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Abstract The Optical Character Recognition (OCR) is
a process that converts characters within images into
text documents. In paperless applications, OCR systems
have to ensure a better accuracy as well as a high speed.
One of the most important steps in OCR is binarization.
In this context, we proposed recently the Hybrid Bina-
rization based-Kmeans method (HBK) [1]. HBK offers a
satisfying recognition rate while scoring 91% accuracy. In
the other hand, running on an Intel Core i3 CPU proces-
sor, the HBK requires at least 1.9 seconds to process one
A4 300 dpi document. However, binarization step should
not exceed 460 ms in our real time OCR system. For this,
we propose in this paper a parallel implementation of the
HBK method on the NVIDIA GTX 660 Graphic Pro-
cessing Unit (GPU). Our implementation, combines fine-
grained and coarse-grained parallelism strategies for the
best GPU use. In addition, the costly CPU-GPU com-
munication overhead is avoided and an efficient memory
management is ensured. The effectiveness of our imple-
mentation is validated through extensive experiments,
which demonstrate that the proposed HBK paralleliza-
tion accelerates the studied process. Indeed, we ensure
the binarization of one document in just 425 ms. Con-
sequently, the implemented design is able to meet the
targeted real time OCR system in paperless application.

Keywords OCR - Scanned documents - Binarization -
HBK - Kmeans - CUDA - GPU

1 Introduction

Optical Character Recognition (OCR) [2] is the process
that recognizes numerical characters on printed pages
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and converts them to a machine readable text file. The
OCR quality is measured according to the character recog-
nition rate [3]. Generally, the acceptance rate varies ac-
cording to the business operation or recognition task. For
a common A4 document, scanned at 300 dpi, error rates
are often in the range of 1% to 10% of all characters
in page [4]. Actually, both accuracy and high speed of
OCR are required in the real time applications [5]. For
example, in the banking check reading [5], the acceptable
error rate is close to zero and the OCR should be very
fast. It may have a very high throughput of up to 150.000
documents per hour [5]. Also, in the mail sorting [6], the
acceptable rate is close to zero. The recognition rate, is
about 30.000 letters per hour [5]. In our work, we focus on
the paperless [7,8] real time application, in which, a high
speed scanner Epson Perfection V100 Photo scans over
one A4 300 dpi document per 23 second. This application
is depicted in Figure 1. Both binarization and recogni-
tion are required in the OCR processing [9]. Binarization
plays a very important role in the OCR toolchain. In this
operation, documents are converted into bi-level repre-
sentation distinguishing the foreground from the back-
ground. We consider that foreground objects represent
printed text, a legend, or a drawing while the comple-
mentary objects correspond to the background. Indeed,
a high accuracy in extracting untouchable and unfrag-
mented characters is very important to perform efficient
recognition.

Actually, we are interested in two points: enhancing
the binarization quality to improve the recognition rate
and speedup the execution time to increase the number
of documents processed per second.

On the first point, we proposed recently an adap-
tive new method called Hybrid Binarization based on
Kmeans (HBK) [1], basically designed for scanned doc-
uments. Firstly, the HBK method performs the Kmeans
clustering algorithm on local areas seeking more bina-
rization robustness. Then, it gathers local features in a
global manner to improve the local binarization qual-
ity. Basically, the HBK method outperforms state of the
art binarization methods such as SauvolaMSy, [10] and
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Fig. 1 Paperless application toolchain based on OCR system

Niblack [11]. It scores a character recognition rate of 91%
when performing on 125 scanned magazine documents
[1].

On the second point, we consider our paperless appli-
cation time constraint. Given that the binarization step
should take, generally, 2% from the total OCR execution
time [13], the processing time required to binarize one
document is 460 ms in our real time system. According
to our experiments, the HBK method requires at least
1.9 seconds to process one A4 300 dpi document. Thus,
it does not meet the real time constraint of our paperless
application. Actually, the running time of Kmeans in the
HBK method is time consuming [14]. Therefore, paral-
lelizing it is a promising approach to overcome the chal-
lenge of the huge computational requirement [14] and ac-
celerate HBK. In this context, different implementations
of Kmeans on the Graphic Processor Unit (GPU) have
been proposed [15,16,17,14,18]. Those papers mainly
address Kmeans as general purpose clustering algorithm.
According to our knowledge, the first popular Kmeans
GPU implementation is the UV_Kmeans [15]. It achieves
a speedup of 10x to 40x as compared to four-threaded
Minebench [20] running on a dual-core, hyper-threaded
CPU. The GPU_Miner [16] improves 5x UV_Kmeans [15]
by decreasing the transfer memory latency. HP_Kmeans
[19] claims another speedup of 2x to 4x as compared with
UV _Kmeans [15] and 20x to 70x speedup as compared
with GPU_Miner [16]. Y.Li implementation [14] is 4x to
8x faster than UV_Kmeans [15] when performing on an
NVIDIA GTX 280 GPU.

In this paper, we propose an efficient parallel im-
plementation of the HBK binarization method. Our ap-
proach is established through two levels of parallelism.
The first level is the coarse-grained parallelism when par-
allelizing the Kmeans algorithm between thread blocks.
The second level is the fine-grained parallelism, in which,
we parallelize the distance computation and the labeling
Kmeans stages between threads. Our HBK implementa-
tion ensures an efficient memory management and limits
the CPU-GPU memory transfer overheads.

