P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, 2000.
DOI : 10.1515/9781400830244

M. Arnst, R. Ghanem, and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, vol.229, issue.9, pp.3134-3154, 2010.
DOI : 10.1016/j.jcp.2009.12.033

URL : https://hal.archives-ouvertes.fr/hal-00684317

A. Batou and C. Soize, Stochastic modeling and identification of an uncertain computational dynamical model with random fields properties and model uncertainties, Archive of Applied Mechanics, vol.196, issue.25???28, pp.831-848, 2013.
DOI : 10.1007/s00419-012-0720-7

URL : https://hal.archives-ouvertes.fr/hal-00759467

A. Batou and C. Soize, Calculation of Lagrange Multipliers in the Construction of Maximum Entropy Distributions in High Stochastic Dimension, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, pp.431-451, 2013.
DOI : 10.1137/120901386

URL : https://hal.archives-ouvertes.fr/hal-00851201

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, vol.230, issue.6, pp.2345-2367, 2011.
DOI : 10.1016/j.jcp.2010.12.021

K. Burrage, I. Lenane, and G. Lythe, Numerical Methods for Second???Order Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.29, issue.1, pp.245-264, 2007.
DOI : 10.1137/050646032

R. Cameron and W. Martin, The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals, The Annals of Mathematics, vol.48, issue.2, pp.385-392, 1947.
DOI : 10.2307/1969178

B. Carlin and T. Louis, Bayesian Methods for Data Analysis, 2009.

P. Congdon, Bayesian Statistical Modelling, 2007.

S. Das, R. Ghanem, and J. Spall, Asymptotic Sampling Distribution for Polynomial Chaos Representation from Data: A Maximum Entropy and Fisher Information Approach, SIAM Journal on Scientific Computing, vol.30, issue.5, pp.2207-2234, 2008.
DOI : 10.1137/060652105

S. Das and R. Ghanem, A Bounded Random Matrix Approach for Stochastic Upscaling, Multiscale Modeling & Simulation, vol.8, issue.1, pp.296-325, 2009.
DOI : 10.1137/090747713

S. Das, R. Ghanem, and S. Finette, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, Journal of Computational Physics, vol.228, issue.23, pp.8726-8751, 2009.
DOI : 10.1016/j.jcp.2009.08.025

B. Debusschere, H. Najm, P. Pebay, O. Knio, R. Ghanem et al., Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.698-719, 2004.
DOI : 10.1137/S1064827503427741

C. Desceliers, R. Ghanem, and C. Soize, Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, vol.11, issue.6, pp.978-1001, 2006.
DOI : 10.1002/nme.1576

URL : https://hal.archives-ouvertes.fr/hal-00686154

C. Desceliers, C. Soize, and R. Ghanem, Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests, Computational Mechanics, vol.60, issue.5, pp.831-838, 2007.
DOI : 10.1007/s00466-006-0072-7

URL : https://hal.archives-ouvertes.fr/hal-00686150

C. Desceliers, C. Soize, S. Naili, and G. Haiat, Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range, Mechanical Systems and Signal Processing, vol.32, pp.170-177, 2012.
DOI : 10.1016/j.ymssp.2012.03.008

URL : https://hal.archives-ouvertes.fr/hal-00692871

J. Doob, Stochastic Processes, 1990.

A. Doostan, R. Ghanem, R. , and J. , Stochastic model reduction for chaos representations, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.37-40, pp.37-40, 2007.
DOI : 10.1016/j.cma.2006.10.047

A. Edelman, T. Arias, and S. St, The Geometry of Algorithms with Orthogonality Constraints, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.2, pp.303-353, 1998.
DOI : 10.1137/S0895479895290954

O. Ernst, A. Mugler, H. Starkloff, and E. Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.2, pp.317-339, 2012.
DOI : 10.1051/m2an/2011045

R. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

R. Ghanem and S. Dham, Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Transport in Porous Media, vol.32, issue.3, pp.239-262, 1998.
DOI : 10.1023/A:1006514109327

R. Ghanem and R. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, vol.217, issue.1, pp.63-81, 2006.
DOI : 10.1016/j.jcp.2006.01.037

R. Ghanem, R. Doostan, R. , and J. , A probability construction of model validation, Comput. Methods Appl. Mech. Eng, vol.197, pp.29-32, 2008.

