
HAL Id: hal-01294105
https://hal.science/hal-01294105

Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Parallel image thinning through topological operators on
shared memory parallel machines
Ramzi Mahmoudi, Mohamed Akil, Petr Matas

To cite this version:
Ramzi Mahmoudi, Mohamed Akil, Petr Matas. Parallel image thinning through topological operators
on shared memory parallel machines. 2009 Asilomar Conference on Signals, Systems & Computers,
Nov 2009, Pacific Grove, United States. pp.723-730, �10.1109/ACSSC.2009.5469946�. �hal-01294105�

https://hal.science/hal-01294105
https://hal.archives-ouvertes.fr

Parallel Image Thinning Through Topological Operators

On Shared Memory Parallel Machines

Ramzi MAHMOUDI
1
, Mohamed AKIL

1
, Petr MATAS

1,2

1Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,

ESIEE Paris Cité Descartes, BP99, 93162 Noisy Le Grand, France

2Department of Applied Electronics and Telecommunications, University of West Bohemia,

Univerzitní 26, 306 14 Plzeň, Czech Republic

{mahmoudr, akilm, matasp}@esiee.fr

Abstract

In this paper, we present a concurrent

implementation of a powerful topological thinning

operator. This operator is able to act directly over

grayscale images without modifying their topology. We

introduce an adapted parallelization methodology

which combines split, distribute and merge (SDM)

strategy and mixed parallelism techniques (data and

thread parallelism). The introduced strategy allows

efficient parallelization of a large class of topological

operators including, mainly, �-leveling, skeletonization

and crest restoring algorithms. To achieve a good

speedup, we cared about coordination of threads.

Distributed work during thinning process is done by a

variable number of threads. Tests on 2D grayscale

image (512*512), using shared memory parallel

machine (SMPM) with 8 CPU cores (2× Xeon E5405

running at frequency of 2 GHz), showed an

enhancement of 6.2 with a maximum achieved cadency

of 125 images/s using 8 threads.

1. Introduction

 In many computer vision applications, standard

techniques of pattern recognition are thinning

algorithms. As a preprocessing stage, these algorithms

have been used for the recognition of handwriting or

printed characters, fingerprints, chromosomes and

biological cell structures, etc. [1]. Topological thinning

and skeletonization are ones of the most cardinal

operators for this kind of preprocessing, especially

since the development, by our team, of an efficient

thinning algorithm able to act directly over grayscale

image [2]. Using topological operators allows topology

preservation which results in conservation of important

significant information [3]. This conservation was

impossible in the case of binary image processing [4].

Early thinning algorithms were designed for serial

implementations, but since parallel computers are

available several approaches have been developed with

parallel processing [5,6]. In [5], Heydorn presents a

concept for an implementation of different parallel

thinning algorithms on parallel processors. The

emphasis is put on a good parallelization using fine

granularity and the simultaneous usage of

vectorization.

This paper describes an adapted parallelization

methodology combining split, distribute and merge

(SDM) strategy based upon the well-known principle

of divide-and-conquer and thread coordination which

allows an efficient parallelism for introduced thinning

operator on shared memory machines. Proposed

strategy can also be applied for any topological

operator having the same characteristics based on

elementary operations of point characterization and

similar algorithmic structure as we will demonstrate

later.

This paper is organized as follows: in section 2,

some basic notions of topological operators are

summarized; the original algorithm of thinning is

introduced. We define also the class of operators that

our parallelization strategy may cover. In section 3,

parallelization strategy, that has been adopted, is

introduced. In section 4, Thread coordination and

synchronization is discussed. In section 5, as a concrete

example of introduced strategy and threads

synchronization techniques, a parallel version of

thinning algorithm is presented. Experimental analyzes

results of different implementations are also presented

and discussed. Finally, we conclude with summary and

future work in section 6.

2. Topological thinning operator

Skeletonization and thinning are major applications

of topology in image processing. A great number of

thinning algorithms for binary images have been

developped [7]. The use of this kind of images assumes

a prior segmentation which implies a loss of

information. Some attention has been given to the

development of thinning algorithms acting directly

over grayscale images. Dyer and Rosenfeld [8]

proposed an algorithm based on a weighted notion of

connectedness. The thinning is done directly over the

graylevels of the points but, as the authors showed, the

connectivity of objects is not always preserved. Other

works [9] use an implicit image binarization into a

background and a graylevel foreground. The graylevel

information guides the removal of points of the

foreground that are simple, in the binary sense. This

technique makes it possible to obtain certain desired

geometric properties. Inspired by this technique, M.