The rest of the paper is organized as follow. In Sect.2
we explain the HBK binarization method and the related
quality and real time evaluations. Sect. 3 provides a brief
presentation of the GPU architecture. Next, in Sect. 4,

Digital documentsin
editable format

OCR system

we review the related works that parallelized Kmeans on
GPU and we describe our proposed HBK GPU imple-
mentation. Then, experimental results are discussed in
Sect. 5. Finally, conclusion is drawn in Sect.6.

2 Hybrid Binarization based on Kmeans (HBK)

The HBK method combines local and global approaches
to ensure robust binarization. Indeed, it is well adapted
for noisy documents thanks to the local approach. More-
over, the global process improves the binarization quality
when merging the local binarization features. Figure 2
shows the HBK method and more details are described
in Algorithm 1.

To binarize documents, two initial centroids are em-
ployed. We note by Cg = {Cgo,Cc1} the global cen-
troid set. They are initialized with black and white val-
ues. Thus, Cgo = (0,0,0)T and Cg; = (255, 255,255)T
design respectively the background and the foreground
clusters. The input document is divided into Nb blocks.
The size of the blocks can be small, medium or large
depending on the size of characters [1]. Moreover, each
block includes two local centroids given by the C, set:

Cr, ={(CL0,0:Cr01): (Cr1,0,Cr1,1)s -, CLbtis -

(Crno—-1,0,Crnb—1,1)}

with Crui = (Clhy i Chi Cow)" i € [0,1], bl €
[0, Nb — 1]. Furthermore, each block includes two local
accumulators and counters given respectively by the sets
Accur, and Country,:

Accur, = {(Accur,0, Accuroq), (Accurs o, Accury 1), ...,

Accurpi, ..., (Accupnp—1,0, Accupnp—1,1)},
Countr, = {(Countro,9, Countroa), (Countra,o,

Countri1),...,Countrp g, ..., (Countnp—1,0,

C’ountLNb_Ll)}

with Accupp; = (Acculyy, ;, Accu$y, o, Acculy )T, where,
i € [0,1] and bl € [0, Nb — 1]. In the beginning, all lo-
cal centroids are initialized with Cgo and Cgy. Then,
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Fig. 2 The HBK binarization method

Algorithm 1 HBK(Img)

Cqa: Global centroids

ite: Current iteration index
bl: Block index

Nb: Total number of blocks
Accug;: Global accumulator
Countgi: Global Counter
Accurp,i: Local accumulator
Countrp,i: Local Counter

// Global centroid initialization

1: Cgo < (0,0,0)7, Co1 + (255,255, 255)T
// Repeat until convergence

2: while CG(ite) #* C’G(ite — 1) do

// Local Kmeans clustering on each block
3:  for bl € [0,Nb—1] do

4: Kmeans(bl,Ca)

5: for i € [0,1] do

6: Accug; < Accug: + Accuri

7: Countg; < Countg; + Countrp,i
8: end for

9: end for

// New centroid computation

10: Cai 4 focrai i€ [0,1]

11: end while

the Kmeans clustering algorithm [21] is applied across
all blocks as stated in lines 3 and 4. When it converges,
the local accumulators Accuy are gathered into global
ones defined by Accug = {Accugo, Accugt}, Accug; =
(Accull,, Accu§,, Accul)T with i € [0,1] (line 6). This
operation is based on one addition per each color com-
ponent. Similarly, local counters are accumulated into
the global ones given by Countg = {Countgg, Countay }
(line 7). Finally, the global centroids C¢ are computed

according to Accug and Counte division (line 10). The
algorithm stops when the global convergence is reached,
else it reiterates while local centroids C}, are reset with
Cgo and Cg1 . Following, we show the robust binarization
quality of the HBK method through an OCR evaluation.

2.1 HBK OCR-based Evaluation

The Optical Character Recognition (OCR) is a process
by which text characters contained in an image can be
recognized. The binarization quality has a direct influ-
ence on the OCR result. Commonly, the computer uses
an OCR Engine to recognize characters in an image. In
our evaluation, we employ the well-known Tesseract 3.02
engine [22]. The OCR is performed directly on binarized
scanned documents. For this we use the LRDE-DBD!
dataset [23]. It is composed of 125 scanned and non-
scanned documents extracted from ”Le Nouvel Obser-
vateur 27 magazine. These documents have A4 format
and 300-dpi resolution. According to HBK, the block
size of 32x32 guarantees a robust binarization quality
[1]. Table 1 shows the OCR recognition rate including
the HBK and several binarization methods.

The OCR results are close: The recent SauvolaMsy,,
[10] gives an acceptable OCR rate by scoring 89% of

! Copyright(c) 2012. EPITA and Development Laboratory
(LRDE) with permission from Le Nouvel Observateur.
LRDE-DBD is available online on the web site:
http://www.lrde.epita.fr/cgi-bin/twiki/view/0lena/
DatasetDBD

2 Le Nouvel Observateur. Issue 2402, November 18-24, 2010
and available on the website:
http://tempsreel.nouvelobs.com



Table 1 OCR accuracy evaluation of HBK and well-known
binarization methods.