D. Ghosh and R. Ghanem, Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions, International Journal for Numerical Methods in Engineering, vol.28, issue.2, pp.162-184, 2008.
DOI : 10.1002/nme.2066

J. Guilleminot, C. Soize, D. Kondo, and C. Binetruy, Theoretical framework and experimental procedure for modelling mesoscopic volume fraction stochastic fluctuations in fiber reinforced composites, International Journal of Solids and Structures, vol.45, issue.21, pp.5567-5583, 2008.
DOI : 10.1016/j.ijsolstr.2008.06.002

URL : https://hal.archives-ouvertes.fr/hal-00333515

J. Guilleminot, C. Soize, and D. Kondo, Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspects, Mechanics of Materials, vol.41, issue.12, pp.1309-1322, 2009.
DOI : 10.1016/j.mechmat.2009.08.004

URL : https://hal.archives-ouvertes.fr/hal-00684330

J. Guilleminot, A. Noshadravan, C. Soize, and R. Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, p.16371648, 2011.
DOI : 10.1016/j.cma.2011.01.016

URL : https://hal.archives-ouvertes.fr/hal-00684305

J. Guilleminot and C. Soize, Non-Gaussian positive-definite matrix-valued random fields with constrained eigenvalues: Application to random elasticity tensors with uncertain material symmetries, International Journal for Numerical Methods in Engineering, vol.31, issue.3, pp.1128-1151, 2011.
DOI : 10.1002/nme.3212

URL : https://hal.archives-ouvertes.fr/hal-00684290

J. Guilleminot and C. Soize, Probabilistic modeling of apparent tensors in elastostatics: A MaxEnt approach under material symmetry and stochastic boundedness constraints, Probabilistic Engineering Mechanics, vol.28, pp.118-124, 2012.
DOI : 10.1016/j.probengmech.2011.07.004

URL : https://hal.archives-ouvertes.fr/hal-00686132

J. Guilleminot, C. Soize, and R. Ghanem, Stochastic representation for anisotropic permeability tensor random fields, International Journal for Numerical and Analytical Methods in Geomechanics, vol.66, issue.13, pp.1592-1608, 2012.
DOI : 10.1002/nag.1081

URL : https://hal.archives-ouvertes.fr/hal-00724651

J. Guilleminot and C. Soize, Stochastic Model and Generator for Random Fields with Symmetry Properties: Application to the Mesoscopic Modeling of Elastic Random Media, Multiscale Modeling & Simulation, vol.11, issue.3, pp.840-870, 2013.
DOI : 10.1137/120898346

URL : https://hal.archives-ouvertes.fr/hal-00854121

J. Guilleminot, T. Le, and C. Soize, Stochastic framework for modeling the linear apparent behavior of complex materials: Application to random porous materials with interphases, Acta Mechanica Sinica, vol.340, issue.6, pp.773-782, 2013.
DOI : 10.1007/s10409-013-0101-7

URL : https://hal.archives-ouvertes.fr/hal-00923206

J. Guilleminot and C. Soize, It?? SDE--based Generator for a Class of Non-Gaussian Vector-valued Random Fields in Uncertainty Quantification, SIAM Journal on Scientific Computing, vol.36, issue.6, pp.2763-2786, 2014.
DOI : 10.1137/130948586

E. Hairer, C. Lubich, G. Wanner, and G. , Geometric Numerical Integration . Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01403326

V. Isakov, Inverse Problems for Partial Differential Equations, 2006.

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.
DOI : 10.1103/PhysRev.106.620

R. Khasminskii, Stochastic Stability of Differential Equations, 2012.

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differentials Equations, 1992.

P. Krée and C. Soize, Mathematics of Random Phenomena, 1986.
DOI : 10.1007/978-94-009-4770-2

L. Maitre, O. Knio, O. Najm, and H. , Uncertainty propagation using Wiener???Haar expansions, Journal of Computational Physics, vol.197, issue.1, pp.28-57, 2004.
DOI : 10.1016/j.jcp.2003.11.033

L. Ma??trema??tre, O. Knio, and O. , Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, 2010.

D. Lucor, C. Su, and G. Karniadakis, Generalized polynomial chaos and random oscillators, International Journal for Numerical Methods in Engineering, vol.60, issue.3, pp.571-596, 2004.
DOI : 10.1002/nme.976

Y. Marzouk and H. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, vol.228, issue.6, pp.1862-1902, 2009.
DOI : 10.1016/j.jcp.2008.11.024

H. Najm, Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics, Annual Review of Fluid Mechanics, vol.41, issue.1, pp.35-52, 2009.
DOI : 10.1146/annurev.fluid.010908.165248

A. Nouy, Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems, Archives of Computational Methods in Engineering, vol.225, issue.1, pp.403-434, 2010.
DOI : 10.1007/s11831-010-9054-1

URL : https://hal.archives-ouvertes.fr/hal-00461099

A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, European Journal of Applied Mathematics, vol.19, issue.03, pp.339-373, 2014.
DOI : 10.1023/B:ACAP.0000013855.14971.91

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations, SIAM Journal on Scientific Computing, vol.34, issue.6, pp.2917-2945, 2012.
DOI : 10.1137/11084950X

URL : https://hal.archives-ouvertes.fr/hal-00770006

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Karhunen???Lo??ve expansion revisited for vector-valued random fields: Scaling, errors and optimal basis., Journal of Computational Physics, vol.242, issue.1, pp.607-622, 2013.
DOI : 10.1016/j.jcp.2013.02.036