Couprie and G. Bertrand [2] propose a filtered thinning

method that allows to selectively simplify the

topology, based on a local contrast parameter λ .To

achieve this simplification; they introduce the notion of

λ-destructible point which is more flexible then the

notion of destructible point. This algorithm is the one

we are going to present en details in the following to

illustrate our parallelization strategy.

2.1. Theoretical background

First, we recall some basic notions of grayscale

images. A 2D grayscale image may be seen as a

map � from �� to �. For each point � ∈ ��, �(�) is

the graylevel value of �. We denote by � the set

composed by all maps from �� to �. Let Ϝ ∈ �, the

section of Ϝ at the level � is the set �� composed of all

point � ∈ �� such that �� ≥ �. As for the binary case,

if we use the n-adjacency for the section �� of Ϝ , we

must use �-adjacency for the section �� with (�, �) =

(8,4) or (4,8). We remind that for two points �(��, ��),
�(��, ��) � ��, we consider that � is 4-adjacent to �

if |�� − ��| + |�� − ��| ≤ 1, and � is 8-adjacent to �

if max (|�� − ��|, |�� − ��|) ≤ 1. In the following, we

consider the two neighborhoods relations Γ� and Γ�

defined by, for each point x ∈ Z�,

 !�(�) = #� ∈ �� | � $% 4 adjacent -. �/,
 !�(�) = #� ∈ �� | � $% 8 adjacent -. �/.

For more general presentation, we will

define Γ2∗(x) = Γ2(x)\#x/. We will also denote by Ϝ

the complementary map of Ϝ. We note that the

complementary sets of the section of Ϝ are section of Ϝ.

In all the rest of this paragraph, we will note n=8 for

the section of Ϝ , thus we must use �=4 for Ϝ. It is also

important to mention that a non-empty connected

component 5 of a section �� of � is a (regional)

maximum for � if 5 ∩ ��7� = ∅ and a set 5 ⊂ ��is a

regional minimum for � if it is a regional maximum

for Ϝ. Let F ∈ φ, the point x ∈ Z� is destructible (for F)

if x is a simple for F<, with k = F(x). We remind that a

point x is said simple for X ⊂ Z� if T(x, X) = 1 and

T(x, X) = 0 with T(x, X) and T(x, X) the two

connectivity numbers defined as follows (# 5stands for

the cardinal of 5): D(�, 5) = #EF[�, Γ�∗(�) ∩ 5];
D(�, 5) = #EF[�, Γ�∗(�) ∩ 5]; So we can define the

four neighborhoods:

 !77(�, �) = #� ∈ !�∗(�); �(�) > �(�)/
 !7(�, �) = #� ∈ !�∗(�); �(�) ≥ �(�)/
 !KK(�, �) = #� ∈ !�∗(�); �(�) < �(�)/
MK(�, �) = NOP�#�(�), � ∈ !KK(�, �), $Q!KK(�, �) ≠ ∅/

�(�) .-ℎTUV$%T W

We define also some associated connectivity numbers:
 D7(�, �) = #EF[�, !7(�, �)]
 D77(�, �) = #EF[�, !77(�, �)]

 DKK(�, �) = #EF[�, !KK(�, �)]

Furthermore, the connectivity numbers allow the

classification of the topological characteristics of a

point:

 � is a peak point if T7(�, �) = 0.

 � is a k-divergent if TKK(�, �) = � V$-ℎ � > 1.

A point is said to be a λ-deletable point (for F), λ

being a positive integer, if it is either a λ-destructible

point, or a peak point such that F(x) − αK(x, F) ≤ λ.

We remind that a point x is said λ-destructible if it

satisfies one of the two following conditions: x is

destructible or x is k-divergent and at least k-1

connected components cY of Γ—(x, F) are such

that F(x) − FK(cY) ≤ λ, with i = #1, … , k − 1/.

Let X ⊂ Z� and x ∈ X, x is an end point (for X) if

#(Γ2∗(x) ∩ X)=1. Let F ⊂ φ and x ϵ Z�, x is an end

point (for F) if it is an end point for the set F< with k =
F(x). A point is said to be λ-end point (for F) if it is an
end point for F and if: F(x) − αK(x, F) > �.