Methods Accuracy (%)
HBK [1] 91
SauvolaMSy [10] 89
Lelore [24] 85
Niblack [11] 80
TMMS [25] 73

OCR accuracy. It ensures a robust text binarization how-
ever in some document areas, artifacts may appear lead-
ing to character miss-recognition. The HBK method gives
the best OCR rate scoring 91% of accuracy thanks to its
robust binarization results. Indeed, the local approach
gives robust binarization quality and the global approach
clears the artifacts generated by the local one. The main
issue encountered by outperformed methods is related
to large objects and the fact that parameters do not fit
to the contents. The HBK approach succeeds in improv-
ing the SauvolaMSy, algorithm because text with col-
ored background is correctly retrieved. Indeed, accord-
ing to our experiments, it ensures an F-Measure [26]
of 98% while SauvolaMSyy reaches only 95% [10], with
F-Measure is a metric that evaluates the pixel-based
accuracy. The TMMS [25] method gives degraded re-
sults despite the efficient binarization of the text edges.
This is due to the uneven illumination introduced by the
scanned documents.

In this work, we aim to perform a binarization that
can be integrated in a real time OCR application. In the
next subsection, we check the HBK ability to satisfy the
real time constraint of our paperless application.

2.2 HBK Real Time Evaluation

The experiments were conducted on an Intel Core i3
CPU performing at 3.07 GHz with a memory of 4 GB.
Evaluations were performed using an average of 5 sub-
sequent executions. In our target paperless application,
the Epson Perfection V100 Photo scanner digitizes one
A4 300 dpi document per 23 seconds. Actually, when the
scanner digitizes a document, the OCR is performed si-
multaneously on the previous scanned document. Hence,
the OCR time constraint is equal to the scan time (23
seconds). The HBK method binarizes one document per
1.9 seconds. Unfortunately, this performance does not
meet to real time constraint, because it exceeds 2% [13]
from the total OCR execution time required. Following,
we profile the HBK method to overview which processed
parts are the most time consuming. Three parts were
profiled: Initialization, Local phase and Global phase.
The initialization includes memory allocations and data
initialization. The local phase process includes the run-
ning time of Kmeans in all blocks of the document. The
global phase process includes the check of the global

Table 2 Profiling of the HBK stages

Processes Time (%)
Initialization 0.001
Local phase (Kmeans) 96.593
Global phase 0.013

convergence and the centroid updating. According to
table 2, the overall HBK time execution is bounded with
the Kmeans one.Indeed, reducing the Kmeans processing
time will naturally decrease the HBK one. According to
[18], the Graphic Processing Unit (GPU) develops con-
tinuously and provides a promising platform for paral-
lelizing K-means [14]. Therefore, the GPU is an adequate
alternative to accelerate Kmeans, and thus HBK. In the
next section, we present the GPU architecture.

3 GPU Architecture

GPU is a plenty powerful many-core processor that sup-
port parallel data processing and high precision com-
putation. It includes a set of Single Instruction Multiple
Data (SIMD) Streaming Multiprocessors (SM). The SMs
perform simultaneously the same operation on multiple
data. Each SM is composed of several processors (cores).
GPUs include a texture, constant, global, local, shared
and register memories as shown in Figure 3 [27].

GPU Grid

Block (0, 0)

i

Thread (1, 0)

Block (1, 0)

-3

e

Thread (1, 0)

Thread (0, 0) Thread (0, 0)

- s - A

CPU

Fig. 3 GPU Architecture in CUDA environment
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GPU grid, blocks and threads are explained a bit
later. GPUs have dedicated texture hardware optimiz-
ing the 2D spatial locality. In addition, GPUs include
a constant memory. It is a fast memory readable by all
GPU cores. We note that, constant and texture memo-
ries are read-only which constitutes a major drawback
if we need to write data. The main memory in GPUs is
the global one. It can be accessed from all device cores.
Depending on the GPU model, it can accommodate one
Giga Bytes (GB) or more which let process large amount
of pixels. The global memory is optimized to simultane-
ously handle a lot of memory requests providing a con-
siderable large bandwidth. The access to this memory is
cached which makes it very fast [28]. Besides, local mem-
ory is an abstraction of global one. It is accessed only by
thread blocks. Moreover, it resides off chip, which makes
it as expensive to access. The compiler makes use of lo-
cal memory when it determines that there is not enough
register space to hold variables. In the other side, the
GPU includes shared memory which is 100x faster than
global one. It can be used as a user-managed cache L1 to
reduce the number of slow global memory accesses. This
kind of memory is common to a group of cores and can
be concurrently accessed by several ones. In such case,
cores may collaborate in a given task, or simply store
temporally data and reduce then register pressure. Even-
tually, the fastest memory access in GPU is provided by
registers. Unfortunately, it has small memory storage.
In the case of Fermi architecture, there are about two

Mega Bytes (MB), while current CPUs only have few
Kilo Bytes (KB).

To exploit the GPU platform, it is possible to use
multiple technologies. The most popular ones are the
Open Computing Language (OpenCL) [29] and the Com-
pute Unified Device Architecture (CUDA) [30]. In one
side, OpenCL is an open standard offering cross-platform
capabilities. The most important drawback of OpenCL is
the high complexity of the Application Programming In-
terface (API) and the execution model [31]. In the other
side, CUDA is an API that allows high C and C++
programming level on NVIDIA GPUs. In addition, the
CUDA environment is more user friendly and able to
port the programming code much more consistently. As
shown in Figure 3, CUDA notes the SMs and the cores
respectively by blocks and threads. The container of all
CUDA blocks is called grid. According to the CUDA en-
vironment, a virtual architecture is considered defining
an execution model as described in Figure 4 [28].

The execution model is then well suitable for par-
allelizing treatments in image processing because blocks
group thousands of independent threads ready to process
a huge number of pixels in parallel. In the next section,
we explain our HBK GPU parallelization.