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, A Posteriori Error and Optimal Reduced Basis for Stochastic Processes Defined by a Finite Set of Realizations, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.745-762, 2014.
DOI : 10.1137/130905095

URL : https://hal.archives-ouvertes.fr/hal-01097139

B. Puig, F. Poirion, and C. Soize, Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms, Probabilistic Engineering Mechanics, vol.17, issue.3, pp.253-264, 2002.
DOI : 10.1016/S0266-8920(02)00010-3

URL : https://hal.archives-ouvertes.fr/hal-00686282

Y. Rozanov, Random Fields and StochasticPartial Differential Equations, 1998.

R. Serfling, Approximation Theorems of Mathematical Statistics, 1980.

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, 1994.
DOI : 10.1142/2347

URL : https://hal.archives-ouvertes.fr/hal-00770411

C. Soize, Random-field model for the elasticity tensor of anisotropic random media, Comptes Rendus M??canique, vol.332, issue.12, pp.1007-1012, 2004.
DOI : 10.1016/j.crme.2004.09.008

URL : https://hal.archives-ouvertes.fr/hal-00686196

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.395-410, 2004.
DOI : 10.1137/S1064827503424505

URL : https://hal.archives-ouvertes.fr/hal-00686211

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.1583-1611, 2008.
DOI : 10.1002/nme.2385

URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.307-323, 2008.
DOI : 10.1016/j.probengmech.2007.12.019

URL : https://hal.archives-ouvertes.fr/hal-00685154

C. Soize and R. Ghanem, Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.21-26, pp.21-26, 2009.
DOI : 10.1016/j.cma.2008.12.035

URL : https://hal.archives-ouvertes.fr/hal-00684487

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Comput. Methods Appl. Mech. Eng, vol.199, pp.33-36, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684324

C. Soize and C. Desceliers, Computational Aspects for Constructing Realizations of Polynomial Chaos in High Dimension, SIAM Journal on Scientific Computing, vol.32, issue.5, pp.2820-2831, 2010.
DOI : 10.1137/100787830

URL : https://hal.archives-ouvertes.fr/hal-00684323

C. Soize, A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45-46, pp.45-46, 2011.
DOI : 10.1016/j.cma.2011.07.005

URL : https://hal.archives-ouvertes.fr/hal-00684294

C. Soize, Stochastic Models of Uncertainties in Computational Mechanics, 2012.
DOI : 10.1061/9780784412237

URL : https://hal.archives-ouvertes.fr/hal-00749201

C. Soize, Polynomial Chaos Expansion of a Multimodal Random Vector, SIAM/ASA Journal on Uncertainty Quantification, vol.3, issue.1, pp.34-60, 2015.
DOI : 10.1137/140968495

URL : https://hal.archives-ouvertes.fr/hal-01105959

J. Spall, Introduction to Stochastic Search and Optimization, 2003.
DOI : 10.1002/0471722138

A. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, vol.19, pp.451-559, 2010.
DOI : 10.1017/S0962492910000061

Q. Ta, D. Clouteau, and R. Cottereau, Modeling of random anisotropic elastic media and impact on wave propagation, Revue europ??enne de m??canique num??rique, vol.19, issue.1-3, pp.1-2, 2010.
DOI : 10.3166/ejcm.19.241-253

URL : https://hal.archives-ouvertes.fr/hal-00709537

D. Talay, Simulation of stochastic differential systems, Probabilistic Methods in Applied Physics, pp.54-96, 1995.
DOI : 10.1007/3-540-60214-3_51

URL : https://hal.archives-ouvertes.fr/inria-00075246

D. Talay, Stochastic Hamiltonian system: exponential convergence to the invariant measure and discretization by the implicit Euler scheme, Markov Processes and Related Fields, vol.8, pp.163-198, 2002.

A. Tarantola, Inverse problem Theory and Methods for Model Parameter Estimation, 2005.
DOI : 10.1137/1.9780898717921

R. Tipireddy and R. Ghanem, Basis adaptation in homogeneous chaos spaces, Journal of Computational Physics, vol.259, pp.304-317, 2014.
DOI : 10.1016/j.jcp.2013.12.009

E. Vanmarcke, Random Fields, Analysis and Synthesis (Revised and Expanded New Edition) World Scientific, 2010.

L. Walpole, Elastic Behavior of Composite Materials: Theoretical Foundations, Adv. Appl. Mech, vol.21, pp.169-242, 1981.
DOI : 10.1016/S0065-2156(08)70332-6

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, 1997.

X. Wan and G. Karniadakis, Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures, SIAM Journal on Scientific Computing, vol.28, issue.3, pp.901-928, 2006.
DOI : 10.1137/050627630

D. Xiu and G. Karniadakis, The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.24, issue.2, pp.619-644, 2002.
DOI : 10.1137/S1064827501387826

O. Zienkiewicz and R. Taylor, The Finite Element Method For Solid And Structural Mechanics, 2005.