

 

as Ψ(�) = D� (� ∗⁄ Dm) = S(2)
2 = �(�)

F∗ �(F). According to 

Amdahl’s law j(�) = �
�Km7n

o
 , efficiency can be written 

as follows: Ψ(�) = �
F∗(�Km)7m 

Thus if the number of cores increases, the speedup 

also increases (more work can be done simultaneously 

with more threads). On the other hand the efficiency 

will decrease. 

 
Fig. 9: Efficiency improvement 

 

 

6. Conclusion 
 

In this paper, we have presented a new parallel 

version of the λ–Skeleton algorithm. We have also 

presented a adapted parallelization strategy combining 

Split Distribute and Merge (SDM) strategy and mixed 

parallelism techniques. SDM-strategy was a 

conditional application of the well known principle of 

divide and conquer. Associated mixed parallelization 

techniques were data parallelism at upper levels and 

thread parallelism at lower levels of the processing. 
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Using lock-based shared FIFO queue

Using private-shared FIFO queue

Using lock-based synchronization 

Using spin-wait synchronization 



 The first major contribution in this paper is the 

non-specific nature of the proposed parallelization 

strategy. In fact, the introduced strategy can be applied 

to a large class of topological operators introduced in 

section 2.3. 

 

The second contribution concerned threads 

parallelism and more specifically threads coordination 

and communication during computing dependently 

parallel read/write for managing cache-resident data 

which present a substantial problem. The problem 

addressed by this paper is how to deal with shared 

FIFO queue which requires inter-process coordination 

and communication in an essential way. And thanks to 

combination of spinning and waiting techniques, the 

proposed algorithm shows a good degree of speed-up 

using eight threads (about 6.2 on eight cores of the 

2× Xeon E5405, about 3.1 on the Quad-cores of Xeon 

E5335 and 1.8 on Core 2Duo E8400).  

 

Parallel topological operator computation poses 

many challenges, ranging from parallelization 

strategies to coding and implementation techniques. 

We tackle these challenges using successive 

refinement, starting with highly local operators, which 

process only by characterizing points and then deleting 

target pixels, and gradually moving to more complex 

topological operators with non-local behavior.  In 

future work, we will study parallel computation of the 

topological watershed [25].   
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