4 HBK Parallelization on GPU

The previous analysis, in section 2.2 shows that the HBK
execution time is bounded with the Kmeans clustering
one. For this, we aim to accelerate Kmeans. Following, we
introduce the related Kmeans GPU acceleration meth-
ods. Then, we detail our proposed HBK implementation
strategy based on our Kmeans GPU version.

4.1 Related Works

Following, we give an overview about existing Kmeans
implementations on the GPU. The first fast and very
popular Kmeans GPU implementation is the UV_Kmeans
[15]. In this work, centroids and input data are stored
respectively in the constant and texture memories. Each
thread processes a single data point and the new cluster
centroids are computed in the CPU device. In the UV-
Kmeans implementation, the accumulation operations,
are done on the CPU. However it increases the mem-
ory latency when transferring data between CPU and
GPU. In addition, faster memories such as registers and
shared memory are not used. W. Fang [16] accelerates 5x
UV-Kmeans [15] by minimizing memory latency transfer
between CPU and GPU. Indeed, he uses a bitmap grid
to determine, inside GPU, the number of data points
belonging to each cluster. This technique avoids large
amount of atomic additions. However, the grid bitmap
uses a lot of memory when the centroid number is high.
Moreover, the memory management is not optimal. In-
deed, registers and shared memory, are not employed.



Recently, works [17,14] perform more Kmeans steps on
the GPU. For example in [17], authors use the CPU only
for centroid initialization and the control flow. Also, in
[14], several reduction steps are done on GPU before per-
forming the centroid update stage on the CPU. This
method, improves the works [15] and [16] by optimiz-
ing the memory management. Actually, the input data
is stored in registers that allows very fast memory ac-
cess. Y.Li [14] designs an algorithm that exploits GPU
on-chip fast memories to significantly decrease the data
access latency.

Some works perform the centroid updating on the
CPU [17,18]. This usage is due to the employment of
GPU architecture that are unable to achieve atomic float-
ing point operations. For example, in the HP_Kmeans
[19] method, the centroid updating step is performed on
the CPU, but some accelerations are achieved like asyn-
chronous transfer and cuda streams. In [18], researchers
have implemented the Kmeans algorithm in the context
of image segmentation. They parallelize only the labeling
phase. However, the updating of centroids is performed
on the CPU. Indeed, they employ a small centroid num-
ber compared to pixel number [18]. Hence the data trans-
fer time between CPU and GPU is masked by the huge
distance computation task.

In our work, we perform an efficient HBK GPU im-
plementation based on a powerful Kmeans algorithm.
Actually, HBK processes documents according to small
blocks. Then, we apply Kmeans independently on each
block. Following section explains our HBK GPU imple-
mentation.

4.2 HBK GPU Implementation

In our implementation, we perform the coarse and the
fine grained levels of parallelism: In the coarse-grained
level, we parallelize the document block treatment be-
tween blocks. In the fine-grained level, we parallelize the
pixel processing inside blocks [28]. Figure 5 shows this
concept.

Actually, in our HBK implementation, we parallelize
Kmeans between the GPU blocks. In the other hand,
we parallelize the distance computation and the labeling
stages between threads (Figure 6). For this aim, we de-
sign two CUDA kernels: The Local and the Global Ker-
nels. They handle respectively the local and the global
HBK phases (Figure 2). All of the centroids Cg, accu-
mulators Accug and counters Countg are allocated in
the global memory. After the CPU fetches image into
the global memory, it launches the Local Kernel on the
GPU device. Thus, the Kmeans algorithm is performed
on each block, in parallel.

An efficient memory management is ensured by em-
ploying fast GPU memories. We limit the global mem-
ory utilization by dispatching the data to shared mem-
ory and registers. Indeed, the local centroids Cp, ac-
cumulators Accuy, and counters County, of each block
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are allocated in the shared memory for fast access to
block threads. In addition, pixels are transferred from
the global memory to registers which allows a very fast
memory access during the program execution.

In the Kmeans initialization step, each two local cen-
troids C, are initialized with the RGB values (0,0, 0)T
and (255,255,255)7. We note that, the distance com-
putation between centroids and pixels is performed in-
dependently between pixels. Therefore, we process it in
parallel between w threads. Then, the complexity de-
creases from O(Npxk) to O(Npxk/w) with Np is the
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total number of pixels in the scanned document and k is
the centroid number in each block. We should carefully
map threads and pixels depends on their positions in the
image. Moreover the thread number should match the
total number of pixels to ensure a reliable binarization.
Similarly, the labeling step of Kmeans, where each pixel
is assigned to its cluster, is parallelized on w threads.

In our HBK implementation, we decrease the CPU-
GPU communication overheads by performing a fully
Kmeans in the GPU. Indeed, the centroid updating is
performed on the GPU device. One master thread in
each block perform this operation. Actually, the scanned
document contains high number of blocks because their
sizes are relatively small compared to the image one. This
way, the total number of master threads in the whole
GPU remains high. Then, GPU resources are efficiently
exploited. In addition, updating centroids on the GPU is
possible thanks to the availability of integer and floating-
point atomic addition on recent GPU architectures like
Fermi and Kepler [32].