2.2. Original algorithm

 ∀ F ∈ φ, we say that G ∈ φ is a skeleton of F if G is

obtained from F by iteratively selecting a destructible

and non-end point in F and lowering it down

to αK(x, F), until stability. In order to get a filtered

skeleton, that is to eliminate non significant branches

and regional minima, Bertrand and Couprie allow λ-

deletable and not λ-end to be lowered. It is important to

mention that each time that a pixel is lowered, its eight

neighbors must be reexamined to be sure that topology

is still preserved. In Figure 1, we illustrate this method

on a gradient image (a) obtained from a 2D grayscale

image of an MRI brain section by Deriche gradient

operator. (b) is obtained by a filtered thinning with

λ = 10.
Algorithm : λ –Skeleton (input : Ϝ ∈ �, � ∈ Ν; output : Ϝ)

1. Repeat until stability

2. Among all the points which are λ–deletable and not λ–end

3. Select a point x of minimal value ;

4. Ϝ(�) ≔ MK(�, �);

(a) (b)

Fig. 1. (a): after Deriche gradient operator; (b) filtered

skeleton with λ = 10 .

2.3. Class of operators based upon point

characterization in the grayscale image case

Bertrand [1,10] introduced connectivity numbers

for grayscale image as showed in section 2.1. These

numbers describe locally (in a neighborhood of 3*3)

the topology of a point. According to this description

any point can be characterized following its topological

characteristics. He also introduced some elementary

operations able to modify gray level of a point without

modifying image topology. These elementary

operations of point characterization present the

fundamental link of large class of topological operators

including, mainly, skeletonization and crest restoring

algorithms [2]. This class can also be extended, under

condition, to homotopic kernel and leveling kernel

transformation [11], topological 2D and 3D object

smoothing algorithm [12] and topological watershed

based on w-thinning algorithm [13]. All mentioned

algorithms get also many algorithmic structure

similarities. In fact associated characterizations

procedures evolve until stability with induce common

recursivety between different algorithms. Also the grey

level of any point can be lowered or enhanced more

than once. Finally, all the mentioned algorithms get a

pixel’s array as input and output. It is important to

mention that, to date, this class has not been efficiently

parallelized like other classes as connected filter of

morphological operator which recently has been

parallelized in Wilkinson’s work [14].

3. Parallelization strategies

Multiprocessor chips make computing more

efficient by exploiting parallelism which is one of the

outstanding challenges of modern computer sciences.

Exploiting such parallelism depends on the way of

scheduling tasks to different processors such that the

tasks can be computed simultaneously in parallel [15].

Computing each individual task in parallel using all the

processors and computing tasks one after the other is

Data Parallelism [16]. For both strategies,

programming challenges arise at all scales of

multiprocessor systems: at the small scale, processors

within a single chip need to coordinate access to shared

memory locations; at the large scale, processors in a

super computer need to coordinate routing of data. It is

also possible to combine the mentioned strategies for

better scheduling [17]; such strategy is called Mixed

Parallelism. In this case, challenges are also related to

the asynchronous criteria of modern computers:

activities can be halted without warning by interrupts,

preemption or frequently by cache misses.

In a more global frame, better strategies taking

advantage of such parallelism to improve

computational speed are based on the well known

principle of divide and conquer. The application of this

principle cannot be independent from the type of

algorithm [18]. Indeed, application of this principle to

divide the initial problem and then application of

Mixed Parallelism strategy during parallel sub-

problems processing seems to be sufficient. But it is

only true for static parallel algorithms in which each

thread can achieve its work “independently” from the

other. Low-level image processing algorithms are a

good example of this class because they have a high

degree of locality allowing different segments of the

image to be treated independently by different

processors [19]. Other global operators like Fourier

transform and Euclidean distance transform are

separable, allowing parallelization by defining a

direction for computing pixels [20].

For target algorithms, as we shown in section 2.3,

get some iterative criteria and evolutes until stability.

