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Random vectors and random fields in high dimension.
Parametric model-based representation, identification
from data, and inverse problems
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Abstract

The statistical inverse problem for the experimental idieation of a non-Gauss-
ian matrix-valued random field that is the model parametex bbundary value
problem, using some partial and limited experimental detated to a model
observation, is a very difficult and challenging problem. @&mplete advanced
methodology and the associated tools are presented fanga@uch a problem
in the following framework: the random field that must be itifieed is a non-

Gaussian matrix-valued random field and is not simply avahled random field;
this non-Gaussian random field is in high stochastic dinemand is identified
in a general class of random fields; some fundamental algepraperties of

this non-Gaussian random field must be satisfied such as syymmesitiveness,
invertibility in mean square, boundedness, symmetry clapatial-correlation
lengths, etc; the available experimental data sets caynespnly to partial and
limited data for a model observation of the boundary valuwdbam.

The developments presented are mainly related to the @tgdtamework, but

the methodology is general and can be used in many areas @utational sci-

ences and engineering. The developments are organizedl@ssfo The first

part is devoted to the definition of the statistical inversabpem that has to be
solved in high stochastic dimension, and is focussed orhasiic elliptic oper-

ators such that the ones that are encountered in the bouwalasy problems of
the linear elasticity. The second one deals with the coastm of two possible
parameterized representations for a non-Gaussian posiéifinite matrix-valued
random field that models the model parameter of a boundagevaioblem. A
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parametric model-based representation is then constkuctetroducing a statis-
tical reduced model and a polynomial chaos expansion, fiitst deterministic
coefficients and after with random coefficients. This pataimenodel-based rep-
resentation is directly used for solving the statisticaknse problem. The third
part is devoted to the description of all the steps of the pulogy allowing the
statistical inverse problem to be solved in high stochastieension. These steps
are based on the identification of a prior stochastic mod¢hefNon-Gaussian
random field by using the maximum likelihood method and tleenthe identifi-
cation of a posterior stochastic model of the Non-Gaussiadom field by using
the Bayes method.The fourth part presents the constructian algebraic prior
stochastic model of the model parameter of the boundaryevatablem, for a
non-Gaussian matrix-valued random field. The generatogalizations for such
an algebraic prior stochastic model for a non-Gaussianxaetiued random field
is presented.

Key words: Random vector, Random field, Random Matrix, High dimension,
High stochastic dimension, Non-Gaussian, Non-gaussiztora field,
Representation of random fields, Polynomial chaos expan&enerator,
Maximum entropy principle, Prior model, Maximum likelihdanethod,
Bayesian method, Identification, Inverse problem, Siatisinverse problem,
Random media, Heterogeneous microstructure, Compositiala, Porous
media.

1. Introduction

The statistical inverse problem for the experimental idieation of a non-
Gaussian matrix-valued random field that is the model patemod a boundary
value problem, using some partial and limited experimedda#d related to a model
observation, is a very difficult and challenging problemeThassical methodolo-
gies that are very efficient for Gaussian random fields, cabhaaised for non-
Gaussian matrix-valued random fields in high stochastiedsion, in particular
under the assumption that only partial and limited expenitaledata are available
for the statistical inverse problem that has to be solveddentifying the non-
Gaussian random field through a boundary value problem.raans that exper-
imental data must be enriched in introducing adapted in&bitra prior stochastic
models for the non-Gaussian matrix-valued random fieldsrdleroto take into
account fundamental algebraic properties such as symppeisitiveness, invert-
ibility in mean square, boundedness, symmetry class,agairrelation lengths,



etc. The objective is then to present a complete advancedogebgy and the
associated tools for solving such a statistical inversdlpra in high stochastic
dimension and related to non-Gaussian matrix-valued rarfads.

2. Notions on the High Stochastic Dimension and on the Parartrec Model-
Based Representations for Random Fields

What is a random vector or a random field with a high stochasticdimension?
The stochastic dimensionf a random vector or a random field is an important
notion that allows for evaluating the level of complexity afstatistical inverse
problem related to the identification of a random model pa&tam(random vec-
tor, random field) of a stochastic boundary value problemiffstance, the co-
efficients of a partial differential equation) using expeental data related to a
random model observation (random variable, random ve@ondom field) of this
boundary value problem.

Let us consider a random vectdiwith values inR™v in which Ny, is an inte-
ger. The stochastic dimensiondfis not, in general, the value of integ®§,. For
instance, ifU is written asU = 7 b, in which7 is a real-valued random variable
and where is a deterministic vector given iRV, then the stochastic dimension
of U is 1 for any value of integefVy;. If U is written asU = > n; b* with
m < Ny, in whichny, ..., n, arem independent real-valued random variables
and where!, . .., b™ arem algebraically independent vectors giverRif{v, then
the stochastic dimension &fis m, andU is in high stochastic dimensioniif is
large. IfU is a second-order random vector whose covariance matriRae/i,
then the use of the principal component analysis allows ¢deced representa-
tion U™ = S 5 /A b’ of U to be constructed withn < Ny, and where
m is calculated in order that the mean-square errod of U™ is sufficiently
small. It can thus be writteb ~ U™ (in mean square). In such a reduced rep-
resentationp; > ... > \,, > 0 are the dominant eigenvalues of the covariance
matrix of U andb', ... b™ are the associated orthonormal eigenvectof®/n.
The components, ..., n,, arem centered and uncorrelated real-valued random
variables. If random vectdJ is a Gaussian random vector, then. . ., n,, arem
independent Gaussian real-valued random variables, anithj$ particular Gaus-
sian case, the stochastic dimensiorofs m. However, for the general cadd,
is a non-Gaussian random vector, and consequently, theaked random vari-
ablesn, ..., n, (that are centered and uncorrelated) are not independeatédu
statistically dependent. In such a caseis not the stochastic dimensiondf but
clearly the stochastic dimension is less or equaht(ihe equality is obtained for
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the Gaussian case). Let us assume that there exists a degtiemonlinear map-
ping Y from R?s into R™ such that the random vectgr= (7, ..., n,,) can be
written asn = Y(E,,...,Zy,) inwhich N, < m and whereg,, ..., Ey, areN,
independent real-valued random variables (for instalfcean be constructed us-
ing the polynomial chaos expansion of the second-ordeilomnetctorm). In such
a case, the stochastic dimensiorlbis less or equal tdV,. If among all the pos-
sible nonlinear mappings and all the possible integérsuch thatt < N, < m,
the mappingy and the integeN, correspond to the smallest possible valuéVpf
suchas) = Y(E4,...,Z2y,), thenN, is the stochastic dimension bf andU has
a high stochastic dimension ¥, is large.

If {u(x),x € Q} is a second-order random field indexed(y- R¢ with val-
ues inR"«, for which its cross-covariance function is square intbtg x €, then
a reduced representatiafi”) (x) = > 7; v/, b’(x) of u can be constructed us-
ing the Karhunen-Loeve expansionwgfin whichm is calculated in order that the
mean-square error af — u'™ is sufficiently small. Therefore, the explanations
given before can be applied to the random veeto& (7;,...,n,,) in order to
estimate the stochastic dimension of random field

What is a parametric model-based representation for the sttistical identifi-
cation of a random model parameter from experimental data?