During the labeling stage of the Kmeans algorithm,
a reduction is performed on each block. Thus, local fea-
tures Accuy, and County, are computed before being gath-
ered into the global ones: Accug and Countg, as seen
in Figure 7. Indeed, two steps are made. Firstly, local
features are gathered using the shared atomic addition
within the threads blocks. Secondly, all local features are
added to the global ones using the global atomic addi-
tions. This technique decreases the global atomic opera-
tion overhead. Indeed atomic operations on global mem-
ory can be very costly, as they need to serialize a poten-
tially large number of threads in the kernel. To reduce

L
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Kemel

Global memory

Pixel value/ 1 ® Accu,/ Count, ® Accug / Countg

Fig. 7 Optimization of accumulator and counter variables
computation

this overhead, we usually addition operations first to
variables declared in the shared memory of each thread
block [33]. Every block process stops when centroids of
the current iteration are equal to the previous itera-
tion ones. This means that the convergence criterion of
Kmeans is reached. At that time, the CPU launches the
Global Kernel. We do not need to transfer the accumu-
lators Accug and the counters Countg to the CPU be-
cause we keep them on the global memory. Based on
these features, the Global Kernel computes centroids Cg-.
Similarly to the local convergence, global centroids are
submitted to the convergence test. If the centroids of the
current global iteration are equal to those of the previ-
ous one, the global convergence is reached. In this case,
a flag is set to 1, otherwise it is set to 0. Subsequently,
the CPU checks whether the computed flag is equal to 1
value to decide ending the program as shown in Figure 8.
The transfer of the flag variable maintains a low CPU-
GPU overhead which enhances the HBK performances.
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In the next section, we evaluate our HBK GPU imple-
mentation.

5 Experimental Results

In previous work [1], we have demonstrated that the
HBK method is effective in binarizing scanned docu-
ments. In this section, we evaluate the execution time of
HBK. After presenting the employed materials, we dis-
cuss the efficiency of our GPU-based Kmeans implemen-
tation. Then, we compare the HBK processing time be-
tween GPU and CPU to show the GPU acceleration. For
this, several experiments were performed by varying pa-
rameters such as; block sizes, amount of noise (Scanned,
NScanned documents) and document content (text ar-
eas, colored background). Finally, we evaluate the HBK
binarization quality on CPU and GPU to show our im-
plementation reliability.

5.1 Materials

In this evaluation, both scanned and non-scanned LRDE-
DBD dataset [23] are employed. In the rest of the paper,
we note the non-scanned documents by ”NScanned”.
Our experiments were conducted on PC with an Intel
Core i3 CPU performing at 3.07 GHz. In addition, we
employ an NVIDIA GeForce GTX 660 GPU. This one
has 5 SIMD multiprocessors. Each one contains 192 pro-
cessors and performs at 980 MHz. In addition, every mul-
tiprocessor has 64 KB of configurable RAM including 16

KB of shared memory and 48 KB of L1 cache. The global
memory has 2 GB with a peak bandwidth of 144.7 GB/s.
Moreover, CUDA version 5.0 is used. In order to visual-
ize clearly the speedup effect, the HBK execution time is
computed after input and output data transfer between
CPU and GPU. Before we evaluate our HBK GPU imple-
mentation, we study our fully GPU-based Kmeans. We
name this implementation Kmeans_SD because it han-
dles small datasets. Then, we adapt our Kmeans paral-
lelization strategy to handle large datasets.

5.2 GPU-based Kmeans Time Evaluation

The Kmeans acceleration has been widely discussed in
the literature [14]. Table 3 shows a comparative study be-
tween several GPU based Kmeans implementations such
as; Kmeans_Li [14], HP_Kmeans [19], UV_Kmeans [15]
and GPU_Miner [16]. The minimum and maximum ex-
ecution time of every method are represented according
to [14].

Table 3 Kmeans_Li comparison with several state of the art
Kmeans GPU implementations

Methods Time (s)
Small Data Large Data
Kmeans_Li [14] 022-226  034-1,15
HP_Kmeans [19] 1,45 - 9,03 -
UV _Kmeans [15] 2,84 - 34,54 1,86 - 8,67
GPU _Miner [16] 61,39 - 474,83 4,26 - 40,6

We can see from this study that the Kmeans_Li [14]
outperforms all of the evaluated methods in both small
and large data sizes. We propose in the following sec-
tion to compare our Kmeans GPU based implementa-
tion to the Kmeans Li [14] method which is the best
implementation. Evaluation was conducted within dif-
ferent data sizes. We call our Kmeans implementation,
respectively, Kmeans_SD and Kmeans_LLD according to
the use of small or large datasets.

5.2.1 Kmeans Time Evaluation on Small Dataset
(Kmeans_SD)

HBK relies on parallelizing Kmeans on small datasets.
For this data size, Kmeans_SD fully processes on the
GPU. However, Kmeans_Li processes the centroid updat-
ing on the CPU. In this subsection, we note Kmeans_SD
and Kmeans_Li respectively by Kmeans-based GPU up-
date and Kmeans-based CPU update. We compared the
two Kmeans implementations on 8x8, 16x16 and 32x32
cropped documents. According to Figure 9, our Kmeans-
based GPU update provides the lowest execution time in
all cropped documents.
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Actually, the CPU-GPU memory transfer cost is high
on small data compared to the computation gained ben-
efits. Thus, it is better to keep the centroid update stage
of Kmeans on GPU. Indeed, our Kmeans_SD succeeds
in avoiding a valuable CPU-GPU data transfer time.
In addition, we observe that the smaller processed data
size is, the lower Kmeans execution time is. Thus, 32x32
data size provides the highest execution time, however,
8x8 data size provides the lowest one. In the following,
we adapt our Kmeans parallelization strategy to handle
large dataset and show its efficiency.