Intermediate results need also to be stored. Each time,

that a pixel is lowered, a new process for inserting its

neighborhoods is launched. So threads need

imperatively to communicate and to share the same

queue; this is why we return to dynamically parallel

algorithms in which threads can interact with one

another. Through parallelization strategies presented in

the beginning of this section, we see that for an inter-

processor parallelism based on divide and conquer

principle; better performance can be achieved by the

use of mixed parallelism, since it allows us to combine

SDM-Strategy and coordination of threads. And as our

processing continues until stability, we primarily focus

on an approach where data parallelism is used at upper

levels. At lower levels of the processing, we will

switch to threads parallelism and coordination to

compute parallel read/write for managing cache-

resident data. If we observe carefully the studied class,

we see that there are two fundamental stages: the first

one is to characterize a point. Then, according to the

nature of this point, we decide to eliminate it (modify

its value) or not. If one pixel is lowered, it becomes

necessary to re-examine its eight neighbors. So we can

follow these steps to apply divide and conquer

principle for our class of algorithms.

3.1. How to Split

In upper level, search space is subdivided into

smaller regions, and bounds are found on all solutions

contained in each sub-region under consideration.

Usually, dividing original image is not advised, when

dealing with topological operators, warning topology is

not preserved. But pixel characterization procedure can

be split into sub-procedures. So we can characterize in

parallel more than one point during a single iteration.

3.2. How to distribute

All algorithms associated to our class are executed

in a loop until stability for example: no more λ–

deletable and not λ–end for thinning. Thus we can

specify translation states. The initial system will

undergo an evolution until reaching a stable state.

During the evolution, sub-procedures defined in

section 3.1 are distributed among used threads. Usually

thread evolution is uniform, but, due to data

dependency, thread evolution must be dynamic. The

number of threads is changing during the whole

processing procedure. So the second stage of the

algorithm can be realized. If a point is characterized, its

value is lowered and its eight neighbors will be

inserted in a FIFO queue. Since one thread terminates,

it will generate a new thread to repeat the same work

with new inserted neighbors. This is how we can plan

distribution.

3.3. How to merge

The key problem of each parallelization is merging

obtained results. Normally this phase is done at the end

of the process when all results are returned by all

threads what usually means that only one output

variable is declared and shared between all threads. But

as we mentioned in section 3.2, we are dealing with a

dynamic evolution so we can plan the following: since

two threads finished, they directly merge and a new

thread is created. This implies the creation of some

shared FIFO queue containing all inserted neighbors

by both two parent threads. Only one shared data

structure will contain pixels lowered by all threads. In

threads merging, there is no hierarchical order, the only

criteria is finish time. It is also important to mention

that only newly created threads can modify the created

FIFO queue and one neighbor cannot be inserted twice.

It is a precaution in order to minimize consumed cache.

Fig. 2: Merging of threads and associated area of activities.

In Fig. 2, we illustrate the introduced SDM-

strategy. The original shared data structure, containing

all pixels, is divided in n research

zones #z� , z�, . . z2K�, z2/. We associate one thread

from the following list #T�, T�, . . T2K�, T2/ to each zone.

Each thread can browse freely its zone and if it detects

target types, it lowers the characterized pixel and it

pushes its eight neighbors in one of the shared

concurrent FIFO queues. One queue cannot be shared

by more than two threads. There is no hierarchical

order in merging of threads. Queues are attributed for

the first two threads which have arrived (first-come,

first-served). Since two threads finish their work, a

new thread is created to browse their FIFO queue. For

storing new value of possibly found target point, the

new thread has full access to both original zones.

Example, thread Th merging from T� and T� got access

to Zh with Zh = Z� + Z�.

Z1

Z2

Zn-1

Zn

T1

T2

Tn-1

Tn

Ta

Tz
Zz

Za

Fn

F1

Data structure Concurrent FIFO queues

Insert neighbors
Lower pixel in Z1..n
Lower pixel in Za..z

4. Coordination of threads

Here is the second major challenge in multi-core

multithread architecture programming. In an ideal case,

moving from one-core to multi-core should provide n-

fold increase in computational power. But practically,

it is something that never happened. In fact, all existing

computational problems cannot be efficiently

parallelized without incurring the costs of inter-

processor coordination. Let’s come back to our

algorithm, consider eight threads which cross eight

search spaces in order to characterize pixels then push

its eight neighbors in a FIFO queue.