In order to simply explain what is a parametric model-baggdasentation for the
statistical identification of a random model parameter fexperimental data, let
us consider the stochastic elliptic boundary value proldlmmmulated for a real-
valued random field:(x) indexed byx = (zi,...,z4) belonging to a subsé?
of RY, and which is assumed to have a unique second-order stamchakttion
u. The stochastic elliptic operator of the boundary valuebfmm is written as
-3, %{K(x)a%u(x)} in which the random field¢ = {K(x),x € Q}, in-
dexed by, with values inRR* = [0, +oo| is defined as thenodel parameteof the
boundary value problem. L&t be a randonmodel observatiothat is assumed to
be a random vector with valuesR*v, which is deduced from random fieldby
a deterministic observation operat@, such that) = O(u). Consequently, ran-
dom model observatiod can be written abl = H(K) in which’H is a determin-
istic nonlinear functional of<. For allx in €2, a representation ok is assumed
to be written ask'(x) = G(G(x)) with G(X) = Go(X) + >, 1 VA Gi(X). The
deterministic nonlinear mappingis independent at and is assumed to be from
R into R*. With the introduction of such a deterministic mappi@gfor all x
fixed in 2, the support of the probability distribution of the randoariableG(x)



is R instead ofR* for K'(x). In the reduced representation of the random field
G indexed by(2, with values inR, the quantities7y(X), A;, andG;(x) are some
real numbers. The random vectpr= (11, ..., n,,) is written asn = Y(E; [2])
inwhichZ = (=,,...,Z2y,) is a given vector-valued random variable, whate
is a deterministic nonlinear mapping representing thectted polynomial chaos
expansion ofp with respect to=, and whergz] is the real matrix of theR™-
valued coefficients of the truncated polynomial chaos egjoanof. It can then
be deduced that random model observatibcan be rewritten adl = B(ZE, [2])

in which B is a deterministic nonlinear mapping dependingd®ng and). This
last representation is defined aparametric model-based representatiohthe
random model observatidshin which the real matrixz| is the hyperparameter of
the representation. Let us assume that some experimemdal®f , . . ., uePvexr
related to random model observatibhare available. Theédentification of the
model parameters using theexperimental dataonsists in identifying the real
matrix [z] using the parametric model-based representatien B(ZE, [z]) of the
random model observation and the corresponding experahéata.

3. Brief History

Classical methods for statistical inverse problems

The problem related to the identification of a model paramgtealar, vector,
field) of a boundary value problem (BVP) (for instance, thefficients of a par-
tial differential equation) using experimental data rethto a model observation
(scalar, vector, field) of this BVP, is a problem for whichhexists a rich liter-
ature, including numerous textbooks. In general and in #terchinistic context,
there is not a unique solution because the function, whigbsitfze model param-
eter (that belongs to an admissible set) to the model obsenvd@hat belongs to
another admissible set) is not a one-to-one mapping, angegoiently, cannot be
inverted. Itis an ill-posed problem. However, such a probéan be reformulated
in terms of an optimization problem consisting in calcuigtan optimal value of
the model parameter, which minimizes a certain distanced®st the observed ex-
perimental data and the model observation that is computédive BVP and that
depends on the model parameter (see for instance [76] forexmiew concerning
the general methodologies, and [36] for some mathematsgedds related to the
inverse problems for partial differential equations). lany cases, the analysis of
such an inverse problem can have a unique solution in thesfremk of statistics,
that is to say when the model parameter is modeled by a randamtity, with
or without external noise on the model observation (obskorgput). In such a
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case, the random model observation is completely definetslprobability dis-
tribution (in finite or in infinite dimension) that is the unig transformation of
the probability distribution of the random model parameféris transformation
is defined by the functional that maps the model parametdretoniodel observa-
tion. Such a formulation is constructed for obtaining a vpelked problem that
has a unique solution in the probability theory frameworle #fer the reader to
[38] and [72] for an overview concerning the general methogies for statistical
and computational inverse problems, including generaktiequare inversion and
the maximum likelihood method [54; 67], and including theyBsian approach
[67; 9; 8; 68].

Case of a Gaussian random model parameter

A Gaussian second-order random vector is completely defipé#d second-order
moments, that is to say, by its mean vector and by its covegiamatrix. Similarly,
a Gaussian second-order random field is completely definéts byean function
and by its cross-covariance function or, if the random fisldomogeneous (sta-
tionary) and mean-square continuous, by its spectral nne4sid]. If the model
parameter is Gaussian (random vector or random field), theestatistical inverse
problem (identification of the system parameter using erpartal data related
to the model observation of the system) consists in identifyhe second-order
moments, which is relatively easy for a low or a high stodbatitnension. Con-
cerning the description of the Gaussian random fields, wex tbe reader to the
abundant existing literature (see for instance [41; 53).74]

Case for which the model parameter is a non-Gaussian secoratder random
field.

A non-Gaussian second-order random field is completely ety its system of
marginal probability distributions, which is an uncour&family of probability
distributions on sets of finite dimension, and not only bynitsan function and
its covariance function as for a Gaussian random field. Tipermxental iden-
tification of such a non-Gaussian random field then requivesritroduction of
an adapted representation in order to be in capability teesthle statistical in-
verse problem. For any non-Gaussian second-order randtim die important
type of representation is based on the use of the polynoingasexpansion [7],
for which the development and the use in computational seeand engineering
have been pioneered by Roger Ghanem in 1990-1991 [21]. Amesificonstruc-
tion is proposed, which consists in combining a Karhunegyeoexpansion (that
allows using a statistical reduced model) with a polynormieos expansion of
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the statistical reduced model. This type of constructiaithan been re-analyzed
and used for solving boundary value problems using the sdegiproach (see for
instance [52; 13; 18; 24; 25; 46; 43; 47]. The polynomial chexpansion as also
been extended for an arbitrary probability measure [78;442;57; 77; 20] and
for sparse representation [5]. New algorithms have beepgsexd for obtaining
a robust computation of realizations of high degrees patyiabchaos [63; 49].
This type of representation has also been extended for #eeafahe polynomial
chaos expansion with random coefficients [61], for the qoicsibn of a basis
adaptation in homogeneous chaos spaces [73], and for amagyhinultimodal
multidimensional probability distribution [66].

Finite-dimension approximation of the BVP and finite-dimension parameter-
ization of the random field.

Afinite-dimension parameterized representation of the@anssian random field
must be constructed in order to be able to solve the statisticerse problem. In
addition and in general, an explicit solution of the BVP aainipe obtained and
consequently, a finite-dimension approximation of the stuof the BVP must
also be constructed (using for instance the finite elemethaakg, accompanied
by a convergence analysis. The combination of these twooappations leads
us to introduce a non-Gaussian second-order random vgaetith values inR™,
which is the finite-dimension parameterized representaiiche random model
parameter of the system. Consequently, the statisticarsevproblem consists
in identifying the non-Gaussian second-order random vegtbat is completely
defined by its probability distribution dR". Nevertheless, ag corresponds to a
finite-dimension parameterization of the finite discrdimaof a random field, it
IS necessary to construct, first, a good mathematical reptaigon of the random
field and of its finite-dimension parameterization, befoegf@grming its spatial
discretization.

Parameterization of the non-Gaussian second-order randonaector 1.
Since it is assumed that the experimental data that areablaifor the statisti-
cal inverse problem are partial and limited, the paramstagstics must be used
instead of the nonparametric statistics that cannot be. u$ad implies that a
parameterized representation of the non-Gaussian sexded+random vecton
must be constructed. There are two main methods for cotistguguch a param-
eterization.

() The first one is a direct approach that consists in constrg a algebraic
prior representation of the non-Gaussian probabilityrilistion of  in using the
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maximum entropy principle (MaxEnt) [37; 65] under the coastts defined by
the available information. A general computational metilogy, for the prob-
lems in high stochastic dimension, is proposed in [59; 4] snslynthesized in
Section 'MaxEnt for Constructing the pdf of a Random Vetifr” Random Ma-
trix Models and Nonparametric Method for Uncertainty Quéoation” in part 11
of the presenHandbook on Uncertainty Quantificatiorbuch a construction al-
lows a low-dimension hyperparameterization to be obtafoethe non-Gaussian
probability distribution onR™. Therefore, the parametric statistics [76; 54; 67]
can be used for solving the statistical inverse problemisting in identifying
the vector-valued hyperparameter of the probability thigtron constructed with
the MaxEnt. In counter part, the "distance” between the nteskexperimental
data and the random model observation cannot be, in genedalced to zero. A
residual error exists. If there are a sufficient amount ofeeixpental data, this
error can be reduced by identifying a posterior probabdistribution ofn using
the Bayesian approach [67; 9; 8].