5.2.2 Kmeans Time Fvaluation on Large Dataset
(Kmeans_LD)

Commonly, the Kmeans algorithm is processed on large
datasets like A4 documents. In this context, Kmeans_Li
[14] provides one of the most efficient Kmeans implemen-
tations. In this work, the data is divided into blocks of
256 data points. Moreover, centroids are stored in the
constant memory. In the beginning of the algorithm, the
data is dispatched once from the global memory to reg-
isters. Each thread computes the distance between each
data point and all the centroids. Thus, it determines the
closest center to the corresponding point. For the new
centroid computation, a divide and conquer strategy is
employed. Indeed, the data is divided into n’ groups,
where n' is initialized with 7. With n is the data size
belonging to the corresponding centroid, and M is a mul-
tiple of stream multiprocessor number in the GPU. Each
group is reduced to get a temporary centroid. n’ is then
updated, by dividing the temporary centroids into n’
groups and reduce them iteratively on the GPU until
n' is smaller than M, indicating the GPU has no advan-
tage than the CPU for further computing. In the end,
the final centroids are computed on the CPU.

We adapt our Kmeans parallelization strategy to han-
dle large datasets. Then, we compare this Kmeans_ LD
implementation to the Kmeans_Li one. Actually, we use

registers to store data points. Registers provide fast mem-
ory access during the process execution which will accel-
erate Kmeans. In another hand, we use shared mem-
ory to store the centroid values. In the beginning, each
thread determines its closest centroid. Then, centers are
computed directly from the first pixel distribution on the
GPU blocks and store them in the shared memory. Fi-
nally, we reduce these centroids on the GPU until we get
the final ones.

Y.Li evaluated his implementation using a dataset of
4 million points on a GTX 280 GPU architecture and
an i5 CPU. We have implemented Kmeans_Li on our
available hardware given in Section 5.1. In addition, we
used the LRDE-DBD dataset composed with images of 8
million pixels which is larger than the dataset employed
by Y.Li. Table 4 shows the time comparison between
Kmeans_LD and Kmeans_Li on the LRDE-DBD dataset.

Table 4 Time evaluation of Kmeans_LLD and Kmeans_Li on
125 (2516x3272) LRDE-DBD images

Methods Time (ms)
Kmeans_ LD 425
Kmeans_Li [14] 600

Kmeans_LD is 1.45x faster than the Kmeans_Li. Ac-
tually, in Kmeans_LD we do not redistribute the pixels
on the GPU after distance computation. Therefore, we
save processing time and ensure a coalescent memory
read. However in the Y.Li Kmeans implementation, af-
ter distance computation the data is redistributed on the
GPU to reduce the temporary centroids which is time
consuming. Indeed, the GPU is setup with a new block
number and a new pixel indexes are computed and dis-
patched to threads. Hence, pixel indexes become disor-
derly and cause a non coalescent memory read. In addi-
tion, in Kmeans_LD all centroids are computed in paral-
lel inside blocks unlike Kmeans_Li that do rearrangement
subsequently for each centroid.

Table 5 shows a comparison between our Kmeans
GPU-based implementation and several state of the art
methods in which we describe their strengths and ar-
eas of improvement. Actually, our method outperforms
Kmeans_Si [18] because we parallelize efficiently the cen-
troid updating stage on the GPU. The same strategy is
done by UV_Kmeans [15] but the main limitation en-
countered, as in GPU_Miner [16] and Kmeans Ta [17],
is the lack of fast memory use. However, our method
employs fast memories like registers and shared mem-
ory. Moreover, we ensure a Kmeans implementation that
is more efficient than Kmeans_Li [14] according to two
sides. Firstly, we reduce the transfer time between CPU
and GPU when processing all Kmeans steps on the
GPU for small datasets. Secondly, on the large datasets,
we ensure more coalescent global memory access than



10

Table 5 Strengths and areas of improvement comparison between different GPU-based kmeans implementations.

Methods Strengths

Areas for improvement

Our Kmeans implemen-
tation

Kmeans_Li [14]
registers

GPU_Miner [16] Avoids large atomic operations

UV _Kmeans [15]
MEemory access

Kmeans_Ta [17]

Kmeans_Si [18]
GPU

Avoids costly CPU-GPU transfer time and
ensures a coalescent memory access

Decreases memory latency by using fast

Uses the cache mechanism for high speed

Parallelizes all complex Kmeans steps on the
GPU including the centroid updating stage

Offloads the Kmeans labeling stage to the

Processing very large data

Costly data transfer between CPU and GPU

Poor use of fast GPU memories

Fast memories such as registers and shared
are not used

The use of global memory to permanently
store centroids and data increases the
memory latency

Do not parallelize the Kmeans centroid
updating stage

Kmeans_Li [14] because we do not rearrange data pix-
els. Thus, pixel indexes remain ordered in each block.
In addition, all centroids are processed in parallel unlike
Kmeans_Li [14] that processes and reduces one centroid
at a time. In fact, our Kmeans implementation handles
efficiently small and large datasets. Indeed, it decreases
the memory transfer latency by using a carefully de-
signed workload between CPU and GPU. Moreover, it
ensures a coalescent and fast memory access thanks to
the effective memory management.

Following, we evaluate our HBK GPU implementa-
tion which includes the studied Kmeans proposal.