This kind of analysis was evoked in many

researches. Let’s focus on Amdahl’s Law [21]. It

captures the notion that the extent to which we can

speed up any complex work is limited by percentage of

the sequential part in the executed work. Definition of

the speedup S of a work is the ratio between the time it

takes one processor to complete the work versus the

time it takes � concurrent processors to complete the

same work. Amdahl’s Law defines the maximum

speedup j that can be achieved by � processors

collaborating on an application, where k is the fraction

of the work that can be executed in parallel. Assume,

for simplicity, that a single processor completes the

work in one second. With n concurrent processors, the

parallel part takes (k �)⁄ seconds and the sequential part

takes (1 − k) seconds. Overall, the parallelized

computation takes (1 − k + m
F) seconds.

So the speedup is: (�) = �
�Km7n

o
 .

Through this formula, for the given problem and an

eight-core machine, Amdahl’s law says that even if we

parallelize 90% of the solution, but not the remaining

10%, then we end up with only four-fold speedup, and

not the expected eight-fold speedup. In fact, these

additional parallel parts involve substantial

communication and coordination.

In our dynamic parallelization strategy, as we

explained in section 3.3, each two threads will share

only one FIFO queue in order to push neighbors of

lowered pixels. Intuitively we are going to opt towards

a solution with a simple lock-based shared FIFO

queue. Associated push and pop methods will be

synchronized by a mutual exclusion lock. Even if this

implementation is a correct concurrent FIFO queue,

because each method accesses and updates fields while

holding an exclusive lock, the method calls take effect

sequentially. And according to Amdahl’s law, this

sequential communication can substantially affect the

performance of our program as a whole. In multi-core

architecture, such synchronization technique can also

be the origin of costly overheads.

Even if we opt to second method based on lock-free

solution [22] in order to minimize the overheads, it is

demanded that at least one thread (of all the threads

that are executing the push or pop function at one

moment) is progressing (inserting or extracting pixels

from or to the FIFO queue). Unfortunately, we do not

know in advance how many parallel threads will call

push or pop functions. And method calls still take

effect sequentially. Other solution is wait-free

technique [23], it is required that a process finishes

within a finite number of execution steps. Something

that we cannot also guarantee because we cannot

predict how many points will be characterized and then

how many pixels will be inserted in the FIFO queue.

Finally we decide to move to spin-wait mechanism

[24], for illustration we propose figure 4, a thread

waiting to push an item might spin for a brief duration

without being added to the queue of waiting threads.

As a result, the thread is effectively put to sleep

without relinquishing the remainder of its CPU time

slot. It is potentially more efficient to spin and wait,

instead of using either lock-free or wait-free

mechanisms, because those force a thread context

switch, which is one of the most expensive operations

performed by the operating system.

Fig. 4: Spin-wait Synchronization

5. Performance testing

5.1. Parallel p -Skeleton algorithm

Now we present a parallel version of the thinning

according to the concepts previously discussed. Let the

map F from Z� to Z represent the input grayscale

image. For each point x ∈ Z�, F(x) is the graylevel

value of x. We denote by φ the set composed by all

maps from Z� to Z. Let Ϝ ∈ φ, the section of Ϝ at the

level k is the set F< composed of all point x ∈ Z� such

that F< ≥ k. Let T be the set of type sought in the

Thread 1

Waiting room

Lock() and access waiting room

Unlock() and leave waiting room

Push()

Thread 2

characterization of pixels. For thinning algorithm: T =
#λ– deletable and not λ– end points/. It is important

to mention that points from T can also be end-point and

isolate-point for crest restoring. We will refer to global

search space by Ime, and associated map (from Z�

to Z) to each sub-space ImeY is FY . For each point x ∈
Z�, FY(x) is the graylevel value of x in the search

space ImeY. The following dynamically parallel λ–

Skeleton algorithm (it is adapted for two concurrent

threads, but it can be easily extended to N threads)

starts by dividing the search space. mY2u and mvwx

define sub-region bounds. Since the distributed work

starts, each thread will lower each characterized pixel

and then push its eight neighbors in Ev2. Ev2 is the set

of all selected neighbors and it is shared between only

two threads. Ev2 will be the newly defined set to

explore since the threads finished. Newly characterized

pixels are pushed in a private set called E<Y. The pixel

set assigned to the newly generated thread is nothing

else than Ev2 and the associated search space

is ((ImeY ∪ ImeY7�) ∪ E<Y ∪ E<Y7�).