(i) The second method is an indirect approach which caomsmsintroduc-
ing a representation = Y(E) in which Y is an unknown deterministic nonlin-
ear (measurable) mapping froR1Ys into R™ (which has to be constructed) and
whereZ is a given random vector with values V¢, for which its probability
distribution is known (for instance a normalized Gaussamom vector). The
statistical inverse problem then consists in identifying honlinear mappingy/.
Consequently, a parameterization of mappMgnust be introduced in order to
use parametric statistics, and there are two main appreache
(ii.1) The first one corresponds to the truncated polynormios expansion of
second-order random vectgrwith respect to the normalized Gaussian measure.
In this caseE is a normalized Gaussian random vector and the orthogohal po
nomials are the normalized Hermite polynomials [21]). Ifeathitrary probability
measure is used instead of the normalized Gaussian metsn&, is a normal-
ized random vector with this arbitrary probability distrtiton, and the orthogonal
polynomials are constructed with respect to this arbit@nbability distribution
[78; 57; 77; 49; 66]. Such a polynomial expansion defines arpaterization,
noted asy(E, [z]), of mapping), in which the real matriXz]? represents the
R™-valued coefficients of the polynomial chaos expansiof),cnd the identifi-
cation ofY is replaced by the identification of the hyperparaméter
(ii.2) The second approach consists in introducing an akgelprior representa-
tionn = Y(E,s) in which sis a vector-valued hyperparameter that has a small
dimension, and which must be identified using parametritissitss [76; 54; 67].
Similarly to the method (i) presented before, if there is figant amount of ex-
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perimental data, the prior model can be updated in congtguatposterior prob-
ability distribution using the Bayesian approach [23; 45].

Statistical inverse problem for identifying a non-Gaussia random field as a
model parameter of a BVP, using polynomial chaos expansion

The use of the polynomial chaos expansion for constructipgrameterized rep-
resentation of a non-Gaussian random field that models tliehparameter of a
boundary value problem, in order to identify it using a stital inverse method
has been initialized in [14; 15], used in [26], and revisited12]. In [10], the
construction of the probability model of the random coeéints of the polyno-
mial chaos expansion is proposed by using the asymptotiplgagnGaussian
distribution constructed with the Fisher information mgtand used for model
validation [24]. This work has been developed for statedtioverse problems
that are rather in low stochastic dimension, and new ingredihave been intro-
duced in [62; 49; 65] for statistical inverse problems infhggochastic dimension.
In using the reduced chaos decomposition with random cefte of random
fields [61], a Bayesian approach for identifying the posteprobability model of
the random coefficients of the polynomial chaos expansidhefodel parame-
ter of the BVP has been proposed in [2] for the low stochasitiedsion and in
[64] for the high stochastic dimension. The experimentahtdication of a non-
Gaussian positive matrix-valued random field in high ststhalimension, using
partial and limited experimental data for a model obseovatelated to the ran-
dom solution of a stochastic BVP, is a difficult problem treduires both adapted
representations and methodologies [62; 64; 65; 48].

Algebraic prior stochastic models of the model parameters oBVP.

In the methodology devoted to the identification of a non%$3&an random field
in high stochastic dimension, an important step is the coasbn of a parameter-
ized representation for which the number of hyperpararadierthe parameter-
ized representation) is generally very large due to the kigbhastic dimension.
In the framework of hypotheses for which only partial andiled data are avail-
able, such an identification is difficult if there is no infation concerning the
region of the admissible set (in high dimension), in whicé @ptimal values of
these hyperparameters must be searched. The optimizatioess, related to the
statistical inverse problem, requires to localize theargn which the algorithms
must search for an optimal value. The method consists ingarsly identifying
the "center” of such a region, which corresponds to the vafube hyperparame-
ters of the parameterized representation using a set afagahs generated with
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an algebraic prior stochastic model (APSM) that is spedificamnstructed on the
basis of the available information associated with all tteghamatical properties
of the non-Gaussian random field that has to be identifieds ARSM allows

for enriching the information in order to overcome the la¢lexperimental data
(since only partial experimental data are assumed to béabl&). This is par-

ticularly crucial for the identification of the non-Gaussimatrix-valued random
field encountered, for instance, in three-dimensionakliredasticity, for which

some works have been performed in order to introduce the gtmnthe pos-

itiveness and invertibility properties [56; 58; 60], theumoledness [28; 30], a
capability of the prior stochastic model to exhibit a cajpigbio generate simul-

taneously anisotropic statistical fluctuations and soragssical fluctuations in a
symmetry class such as isotropic, cubic, transverselyaput, orthotropic, etc.

[69; 29; 31; 32; 34], and to develop the corresponding ge¢oesaf realizations

[58; 62; 29; 32; 34].

4. Overview

A complete methodology and the associated tools are pexsdot the ex-
perimental identification of a non-Gaussian matrix-valtettom field that is the
model parameter of a boundary value problem, using someiexpetal data re-
lated to a model observation. The difficulties of the stmigdtinverse problem
that are presented are due to the following chosen framethaticorresponds to
many practical situations in computational sciences agtheering:

« A non-Gaussian matrix-valued random field must be identified simply a
real-valued random field.

« The non-Gaussian random field that has to be identified isgh iiochastic
dimension and must be identified in a general class of randeldsfi

« Some fundamental algebraic properties of the non-Gausaiaaiom field
must be satisfied such as symmetry, positiveness, invéxtibi mean square,
boundedness, symmetry class, spatial-correlation Isngth.

« The available experimental data sets correspond only tilapand limited
data for a model observation of the boundary value problem.

For such a statistical inverse problem, the above framewapkes the use of
an adapted and advanced methodology. The developmenenddereinafter
are mainly related to the elasticity framework, but the rodtiiogy is general
and can be used in many areas of computational sciences gireeering. The
developments are organized as follows.
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« The first one is devoted to the definition of the statisticaénse problem that
has to be solved in high stochastic dimension, and is fodussstochastic elliptic
operators such as the ones that are encountered in the bpwatlee problems of
the linear elasticity.

« The second one deals with the construction of two possikianpeterized
representations for a non-Gaussian positive-definiteixaeétued random field
that models the model parameter of a boundary value probl&nparametric
model-based representation is then constructed in intinda statistical reduced
model and a polynomial chaos expansion, first with detestimcoefficients and
after with random coefficients. This parametric model-dasspresentation is
directly used for solving the statistical inverse problem.

« The third part is devoted to the description of all the stdgh@methodology
allowing the statistical inverse problem to be solved irhhsgpchastic dimension.
This methodology corresponds to the work initialized in][62tended in [64]
for constructing a posterior stochastic model using theeBemn approach, and
revisited in [49; 48].

« The fourth part presents the construction of an algebramr gtochastic
model of the model parameter of the boundary value problena hon-Gaussian
matrix-valued random field. This construction is based @ works [58; 60;
30; 32], and reuses the formalism and the results introducdte developments
presented in SectionNonparametric Stochastic Model For Constitutive Equa-
tion in Linear Elasticity of ” Random Matrix Models and Nonparametric Method
for Uncertainty Quantificatiohin part Il of the presenHandbook on Uncertainty
Quantification The generator of realizations for such an algebraic ptomtsastic
model for a non-Gaussian matrix-valued random field is presk[58; 62; 32].

5. Notations

The following algebraic notations are used.

Euclidean space
Letx = (x4, ...,z,) be avector irR". The Euclidean spad®” is equipped with

the usual inner produet x,y >= 37 | x;y; and the associated norix|| =<
X, X>12,
Sets of matrices

M, .»(R) be the set of all thén x m) real matrices,

M, (R) = M,, ,(R) the square matrices,
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M?(R) be the set of all the symmetrie x n) real matrices,
MY (R) be the set of all the upper triangularx n) real matrices with positive
diagonal entries,
M (R) be the set of all the positive-definite symmetricx n) real matrices.
The ensembles of real matrices are such that
M (R) € M5(R) C M, (R).