5.3 GPU-based HBK Time Evaluation

In the first part of this section, we evaluate the HBK
GPU implantation to show the speedup effect when
compared to HBK CPU-based one. For this, we study
our HBK GPU implementation to determine the suit-
able block size that satisfies our paperless real time con-
straint. Moreover, the time performance of our GPU im-
plementation is evaluated on different document param-
eters (noise amount and content). In the second part of
this section, we compare the HBK GPU real-time score
with that of different binarization GPU-based methods
in the literature.

5.8.1 GPU-based HBK Speedup

Following, we evaluate our proposed HBK GPU im-
plementation performances. In the beginning, we vary
the block size parameters to see its effect on the GPU
speedup. In this context, Table 6 shows the HBK execu-
tion time average across 125 Scanned documents.

We observe that the larger block size is, the less is
the HBK processing time on CPU and the greater it

Table 6 Time evaluation of HBK method on CPU and GPU
with different block sizes

Method Blocs (pix) Device Time (ms) Speedup
8x8 CPU 2716 -
GPU 388 Tx
HBK 16x16 CPU 2546 -
* GPU 425 6x
CPU 2411 -
3232 GPU 1050 2,20x

is on GPU. Moreover, the speedup of the HBK GPU
implementation decreases when increasing the size of the
blocks. Actually, the execution time on the GPU is faster
when the number of pixels in the image blocks is close
to the physical number of threads in the GPU blocks.
In this case, each pixel is processed directly by a thread.
Otherwise, the pixel follows a queue until a resource
(thread) gets free. Moreover, the number of divergence
branches is lower using smaller data. In another hand,
by scoring 425 ms and 388 ms, the HBK is able to be
integrated in the OCR paperless application that require
to binarize one document per 460 ms. For these reasons,
we consider that the block size of 16x16 pixels is the
most suitable for our paperless application because it
ensures both fast and acceptable binarization quality [1].

Next, we discuss the HBK time performance on GPU
when varying the amount of noise. Figure 10 visualizes
the HBK processing time on the CPU and the GPU
architectures, represented respectively by purple color
and dotted red one. This evaluation is performed across
125 Scanned and NScanned LRDE-DBD documents. We
note that, the noise is greater on the Scanned documents
(Figure 10.b) than on the NScanned ones (Figure 10.a)
because of the degradation in the scan process. The ex-
ecution time varies greatly between the two document
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types on CPU. However, the process remains nearly con-
stant on GPU. Indeed, the noise complexity induced in
the Scanned documents requires more computation tasks
which are efficiently parallelized on the GPU. To make a
relevant comparison, we consider the HBK average time
on the LRDE-DBD 125 documents as shown in Table 7.

Table 7 Time evaluation of the HBK method on CPU and
GPU with different noise complexity images

Method Images Device Time (ms) Speedup
Scanned CPU 2546 -
HBK GPU 425 6x
NScanned ~ SEU 1930 _
GPU 347 5.5x

The GPU version is 6x faster than the CPU one. In
the other hand, the HBK GPU implementation is faster
on NScanned documents, reaching 347 ms compared to

425 ms on Scanned ones. Indeed, the difference between
execution time on Scanned and NScanned documents is
due to the process complexity that affects the overall
time. In fact, unlike the CPU implementation, our HBK
parallelization on GPU is slightly sensitive to the noise
introduced in documents after the scanning process.

Following, we evaluate the HBK processing time
while varying the document content (number of text ar-
eas, colored background). In, Figure 11, the documentl
contains a few text areas. The document2 includes more
text areas and document3 contains many text areas and
a colored background. The CPU time increases across
the three document types. The more a document in-
cludes text and background the more processing time
is. It reaches 4000 ms on document3 compared to 1100
ms in documentl. The GPU execution time still nearly
constant around 425 ms over the three document types.
Moreover, the GPU speedup increases with the increase
of the document complexity. The GPU reaches a speedup
of 7,5x when binarizing the document3 compared to 3,5x
when binarizing the documentl. Indeed, the more in-
formation documents include, the more devices requires
computation tasks. The GPU scores higher speedup be-
cause it is efficient for parallelizing high amount of com-
putation. Indeed, the GPU implementation of HBK is
able to establish a binarization time lower than our pa-
perless application real time constraint of 460 ms, what-
ever are the noise or contents in the documents. Fol-
lowing, to establish the conceptual merit of our HBK
implementation, we compare its real time with a set of
binarization methods on GPU.

5.3.2 Real-time evaluation of HBK and different
binarization methods

Several binarization methods where studied in our pre-
vious work [1]. A few of them have been implemented
on GPU in the literature. In this section, we compare
our GPU-based HBK to the GPU implementations of
Niblack [11], Sauvola [12] and Sauvolapssk, [10] algo-
rithms. We give a brief description of each algorithm and
its GPU implementation.

Niblack [11] is a local thresholding algorithm. It com-
putes a pixel-wise threshold by sliding a rectangular win-
dow over the gray level image. The threshold value for
each pixel is decided by local mean and local standard
deviation over a specific window size around each pixel.
Thus, the local threshold T'(z,y) for pixel (z,y) is calcu-
lated by formula:

T(z,y) = m(z,y) + k.s(z,y) (1)

Where m(z,y) and s(x,y) are the local mean and the
local standard deviation of the pixels within the local
window region. The value of k controls the amount of
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text region inside the local window. Niblack was paral-
lelized on the GPU by B.Singh [35]. It achieved an av-
erage speed up of 20.84x over the serial implementation
when running on GeForce 9500 GT GPU and an Intel
core 2 Duo CPU of 2.66 Ghz. The advantage of Niblack
is that it always identifies the text regions correctly as
foreground but on the other hand tends to produce a
large amount of binarization noise in non-text regions
[34].