Algorithm :Dynamically Parallel λ –Skeleton

1. �.U P{{ k ∈ |OT }.

2. $Q ~O�F� < |OT�(k) < O��m�-ℎT� �� ← �� ∪ #k/;
3. �TkTP- ��-${ %-P�${$-�

4. ��F ← ∅;
5. �ℎ${T (� ≠ 0)-ℎT�

6. �.U P{{ k ∈ �� }.

7. $Q (k ∈ D) -ℎT� ��(�) ← MK~�, ��(�)�;
8. ��F ← ��F ∪ #T$�ℎ- k �T$�ℎ�.U%/;
9. T{%T ��� ← ��� ∪ #k/;
10. T�}$Q

11. �.U P{{ k ∈ ��7� }.

12. $Q (k ∈ D) -ℎT� |OT�7�(�) ← MK~�, |OT�7�(�)�;
13. ��F ← ��F ∪ #T$�ℎ- k �T$�ℎ�.U%/;
14. T{%T ���7� ← ���7� ∪ #k/;
15. T�}$Q

16. �� ← ��F;
17. |OT� ← |OT� + |OT�7�;
18. |OT� ← |OT� ∪ ��� ∪ ���7�;
19. $Q (�� = ∅) -ℎT� � ← 0;
20. �{TP� #�� , ��� , ���7�/;
21. T�} Vℎ${T

5.2. Experimental analyses

The proposed parallel λ -Skeleton algorithm was

implemented in C in two variants: the first

implementation, based on a simple lock-based shared

FIFO queue, using OpenMP critical directive. The

second is based on a spin-wait FIFO queue. Wall-clock

execution times for numbers of threads equal to 1, 2, 4,

8, and 16, for each one of these implementations, were

determined. The efficiency measure Ψ(�) is given by

the following formula With n the number of

processors:

 Ψ(�) = %T��T�-$P{ -$OT (� ∗⁄ kPUP{{T{ -$OT)

Times were performed on eight-core (2× Xeon

E5405) shared memory parallel computer of the

Faculty of Electrical Engineering and Communication

of Brno University, on Intel Quad-core Xeon E5335,

on Intel Core 2 Duo E8400 and Intel mono-processor

Pentium 4 660. Each processor of the Xeon E5405 and

E5335 runs at 2 GHz and both of the two machines

have 4 GB of RAM. The E8400 processor runs at 3

GHz. The Pentium processor runs at 3.6 GHz (see

Table 1). The last two machines have 2 GB of RAM.

The minimum value of 5 timings was taken as most

indicative of the speed of the algorithm. The

measurements were done on 2D grayscale image

(512*512) of real brain MRI. Results of the two

implementations are shown in Figure 5 and Figure 7.

 P4 660 E8400 E5335 E5405

CPU

Speed

3.6

GHz

3

GHz

2

GHz

2

 GHz

Bus

Speed

800

MHz

1333

MHz

1333

MHz

1333

MHz

L2 Size 4 MB 6 MB 8 MB 12 MB

L2 Speed 3.6

GHz

3

GHz

2

GHz

2

GHz

Table 1. Characteristics of processors

On the eight-core machine, wall-clock execution

time for the first implementation using a lock-based

shared FIFO queue drops from an average of

40.211 ms for a single thread down to 28.458 ms at

8 threads. For the second implementation using spin-

wait FIFO queue, wall-clock execution time drops

from an average of 41.889 ms for a single thread down

to 8.282 ms at 8 threads. As expected, the speed-up for

the second implementation using Private-Shared FIFO

queue is higher than for the one using lock-based

shared FIFO queue, because context changing were

nearly eliminated.

A remarkable result shown in figure 6 and figure 8

is the fact that the speed-up increases as we increase

the number of threads beyond the number of

processors in our machine (eight cores). For the first

implementation, the speedup at 8 threads is 1.7 ± 0.05.

However, for the second implementation the speedup

has increased to 6.2 ± 0.01. Another common result

between figure 5 and figure 7 is stability of execution

time on each n-core machine since the code uses n or

more threads.

Fig. 5: wall-clock execution time for the first

implementation using a lock-based shared FIFO queue.

Fig. 6: Performance improvement for the first

implementation using a lock-based shared FIFO queue.

Fig. 7: wall-clock execution time for the second

implementation using a spin-wait shared FIFO queue.