Kronecker symbol, unit matrix, and indicator function .

The Kronecker symbol is denoted by, and is such thai;, = 0if j # k and
d;; = 1. The unit (or identity) matrix inVL,(R) is denoted by/,] and is such
that[Z,];, = J;,. LetS be any subset of any skf, possibly withS = M. The
indicator functionM — 1s(M) defined on seM is such thatis(M) = 1 if

MeScM,andig(M) =0if M €S.

Norms and usual operators

(i) The determinant of a matri)z] in M, (R) is denoted bylet[G], and its trace
is denoted byr(G] =37, Gy;.

(ii) The transpose of a matri)G] in M, ,,(R) is denoted byG]”, which is in
M, »(R).

(iii) The operator norm of a matri)z] in M, ,,(R) is denoted by|G|| = sup <,
| [G] x| for all xin R™, which is such thal [G] x || < ||G]| ||x]| for all x in R™.
(iv) For [G] and[H] in M, ,,(R), we denotex[G], [H]>= tr{[G]"[H]}and the
Frobenius norm (or Hilbert-Schmidt normiy|| » of [G] is such that|G||2 =<
[G], [GI>=t{[G]"[G]} = >0, "1, G5, which is such thall G| < [|G|l» <
V|G

(v) The gradientV,u(x) at pointx in R" of the real-valued functior — wu(Xx),
is the vector inR"™ such that{ V,u(x)}; = du(x)/0z; for j = 1,...,n. The
divergencedivy(u(x)) at pointx in R™ of the R"-valued functionx — u(x) =
(u1(X), - - -, un(Xx)), is the real number such thait(u(x)) = >_7_, du;(x)/0x;.

Order relation in the set of all the positive-definite real marices.
Let [G] and[H] be two matrices iV} (R). The notationG] > [H] means that
the matrix[G] — [H] belongs tdV[} (R).

Probability space, mathematical expectation, space of seied-order random

vectors
The mathematical expectation relative to a probabilitycsp®, 7, P) is denoted
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by E. The space of all the second-order random variables, defin¢@, 7, P),
with values inR", equipped with the inner produ¢tX,Y)) = E{< X,Y >}
and with the associated noriX ||| = ((X, X))'/2, is a Hilbert space denoted by
L2,

6. Setting the Statistical Inverse Problem to Be Solved in Hjh Stochastic
Dimension

Let d be an integer such that< d < 3. Letn be another finite integer such
thatn > 1, and let/V, be an integer such that< N, < n. Let() be a bounded
open domain oRR?, with generic poink = (z1,. .., z4), with boundaryo(?, and
let beQ) = Q U ON).

Stochastic elliptic operator and boundary value problem

Let [K] = {[K(X)],x € Q} be a non-Gaussian random field, in high stochastic
dimension, defined on a probability spa¢g, 7, P), indexed bys2, with values

in Mt (R). It should be noted that random fidld] being with values iM! (R),
random field[K| cannot be a Gaussian field. Such a random fi€ldallows for
constructing the coefficients of a given stochastic elfigiperatoru — Dy(u)

that applies to the random fieldx) = (u;1(X), ..., un, (X)), indexed by, with
values inR"«,

The boundary value problem that is formulateduininvolves the stochastic
elliptic operatorDy, and some Dirichlet and Neumann boundary conditions are
given onof that is written as the union of three part8) = I'yUT' UT;. On
the partl’y, a Dirichlet condition is given. The palt corresponds to the part of
the boundary on which there is a zero Neumann condition andtoch exper-
imental data are available for. On the parf’;, a Neumann condition is given.
The boundary value problems, involving such a stochadiptieloperatorDy, are
encountered in many problems of computational sciencegagitheering.

m Examples of stochastic elliptic operators
(i) For a three-dimensional anisotropic diffusion probjehe stochastic ellip-
tic differential operatofDy relative to the density. of the diffusing medium, is
written as
{De(u)}(x) = —div([K(X)] Viu(x)) . x€Q, (1)

inwhichd =n = 3andN, = 1, and wherg [K(x)], x € Q} is theM (R)-valued
random field of the medium.
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(i) For the wave propagation inside a three-dimensionatioan heteroge-
neous anisotropic linear elastic medium, we héve 3, n = 6, N, = 3, and the
stochastic elliptic differential operatdp, relative to the displacement fieldis
written as

{Dx(u)}(x) = =[DJT[KX)[DJu(x) , x€Q, (@)

in which {[K(x)],x € Q} is the M} (R)-valued elasticity random field of the
medium deduced from the fourth-order tensor-valued eigsstield {C, ., (X), x €
Q} by the following equation,

C1111 C1122 C1133 \/§C1112 \/§C1113 \/§C1123
C2211 C2222 C2233 \/5 C2212 \/5 C2213 \/5 C2223
[K] _ C3311 C3322 C3333 \/5 C3312 \/5 C3313 \/5 C3323

\/§C1211 \/§C1222 \/§C1233 2 C1212 2 C1213 2 C1223 ’
\/5 C1311 \/5 C1322 \/5 C1333 2 C1312 2 C1313 2 C1323
_\/i C2311 \/5 C2322 \/5 C2333 2 C2312 2 C2313 2 C2323

3)
in which [D,] is the differential operator,
0 0 0
D] = MW= M@= [ p®— 4
(D] = MO+ MO+ MO @
where[M V], [M®] and[M®)] are the(n x N,,) real matrices defined by
1 0 07 [0 0 07 [0 0 07
0 0 0 0 1 0 0 0 O
0 0 0 0 0 0 0 0 1
[M(l)] =]l L o - [M(2)]: L 0 o> [M(3)]: 0O 0 O
V2 V2
1 1
0 O 7 0 O (1) 7 (1J 0
0 0 0] [0 0 ] 0 5 0]
(5)

m Example of a time-independent stochastic boundary valakl@m in linear
elasticity.

Let bed = 3, n = 6, and N, = 3. Let us consider the boundary value
problem related to the linear elastostatic deformation thifree-dimensional ran-
dom heterogeneous anisotropic linear elastic medium guegmlomains?, for
which an experimental displacement fieltf?‘ is measured oir. Letn(x) =
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(n1(X), n2(X), n3(x)) be the unit normal t@s2, exterior to2. The stochastic
boundary value problem is written as

Dy(u)=0 in Q, (6)

in which the stochastic operat@, is defined by Eq. (2), where the Dirichlet
condition is
u=0 on Iy, (7)

and where the Neumann condition is written as
Ma(0)]” [K(X][DxJu(x) = 0onT, and = fr, on Ty,  (8)

in which [M(X)] = [MM]ny(X) + [MP] ny(X) + [M®] ns(x), and wherdr, is

a given surface force field appliedIg. The boundary value problem defined by
Egs. (6) to (8) is typically the one for which the random fig]K (x), x € Q} has to
be identified by solving a statistical inverse problem inhhggpochastic dimension
with the partial and limited experimental deta®?*, / = 1, ... Vexp}.

Stochastic finite element approximation of the stochasticdundary value prob-
lem.