Sauvola[12] proposed an algorithm similar to
Niblack [11]. It made some assumptions based on the dis-
tribution of grey values associated with foreground and
background pixels. The Sauvola threshold is computed
as:

T(a,9) = meo) + 1+ £ CED )
Where m(z,y), s(x,y) and k are the same parameters
given in Niblack. R is the dynamic range of standard de-
viation. B.Singh parallelized Sauvola on GPU [36]. This
GPU implementation achieved an average speed-up of
20.8x compared to the serial program.

Both Niblack and Sauvola GPU versions employ the
same parallelization strategy. Indeed, the input image
is stored as texture in the device memory. After that,
block and grid sizes were computed according to the di-
mensions of the input images. A single thread calculates
the threshold for a single pixel in the output image. In

our work, we have implemented Niblack and Sauvola on
our GTX 660 GPU device.

Sauvolapssk, [10] was proposed to improve Sauvola
to handle the multi-scale text. It is composed of four
steps. First, the image is sampled on different scales.
Then, each image is binarized according to the conven-
tional Sauvola method. Next, a threshold is set for each
object according to its scale belonging. A final image in-
cluding thresholds is produced and then binarized. Ac-
cording to our knowledge, Sauvolapssk, was not imple-
mented on the GPU yet. Thus, we have implemented
our own version. Indeed, we parallelized the threshold
computation on each scale and we kept the other steps
performing on the CPU.

Generally, the adjustment of parameter k and w of
these three methods requires prior knowledge about the
set of documents. For our evaluation, we employ the pa-
rameters recommended by [10]. Indeed, we adjust w = 51
and k = —0.2 for the Niblack method. For Sauvola and
Sauvolapyrsk, we use w = 51 and k = 0.34. Table 8
shows the real time comparison between HBK, Niblack,
Sauvola, and SauvolaM skx methods.

The evaluation result shows that HBK gives the
best execution time. Indeed, it is 3.9x faster than
Sauvolapssie and 1.4x faster than Niblack and Sauvola.
Actually, our HBK GPU-based implementation is able
to binarize pixels rapidly because all thread needed vari-
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Table 8 GPU Real time evaluation of HBK and three bina-
rization methods on the LRDE-DBD Dataset

Methods Time (ms)
HBK 425
Niblack 594
Sauvola 595
Sauvolay sk 1660

ables are stored in the fast on-chip registers and shared
memories. In the other hand, both Niblack and Sauvola
need to compute a threshold for each pixel before bina-
rizing the data. For this, they require fetching a great
number of neighbor values from the texture memory to
compute the mean and the standard deviation for each
pixel. Otherwise, HBK employs faster memories com-
pared to Sauvolapssk, which uses further huge texture
accesses to compute pixel thresholds on several scales.
Therefore, HBK outperforms Sauwvola sk, on the GPU.
Niblack and Sauvola times are close, this is because the
workflow is similar. However, Sauvola is slower because of
its more complex threshold formula. Sauvolap;ske gives
the slowest execution time. Indeed, the multi-scale pro-
cessing implies a cost on computation time. Following, we
evaluate the binarization quality of our HBK GPU-based
and CPU-based implementations to show the reliability
of our implementation.

5.4 GPU-based HBK Quality Evaluation

Generally, the GPU architecture has some memory con-
straints and model execution rules to make faster im-
plementations. According to Figure 12, the HBK GPU
version does not show any loss in the binarization quality
compared to the CPU one.
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Fig. 12 GPU (a) and CPU (b) based binarization quality
comparison of the HBK method on cropped Scanned docu-
ment

To prove this visual result, we compute the pixel
based accuracy of the HBK on both CPU and GPU.
The result gives the same F-Measure, for both devices.
Indeed, our GPU program does not encounter any mem-
ory limitation or conflict that produces different bina-
rization results.

6 Conclusion

In the paperless applications, the OCR systems are used
to recognize text in the digital documents. In our work,
we focused on the paperless real time application, in
which, a scanner processes one A4 300 dpi paper per
23 seconds. The binarization is a very important compo-
nent in the OCR tool chain. In this context, recently, we
have proposed the HBK binarization method. It offers a
high OCR accuracy compared to well known binarization
methods. However, HBK does not respect our paperless
real time constraint. It processes one document per 1.9
seconds, exceeding the binarization real time constraint
of 460 ms. For this, we have proposed a parallel imple-
mentation of the HBK method on the Graphic Process-
ing Unit (GPU). Our proposed CUDA implementation is
based on combining fine-grained and coarse-grained par-
allel strategies and uses efficient memory management.
According to our experiments, the GPU implementation
of HBK performs one document per 425 ms which sat-
isfy the paperless real time application constraint while
offering a high OCR accuracy using 16x16 block size.
Indeed, we have effectively avoided the communication
overhead between the CPU and the GPU thanks to the
full processing of Kmeans algorithm on GPU. In addi-
tion, our HBK GPU implementation is slightly sensitive
to noise and document contents. The performed GPU-
based comparisons of HBK to recent and well known
binarization methods show that our proposed strategy
implementation has a better performance and runs on
GPU much faster than the compared methods.
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