For better readability of our results, we tested the

efficiency of our algorithm on various architectures

using the Ψ(�) formula introduced earlier with fixed

serial time equal to 48.247 ms. For parallel time we use

best parallel time obtained using 8 threads. As can be

seen in Figure 9, second implementation is more

efficient that the first one in all architectures. It is also

suitable to return to Amdahl’s law, introduced in

section 4, in order to explain obtained results. In fact

the global speed up formula is j(�) = �(�)
�(F). Then the

defined efficiency Ψ(�) = D� (� ∗⁄ Dm) can be written

Fig. 8: Performance improvement for the second

implementation using a spin-wait FIFO queue.

as Ψ(�) = D� (� ∗⁄ Dm) = S(2)
2 = �(�)

F∗ �(F). According to

Amdahl’s law j(�) = �
�Km7n

o
 , efficiency can be written

as follows: Ψ(�) = �
F∗(�Km)7m

Thus if the number of cores increases, the speedup

also increases (more work can be done simultaneously

with more threads). On the other hand the efficiency

will decrease.

Fig. 9: Efficiency improvement

6. Conclusion

In this paper, we have presented a new parallel

version of the λ–Skeleton algorithm. We have also

presented a adapted parallelization strategy combining

Split Distribute and Merge (SDM) strategy and mixed

parallelism techniques. SDM-strategy was a

conditional application of the well known principle of

divide and conquer. Associated mixed parallelization

techniques were data parallelism at upper levels and

thread parallelism at lower levels of the processing.

0 1 2 4 8 16 20
0

10

20

30

40

50

60

70

Number of threads

W
a
ll-

c
lo

c
k
 t

im
e
 [

m
s
]

1 cores

2 cores

4 cores

8 cores

0 1 2 4 8 16 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of threads

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

1 cores

2 cores

4 cores

8 cores

0 1 2 4 8 16 20
0

10

20

30

40

50

60

70

Number of threads

W
a
ll-

c
lo

c
k
 t

im
e
 [

m
s
]

1 cores

2 cores

4 cores

8 cores

0 1 2 4 8 16 20
0

1

2

3

4

5

6

7

Number of threads

P
e
rf

o
rm

a
n
c
e
 I

m
p
ro

v
e
m

e
n
t

1 cores

2 cores

4 cores

8 cores

1 2 4 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Number of cores

E
ff

ic
ie

n
c
y

Using lock-based shared FIFO queue

Using private-shared FIFO queue

Using lock-based synchronization

Using spin-wait synchronization

 The first major contribution in this paper is the

non-specific nature of the proposed parallelization

strategy. In fact, the introduced strategy can be applied

to a large class of topological operators introduced in

section 2.3.

The second contribution concerned threads

parallelism and more specifically threads coordination

and communication during computing dependently

parallel read/write for managing cache-resident data

which present a substantial problem. The problem

addressed by this paper is how to deal with shared

FIFO queue which requires inter-process coordination

and communication in an essential way. And thanks to

combination of spinning and waiting techniques, the

proposed algorithm shows a good degree of speed-up

using eight threads (about 6.2 on eight cores of the

2× Xeon E5405, about 3.1 on the Quad-cores of Xeon

E5335 and 1.8 on Core 2Duo E8400).

Parallel topological operator computation poses

many challenges, ranging from parallelization

strategies to coding and implementation techniques.

We tackle these challenges using successive

refinement, starting with highly local operators, which

process only by characterizing points and then deleting

target pixels, and gradually moving to more complex

topological operators with non-local behavior. In

future work, we will study parallel computation of the

topological watershed [25].

6. References

[1] Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall,

United States, Oct. 1988.

[2] M. Couprie, F. N. Bezerra, and G. Bertrand, “Topological operators for

grayscale image processing”, Journal of Electronic Imaging Vol. 10, Oct.

2001, pp. 1003-1015.

[3] J. C. Everat, and G. Bertrand, “New topological operators for

segmentation”, International Conference On Image Processing, Vol. 3, Sep.

1996, pp. 45-48.

[4] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Generalized local binary

pattern operators for multi-resolution grayscale and rotation invariant texture

classification”, Advances In Pattern Recognition Conf. Brazil Vol. 2013,

March 2001, pp. 397-406.