Let us assume that the weak formulation of the stochastindemy value problem
involving stochastic elliptic operatdpy, is discretized by using the finite element
method. LetZ = {x!,... ,x"} C Q be the finite subset d® made up of all the
integrating points in the numerical integration formulaethe finite elements [79]
used in the mesh @?. LetU = (Uy, ..., Uy, ) be the random model observation
with values inR"v, constituted of théV;; observed degrees of freedom for which
there are available experimental data (correspondingrteestegrees of freedom
of the nodal values aifi at all the nodes ifi’). The random observation vector

is the unique deterministic nonlinear transformation effinite family of theN,,

dependent random matricfs(x!)], . .., [K(x"»)] such that

U :h([K(Xl)L"'v[K(XNp)])? 9)
in which
((KY,.. ., [K™)]) = h((K"],...,[K")) : M}(R)x...xM}!(R) — R,

(10)
is a deterministic nonlinear transformation that is cangtd by solving the dis-
cretized boundary value problem.
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Experimental data sets

It is assumed thate,, experimental data sets are available for the random obser-
vation vectorU. Each experimental data set corresponds to partial expatah
data (only some degrees of freedom of the nodal values ofispéadement field
onI'" are observed) with a limited lengthv, is relatively small). Thes@ey,
experimental data sets correspond to measuremems,axperimental config-
urations associated with the same boundary value problemcdnfiguration?,
with ¢ = 1,..., vex, the observation vector (corresponding.idor the compu-
tational model) is denoted hy??¢ and belongs t®v. Therefore, the available
data are made up of the,, vectorsu®P! ... u®®Prer jn RNv, |tis assumed that
uerl . u®Prexr correspond t@ey, independent realizations of a random vector
U®® defined on a probability spag®®*®, 7 PP) and corresponding to ran-
dom observation vectads of the stochastic computational model (random vectors
U®® andU are not defined on the same probability space). It should tezlribat

the experimental data do not correspond to a field measutémen but only to

a field measurement on the parof the boundary)() of domain{2. This is the
reason why the experimental data are called "partial”.

Statistical inverse problem to be solved

The problem that must be solved is the identification of n@ussian matrix-
valued random fieldK], using the partial and limited experimental dafP!,
..., usPrex relative to the random observation vectbof the stochastic compu-
tational model and defined by Eq. (9).

7. Parametric Model-Based Representation for the Model Paameters and
Model Observations

As explained in the previous paragraph entitl®diat is a parametric model-
based representation for the statistical identificatiomaandom model parame-
ter from experimental dataa parametric model-based representation B(E,

[z]) must be constructed in order to be able to solve the statisticerse problem
allowing random model parametgf] to be identified using the experimental data
sets. For that, it is needed to introduce

« arepresentation of the non-Gaussian positive-definiteixaedlued random
field [K] that is expressed as a transformatipof a non-Gaussian second-order
symmetric matrix-valued random fiel&], such that for allx in ©, [K(x)] =
G([G(x)]), whereg is independent ok (in fact, two types of representation are
proposed),
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« atruncated reduced representation of random fig]d
. a parameterized representation for non-Gaussian randizhiKig
. the parametric model-based representation B(E, [z]).

Introduction a class of lower-bounded random fields for[K] and normaliza-
tion.
In order to normalize random fielK], a deterministic functiorx — [K(x)]
from Q into M} (R) is introduced such that, for all in Q2 and for allz in R,
<[K(X)]z,z> > kolz|* and< [K(X)]z,z > < k,||z||* in whichk, andk,
are positive real constants, independenko$uch that) < £, < k&, < +o0c.
These two technical inequalities correspond to the mathieahdypotheses that
are required for obtaining a uniform deterministic ellgptiperator whose coeffi-
cientis[K].

We introduce the following class of non-Gaussian positleéinite matrix-
valued random field$K ], which admit a positive-definite matrix-valued lower
bound, defined by

1

= 1+€[L(X)]T {elln] + Ko} L], vxeQ,  (11)

[KX)]

in which ¢ > 0 is any fixed positive real number, whefg(x)] is the upper
triangular (n x n) real matrix such thaik (x)] = [L(x)]* [L(x)], and where
[Ko] = {[Ko(X)],x € 2} is any random field indexed 1§y, with values inVL;} (R).
Equation (11) can be inverted,

[Ko(x)] = (1 +)[LO)] " KX LX)] " —e[] , YxeQ. (12

We have the following important properties for the classrofi

« Random field[K] is effectively with values inV[} (R). For all x fixed in
2, the lower bound is the matrix belonging M (R) defined by[K.(X)] =
= [K£(x)], and for all random matriK,(x)] with values inM (R), [K (x)] de-
fined by Eq. (12), is a random matrix with values in a subs@IpfRR) such that
[K(x)] > [K.(x)] almost surely.

. For all integerp > 1, {[K(x)]"!,x € Q} is ap-order random field with
values inM (R), i.e, for all x in ©, E{||[K(x)]7'||%} < +oc and, in particular,
is a second-order random field.

. If [Ko] is a second-order random fielicg., for all x in Q, E{||Ko(X)||%} <
+00, then[K] is a second-order random fielcg,, for all x in Q, E{||K(x)||%} <
+00.
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« If function [K] is chosen as the mean function of random figd, i.e.
[K(x)] = E{[K(x)]} for all x, thenE{[Ky(X)]} is equal to[Z,], what shows that
random fieldK,] is normalized.

« The class of random fields defined by Eq. (11) yields a unifamstestic
elliptic operatorD, that allows for studying the existence and uniqueness of a
second-order random solution of a stochastic boundaryevalablem involving
Dy.

Construction of the nonlinear transformation G.
Two types of representation of random figll,| is proposed hereinafter: An
"exponential-type representation” and a "square-typeasgntation”.

m Exponential-type representation of random figdg)).
For all second-order random fiel@] = {[G(x)],x € Q} with values inM?(R),
which is not assumed to be Gaussian, the random [lejfdefined by

[Ko(X¥)] = expy([G(X)]) , Vxe, (13)

in which exp,,; denotes the exponential of symmetric square real matrises,
random field with values iV (R). If [K,] is any random field with values in
M (R), then there exists a unique random fig&] with values inM? (R) such
that

[GX)] = logm([Ko(¥)]) , Vxe, (14)

in which logy, is the reciprocity mapping ofxp,,, which is defined oM’ (R)
with values inM$ (R), but in general, random fiel@] is not a second-order ran-
dom field. If [G] is any second-order random field with valuesNiy (R), in
general, the random fiel&K ] = exp,,;(|G]) is not a second-order random field.
Nevertheless, it can be proved that[Kfy] and [K,]~! are second-order random
fields with values inlMI (R), then there exists a second-order random fi&ld
with values inM¥ (R) such thafK o] = expy([G]).

m Square-type representation of random figdg)].
Letg — h(g; a) be a given function fronR in R*, depending on one positive real
parameter.. For all fixeda, it is assumed that:
(i) h(.;a) is a strictly monotonically increasing function d which means
thath(g;a) <
h(g';a)if —oo < g < ¢’ < 400;
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(ii) there are real numbefs< ¢, < 400 and0 < ¢, < 400, such that, for all

ginR, we
haveh(g;a) < ¢, + ¢, g°.

The introduced hypotheses imply that, for all> 0, g — h(g;a) is a one-to-
one mapping fronR onto R™ and consequently, the reciprocity mapping;—
h~Y(v;a), is a strictly monotonically increasing function froRi~ ontoR. The
square type representation of random figdd], indexed by, with values in
M (R), is defined by

Ko =L(GX)]) , wvxeQ, (15)

in which [G] = {[G(x)],x € Q} is a second-order random field with values in
M?(R) and wherelG] — L([G]) is a measurable mapping froM?(R) into

M (R) which is defined as follows. The matrp¥,] = L([G]) € M (R) is
written as[K,] = [L] [L] in which [L] belongs toMY (R), which is written as
[L] = L([G]) where[G] — L([G]) is the measurable mapping fra#i® (R) into
MY (R) defined by

LG = [Glje » 1< i <k <n, [L(G])];; =\ W[Gljji05) , 1< <n,

(16)
inwhichay, ..., a, are positive real numbers. [K,] is any random field indexed
by © with values inM(R), then there exists a unique random fi¢@®| with
values inM*(R) such that

G =L ([Ko(x)]) , WxeQ, (17)

in which L~ is the reciprocity function of., from M (R) into M (R), which is
explicitly defined as follows. Forall < j < k < n,

GOk = [L7HLGIDx > [CX)ky = [G(X)]n » (18)

in which [L] — £7!([L]) is the unique reciprocity mapping & (due to the
existence of — h~1(v; a)) defined oMY (R), and wheréL (x)] follows from the
Cholesky factorization of random matiii ,(x)] = [L (x)]? [L (x)] (see Eqg. (15)).
Example of functiorh. An example of such a function is given if\h alge-
braic prior stochastic mode]K***"] for the case of anisotropic statistical fluc-
tuations of the present Section. Nevertheless, for the sake oftglane de-
tail it hereinafter. Leth = h*™ be the functionh*”s" defined in [58] as fol-
lows. Let bes = d/4/n+1 in which ¢ is a parameter such that < ¢ <
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v/(n+1)/(n — 1) and which allows the statistical fluctuations level to be-con
trolled. Let ben; = 1/(25%)+(1—5)/2 > 0andh***(g; a) = 2 s* F1.' (Fw (g/s))
with Fyy (w) = [ = exp(—3w?) dw andFy, ' (u) = - the reciprocal function
such thatfr, (v) = u with Fr, () = ] %a) to=le~tdtandl'(a) = [," e et

dt. Then, for allj = 1,...,n, it can be proved thaj — h**"(g; a;) is a strictly
monotonically increasing function frointoR* and there are positive real num-
bersc;, andc,; such that, for aly in R, we haveh**"(g; a;) < cq, +cn g2. In addi-
tion, it can easily be seen that the reciprocity functioniigten ash**"*(v; a) =

s Pyt (Fr, (0/(25%)).

m Construction of the transformatigh and its inverse; .
For theexponential-type representatidghe transformatiog is defined by Eq. (11)
with Eq. (13), and its inversgé ! is defined by Eq. (14) with Eq. (12), and are such
that, for allx in €2,

B 1
C1+4e

[KX)] = G([G(X)]) : (LT {e[ 1a] + expy ([GOD} L(X)],  (19)

[G(X)] = G ([K(X)]) := logy{ (1+€)[L(x)] " [K(X)] [L(X)] " —€ [L.] } . (20)
For thesquare-type representatipthe transformatiory is defined by Eq. (11)
with Eg. (15), and its inversg—! is defined by Eq. (17) with Eg. (12), and are
such that, for alk in €2,

K] = G(1G(X))) = —— L))" {e[ 1) + [£(GHNI” [L(GX} (L),

1+e¢
(21)
[G(x)] =G~ ([KX)]) ==L { (1+e) L))" [KX)I[LX)] ™ —e[l] }. (22)
Let M'*(R) be the subset d¥f (R), constituted of all the positive-definite ma-

trices[ K| such that, for alk in €2, the matrix[K] — [K.(X)] > 0. Transformation
G mapsM? (R) into M/*(R) C M;F(R), andG ! mapsM*(R) into M5 (R).

Truncated reduced representation of second-order random &éld [G] and its
polynomial chaos expansion

Two versions of the nonlinear transformati@rirom M (R) into M} (R) are de-
fined by Egs. (19) and (21). For the statistical inverse aoh[G]| is chosen in
the class of the second-order random field indexef? byith values inM> (R), is
reduced using its truncated Karhunen-Loéve decompasitizvhich the random
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coordinates are represented using a truncated polynoraigd<tan chaos. Conse-
guently, the approximatioiG(m’N’Ng)] of the non-Gaussian second-order random
field [G] is introduced such that

(G NND ()] = [Go(¥)] + > VN [Gi(X)] i, (23)
=1
N
ni=y vyl U,E), (24)
j=1
in which
e Ay > ... >\, > 0 are the dominant eigenvalues ad]|, ..., [G,,] are

the corresponding orthonormal eigenfunctions of the aganae operator Cqyof
random fieldG]. The kernel of this covariance operator is the tensor-vhtuess-
covariance functiol's (x, X') of [G], which is assumed to be square integrable on
Q x Q,

« {¥;}), only depends on a random vecter = (Zi,...,Zy,) of N, <
m independent normalized Gaussian random variahlgs. ., =y, defined on
probability spacéo, T, P),

« {¥;}}, are the polynomial Gaussian chaos that are writte 4&) =
Do, (E1) X... X Py, (En,), iInwhichj is the index associated with the multi-index
o = (ay,...,ay,) inNY, the degree ol ;(E) isa; +. . .+ayn, < N, and where
®,, (Zx) is the normalized univariate Hermite polynomial Bn Consequently,
{W;}, are composed of the normalized multivariate Hermite patyiads such
that £{¥;(8) ¥, (8)} = 0,

« the constant Hermite polynomié(Z) = 1 with index; = 0 (corresponding
to the zero multi-indexo, . . ., 0)) is not included in Eq. (24). Consequently, the
integerN is such thatV = (N, + N,)! /(N4! N,!) — 1 whereN, is the maximum
degree of the normalized multivariate Hermite polynomials

. y/ are the coefficients that are supposed to ve¥ly) , 4/ v/, = d;», which
ensures that the random variablgs,} ' |, are uncorrelated centered random vari-
ables with unit variance, which means tha§n;n; } = 0;,. The relation between
the coefficients can be rewritten as

[2]" [2] = [Im] (25)
in which [z] € My,,,,(R) is such that

=y , 1<i<m , 1<j<N. (26)
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Introducing the random vectong = (ny,...,n,) and ¥(E) = (V(B),...,
Un(E)), Eg. (24) can be rewritten as

n=[" ¥E). (27)
Equation (25) means that] belongs to the compact Stiefel manifold

Vi (RY) = {[2] € My,m(R); [2]" [¢] = L]} - (28)

Parameterization of compact Stiefel manifoldV,,, (R")

A parametrization o¥,,,(R") defined by Eq. (28) is given hereinafter. For[aj]
fixed inV,,,(RY), letT;,,; be the tangent vector space¥g, (R") at[z,]. The ob-
jective is to construct a mapping| — [z] = R, ([w]) from i, ontoV,, (RY)
such thatR ., ([0]) = [20], and such that, ifw] belongs to a subset df., this
subset being centered jm] = [0] and having a sufficiently small diameter, then
2] = Ry ([w]) belongs to a subset &f,,(RY), approximatively centered in
[z] = [20]. There are several possibilities for constructing suchrarpaterization
(see for instance [19; 1]). For instance, a parameterizaiam be constructed as
described in [48] using the geometry of algorithms with ogbnality constraints
[19]. Hereinafter, we present the construction proposddl]ifor which the algo-
rithm has a small complexity with respect to the other pdegibssibilities. Let
us assume thaV > m that is generally the case. Fpg] fixed in V,,,(RY), the
mappingR ., is defined by

2] = Rzo)([w]) := ar([zo] + o [w]]) , [w] € Tiyp, (29)

in which gr is the mapping that corresponds to the QR econsiag/decomposi-
tion of matrix [zo] + o [w], for which only the firstn columns of matriXg| such
that[z] + o [w] = [¢] [r] are computed and such tHal" [z] = [I,,]. In Eq. (29),
o allows the diameter of the subsetXf, centered irj0] to be controlled.

Parameterized representation for non-gaussian random fiel [K ]|

Let {[G™NNo)(x)],x € Q) be defined by Egs. (23) and (24), and ¢ebe de-
fined by Eq. (19) for thexponential-type representatioand by Eq. (21) for the
square-type representatiomhe corresponding parameterized representation for
non-Gaussian positive-definite matrix-valued random fiéd(x)], x € Q} is de-
noted by{[K ™":No) (x)], x € Q} and is rewritten, for alk in 2, as

[KmNNa) ()] = NN (x B, [2]) (30)

22



in which (x, £, [z]) — KmNNa(x € [2]) is a deterministic mapping defined on
Q x RNs x V,,,(RY) with values inML (R) such that

KN, €, [2]) = G([Go(9] + 3 VNGO ®(€))) . (3D

Parametric model-based representation of random observain model U
From Egs. (9) and (30), the parametric model-based repessamn of random
model observatioJ with values inR™v, corresponding to the representation
{[K™N:No) (%] x € Q} of random field{[K (x)],x € Q}, is denoted byJ™~-No)
and is written as

U(m,N,Ng) _ B(m,N,Ng)(E, [Z]) ’ (32)

inwhich (¢, [2]) — B™N:No) (¢ [2]) is a deterministic mapping defined &A% x
V,.(RY) with values inR™ such that

BN (g, [2]) = (KM WXL ), K (g [2])) . (33)

For N, fixed, the sequencU™™-"o)1 v of R¥v-valued random variables
converge tdJ in L3, .