[5] S. Heydorn, and P. Weidner, “Optimization and Performance Analysis of

Thinning Algorithms on Parallel Computers” Parallel Computing 17.1991, pp.

17-27.v

[6] N. BOURBAKIS, N. STEFFENSEN, and B. SAHA, “Design of an array

processor for parallel skeletonization of images”, IEEE transactions on circuits

and systems. 2, Analog and digital signal processing, 1997, pp. 284-298

[7] L. Lam, L. Seong-Whan, and C. Y. Suen, “Thinning methodologies: a

comprehensive survey”, IEEE transactions on pattern analysis and machine

intelligence vol. 14, 1992, pp. 869-885.

[8] R. C. Dyer, and A. Rosenfeld, “Thinning Algorithms for Gray-Scale

Pictures”, Pattern Analysis and Machine Intelligence, IEEE Transactions Vol.

PAMI-1, Jan. 1979, page(s): 88-89

[9] Y. Shiaw-Shian, and T. Wen-Hsiang, “A new thinning algorithm for gray-

scale images by the relaxation technique”, Pattern recognition vol. 23, 1990,

pp. 1067-1076.

[10] G. Bertrand, J. C. Everat and M. Couprie, “Topological approach to image

segmentation”, In SPIE Vision Geometry V, vol. 2826, 1996, pp. 65-76.

[11] G. Bertrand, J. C. Everat, and M. Couprie, "Image segmentation through

operators based on topology," Journal of Electronic Imaging, 1997, pp. 395-

405.

[12] M. Couprie, and G Bertrand, “Topology preserving alternating sequential

filter for smoothing 2D and 3D objects” Journal of Electronic Imaging, Vol.

13, 2004, pp. 720-730.

[13] G. Bertrand, “On Topological Watersheds”, Journal of Mathematical

Imaging and Vision, Vol. 22, 2005, pp. 217 – 230.

[14] M.H.F. Wilkinson, H. Gao, W.H. Hesselink, J.-E. Jonker and A.

Meijster, “Concurrent Computation of Attribute Filters on Shared Memory

Parallel Machines”, Pattern Analysis and Machine Intelligence, IEEE

Transactions on, Oct. 2008, pp. 1800-1813.

[15] T. G. Mattson, B. A. Sanders and B. L. Massingill, “Patterns for Parallel

Programming” Addison-Wesley Professional, First Edition, Sep. 2004,

Chapter 4.

[16] P. J. Hatcher, and J. M. Quinn, “Data-Parallel Programming on MIMD

Computers” Mit Press, Des. 2001, Chapter 1.

[17] S. Feldmann, J. Sgall, and S-H Teng, “Dynamic scheduling on parallel

machines”, 32nd Annual Symposium on Foundations of Computer Science,

1.Oct 1991, pp. 111-120.

[18] L. Wangqing, S. Mingren, and P. Ogunbona, “A New Divide and Conquer

Algorithm for Graph-based Image and Video Segmentation” Multimedia

Signal Processing, 2005, pp.1-4.

[19] F. J. Seinstra, D. Koelma, and J. M. Geusebroek, “A software architecture

for user transparent parallel image processings,” Parallel Computing, vol. 28,

2002, pp. 967-99.

[20] A. Meijster, J. Roerdink, and W. Hesselink, “A general algorithm for

computing distance transforms in linear time,” in Proc. Int. Symp. Math.

Morphology (ISMM) 2000, pp. 331–340.

[21] G. M. Amdahl, “Validity of the single-processor approach to achieving

large scale computing capabilities” AFIPS Conference Proceeding vol. 30,

Atlantic City, NJ., 1967, pp. 483-485.

[22] J. H. Anderson, S. Ramamurthy and k. Jeffay, “Real Time computing with

lock-free shared Object” ACM Transaction on Computer System Vol.15,1997,

pp.134 -165.

[23] M. Herlihy, “Wait-Free Synchronization”, ACM transaction on

programming languages and system, vol. 13, 1991, pp. 124 - 149

[24] T. E. Anderson, “The performance of spin lock alternatives for shared-

money multiprocessors”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 1, Jan. 1990, pp:6 -16.

[25] J. Cousty, M. Couprie, L. Najman and Gilles Bertrand “Weighted fusion

graphs: Merging properties and watersheds”. Discrete Applied Mathematics

156, 2008, pp. 3011-3027.