8. Methodology for Solving the Statistical Inverse Problenmin High Stochas-
tic Dimension

A general methodology is presented for solving the statibinverse problem
defined in the previous section entitlegétting the Statistical Inverse Problem to
Be Solved in High Stochastic Dimensioifhe steps of the identification proce-
dure are defined hereinafter.

Step 1: Introduction of a family {[K***"(x;s)],x € Q} of algebraic prior
stochastic models (APSM) for non-Gaussian random fiel¢K].

The first step consists in introducing a fam{IjK*"*"(x; s)], x € Q} of algebraic
prior stochastic models (APSM) for the non-Gaussian se@rddr random field
(K], defined on©, T, P), indexed by, with values inM} (R), which has been
introduced in the previous paragraph entitl&gtdchastic elliptic operator and
boundary value problein This family depends on an unknown hyperparamster
belonging to an admissible sétthat is a subset &, for which the dimension,
N,, is assumed to be relatively small, while the stochasticedision of K*™"| is
high. For instances can be made up of the mean function, a matrix-valued lower
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bound, some spatial-correlation lengths, some parametetsolling the statisti-
cal fluctuations and the shape of the tensor-valued comrlainction. Forsfixed
in C,, the probability distributioni(e. the system of marginal probability distri-
butions) of random fieldK***"] and the corresponding generator of independent
realizations are assumed to have been constructed andjcemsly, are assumed
to be known.

An example of such a construction is explicitly given in tlexinsection enti-
tled "Construction of a Family of Algebraic Prior Stochastic Mtsle

As it has been explained in the previous paragraph enti#dgiebraic prior
stochastic models of the model parameters of ByPSection "Brief History’,
Step 1 is a fundamental step of the methodology. The reabdéagpdo correctly
solve the statistical inverse problem in high stochastieatision is directly re-
lated to the pertinence and to the quality of the construée8M that allows
for enriching the information in order to overcome the la¢lexperimental data
(only partial experimental data are assumed to be avajlal3ech a construc-
tion must be carried out using the MaxEnt principle of Infatran Theory, under
the constraints defined by the available information sucthasymmetries, the
positiveness, the invertibility in mean square, the bodnéss, the capability of
the APSM to exhibit simultaneously anisotropic statidtftectuations and some
statistical fluctuations in a given symmetry class such atsapic, cubic, trans-
versely isotropic, orthotropic, etc. In addition, the esponding generators of
realizations must be developed. For the MaxEnt principtetae construction of
generators, we refer the reader to SectiBaridom Matrix Models and nonpara-
metric Method for Uncertainty Quantificatidm part 1l of the presenHandbook
on Uncertainty Quantificatian

Step 2: Identification of an optimal algebraic prior stochagic model (OAPSM)
for non-Gaussian random field[K].

The second step consists in identifying an optimal vattién C, of hyperparame-
tersusing experimental data set¥®!, ... u®Pver relative to the random model
observatiory of the stochastic computational model, which is writtekirtg into
account Eqg. (9), as

U = h([K*M(x;9)],. .., [K*¥SM(xMr; g)]) . (34)

The calculation o8t in C, can be carried out by using the maximum likelihood
method:

Vexp

pt _ expl.
P! = arg max ; log pu(U™*; ) , (35)
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in which py (U®®¢; s) is the value, iru = u®®‘, of the probability density function
pu(u;s) of the random vectot defined by Eq. (34) and depending eanThe
optimal algebraic prior mod€gl[K****"(x)],x € Q} = {[K*™M(x; M), x € Q}
is then obtained. Using the generator of realizations ofoyiemal APSM, v,
independent realizatiorj& V)], . . ., [K*.)] can be computed such that, for=
1,...,v andd, € O, the deterministic fieldK “)] := {[K“(x)],x € Q} is such
that

K] = {[K™(x; 0,)], x € Q. (36)

These realizations can be generated at paihts ., x"» (or at any other points),
with v, as large as it is desired without inducing a significant cotafpenal cost.

Step 3: Choice of an adapted representation for non-Gaussmrandom field
[K] and optimal algebraic prior stochastic model for non-Gaus&n random
field [G].
For a fixed choice of the type of representation for randond fiKl given by
Eq. (19) (exponential type) or (21) (square type), the apoading optimal alge-
braic prior model [G**"*"(x)], x € Q} of random field{[G(x)], x € Q} is written
as

[GOAPSM(X>] — g—l([KOAPSM(X)]) 7 VX € Q’ (37)

inwhichG~! is defined by Eqg. (20) (exponential type) or by Eq. (22) (sqtpe).

It is assumed that random fie[&“*"*"] is a second-order random field. From
the v, independent realization& V], .. ., [K“«)] of random field K **""] (see
Eq. (36)), it can be deduced thg independent realizatiorj&/(V], . . ., [G()]

of random field G****] such that,

GOX)) =G HKOX)]) , WeQ , (=1,... . (38)

Step 4: Construction of a truncated reduced representatiorof second-order
random field [G**"*"].

Thevy, independent realization€V], . . ., [G“«)] of random fieldG****"] (com-
puted with Eq. (38)) are used to calculate, for random fieltd"*"|, an estimation,
[Gy], of the mean function and an estimation, Geww, of the covariance operator
whose kernel is the tensor-valued cross-covariance fumc€tgowsu(x, X') that is
assumed to be square integrablefbx €. The firstm eigenvalues\; > ... >

Am and the corresponding orthonormal eigenfuncti@rg, . . ., [G,,] of covari-
ance operator Cv»sv are then computed. For a given convergence tolerance,
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the optimal value ofn is calculated, and the truncated reduced representation
{[G™M(™)(x)],x € Q} of the second-order random figfdG****"(x)], x € Q} is
written (see Eg. (23)) as

(G0 (x)] = [Go(X)] + Y VNG ™, ¥x e Q. (39)
=1

Using the, independent realization€V], . . ., [G*x)] of random field G|
calculated with Eq. (38 independent realizationg?), ..., n*«u) of the ran-
dom vectornosV = (pPAPsM L noPsM) are calculated, foir = 1,...,m and for

g: 17---7VKL,by
7o =1 / < [GOX)] = [Go(X)], [Gi(x] > dx. (40)

Vi Ja

Step 5: Construction of a truncated polynomial chaos expansn of n°****and
representation of random field [K %M.

Using independent realizationg !, ..., n®) of random vectorn®®s" (see
Eq. (40)), this step consists in constructing the approtiona;®"®°{N,, N,) =
(M2 Ny, N,), . .., 1<% Ny, N,)) of n®* using Eq. (27), for which the matrix
2] in My, (R) of the coefficients verifieg|” [2] = [I,,.],

,r’OAPSM ~ ’r]ChaoiNd, Ng) ’ ,r’chaOS(Nd7 Ng) — [Z]T \II(E), (41)
in which the integerV is defined by
N = Ih(Nd, Ng) = (Nd + Ng)! /(Nd! Ng!) -1, (42)

where the integelV, is the maximum degree of the normalized multivariate Her-
mite polynomials andV, the dimension of random vect&. In Eq. (41)), the
symbol "~" means that the mean-square convergence is reached;fand vV,
(with N, < m) sufficiently large.

m Identification of an optimal valug, (N4, N,)] of [z] for a fixed value ofN,
and V.
For a fixed value ofV; and N, such thatV, > 1 and1 < N, < m, the identifica-
tion of [2] is performed using the maximum likelihood method. The li&glihood
function is written as
VKL

L([2]) =) _ log pyenaogn, v,y (M5 [2]) (43)

(=1

26



and the optimal valug(N,, N,)] of [2] is given by

[20(Na, Ng)] = arg e L([z]), (44)

in which 'V, (RY) is defined by Eq. (28).

(i) For [2] fixed inV,,,(RY), the probability density functio@— p,cnaog;, n,)(€; [2])
of random variablen®®YN,, N,) is estimated by the multidimensional kernel
density estimation method using...sindependent realizationg®h2sb) ,
nehacsehaod of random vectom®@°Y N,, N,), which are such thayhaes?) =
2T U (E®) inwhichE®, ... E(ehaod arer,,.sindependent realizations &.

(i) For the high-dimension casége. for m x N very large, the optimization
problem defined by Eq. (44) must be solved with adapted anast@bgorithms:

. The first one is required for generating the independenizagainsy ;(2®) of
VU,(E) in preserving the orthogonality condition for any high \eduwf N, and
Ny. An efficient algorithm is presented hereinafter.

« The second one requires an advanced algorithm to optimezgitis for solv-
ing the high-dimension optimization problem defined by Eet)( the constraint
[2]7[z] = [I,,] being automatically and exactly satisfied as describeddh [6

m Efficient algorithm for generating realizations of the nivdtriate polynomial
chaos in high dimension and for an arbitrary probability nseee
Let T(E) = (¥,(E),...,¥x(E)) be theR"-valued random vector in which
{W;(E)}L, are the normalized multivariate Hermite polynomials. Thgeotive
is to compute théN X .09 real matrix[¥] = [¥(EW) ... U (EFehaod)],

\1;1(5(1)) o q;l(g(VchaoQ)
0] = : . : , (45)
\I/N(E(l)) o \I{N(E(Vchaog)
of the vgaosindependent realization® (E(1)), ..., W(Erehaod) in preserving the
orthogonality properties
lim (W] [O]" = [In]. (46)

Vchaos? 1+ Vchaos

It should be noted that the algorithm, which is used for the€san chao¥ ;(E) =
Doy (E1) X ... X gy (En,) for j = 1,..., N, can also be used for an arbitrary

non separable probability distributipg (£) d¢ on RYs without any modification,
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but in such a case, the multivariate polynomigls ()}, which verify the or-
thogonality propertyE{¥;(E) ¥;/(E)} = [e~, ¥;(€) ;r(£) p=(§) d€ = 655,
are not written as a tensorial product of univariate polyradsn(we have not
Ui(E) = @a,(E1) X ... X Dy (En,)). It has been proved in [63] that, for the
usual probability measure, the use of the explicit algebi@mula (constructed
with a symbolic Toolbox) or the use of the computational resnce relation with
respect to the degree, induces important numerical noideranorthogonality
property is lost. In addition, if a global orthogonalizatiowas done to correct this
loss of orthogonality, then the independence of the ret@iza would be lost. A
robust computational method has been proposed in [63; 4Pidserve the or-
thogonality properties and the independence of the réaliza The two main
steps are the following.

(i) Using a generator of independent realizations=bivhose probability dis-
tribution is p=(€) d¢, the realizationsM;(EW), ..., M, ;(Eeha0d) of the mul-
tivariate monomials\;(Z) = Z]' x ... x 2y are computed, in which =
1,..., N is the index associated with the multi-indgk, . . ., jn, ). Let M(E) =
(M1(B),..., Mxn(E)) be theR"-valued random variable and I&t/] be the
(N X venao9 real matrix such that

M1(E(1)) . Ml(E(Vchaog)
(M] = [M(EWD) ... M(EVehaod)] = : . :
MN(E(l)) . MN(E(VchaOQ)

(47)

(i) An orthogonalization of the realizations of the mulinate monomials is car-
ried out using an algorithm (that is different from the Gr&chmidt orthogo-
nalization algorithm, which is not stable in high dimengidased on the fact
that: (a) the matriX¥], defined by Eq. (45), can be written 8] = [A][M]
in which [4] is an invertible(N x N) real matrix and wherg\/| is defined by
Eq. (47), and (b) the matrikR] = E{M(E) M(E)"} is written as[R] =
1m0 ﬁs [M] [M]T = [A]7[A]~T. The algorithm is summarized as fol-
lows:

« Computing matriX)/] and then R | ~ Vciaos [M] [M]T for venaes sufficiently
high.

« Computing[A]~7 that corresponds to the Cholesky decompositioh/of.

« Computing the lower triangular matrj{].

« Computing[¥] = [A] [M].

m Identification of truncation parameters; and V.
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The quantification of the mean-square convergencg®8P{ N, N,) = [20(Ny,
N,)]" ¥ () towardsn®** with respect taV, and N,, in which [2o(Ng, N,)] is
given by Eq. (44), is carried out using tlié-log error function introduced in
[62], which allows for measuring the errors of the small eswf the probability
density function (the tails of the pdf).

(i) For a fixed value ofV; < m andN,, and fori =1,...,m:

o« Lete — pyowsu(e) be the pdf of random variablg?**", which is estimated
with the one-dimensional kernel density estimation metigidg the independent
realizationsy", . .., n*k.) of the random vecton®*s",

e Lete = penaogy, v, (€5 [20(Na, Ny)]) be the pdf of random variabhg"ay N,
N,), whichis estimated with the one-dimensional kernel dgresitimation method

using venaos independent realizationg 2% (N, N,), . .., pthaodehaos (N, N,),
of random vecton"°{ N,, N, ), which are such thatCha"s“ (Na, Ny) = [20(Ng,
N ®(E®) inwhich2W ... Elehaod areyy,,sindependent realizations &.

« The L!-log error is introduced as described in [62]:

err;(Ng, Ng) = | logg pyoresu(e) — logy pnghaOS(Nd,Nq)(€§ [20(Na, Ny)])| de

Bl (48)
in which BI; is a bounded interval of the real line, which is defined as tippert
of the one-dimensional kernel density estimator of randamable,**", and
which is then adapted to independent realizatigfls . . ., n*t) of oM,

(ii) For random vectom®@°YN,, N,), the L'-log error function is denoted by
ern Ny, Ny) and is defined by

err(N,, Z err;(Ny, N,) . (49)

(iii) The optimal valuesV;™ and N of the truncation parameterg; and N, are
determined for minimizing the error function &Ny, NV,) in taking into account
the admissible set for the values§f and N, as described in [49]. Lely, v, be
the admissible set for the values anng, which is defined by

Cnyv, = {(Nay Ny) € N* | Ny <m, (Ng+ Ny /(Ng Ny) —1>m}.

It should be noted the more the values/¢f and N, are high, the bigger is the
maitrix [zo(N4, Ny)|, and thus, the more difficult it is to perform the numerical
identification. Rather than directly minimizing error fuiom err(N,, IV,), it is
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more accurate to search for the optimal valued/ghind N, that minimize the di-
mension of the projection basisy,;+N,)! /(N4! N,!). For a given error threshold
¢, we then introduce the admissible Setsuch that

C. = {(Ng, Ny) € Cnyon, | €M(Ng, Ng) < €},

and the optimal valued’;" and N;* are given as the solution of the optimization
problem,
(VP Ng) = axg | min | (Na N /(NN N = BN N3

m Changing the notation
Until the end of Step 5 and in Step 6 and Step 7, in order to siyrthle notations,
NP, NP, N, and|[zo(Ng™, N2™)] are simply rewritten ad/y, Ny, N, and|z).

m Representation of random fielld ****"].
It can then be deduced that the optimal representdfilg**s"(™-N:No) (x)] x €
Q} of random field{ [K****"(x)], x € Q2} is written as

[K oS MmN No) ()] — JCmNNo) (¢ B [z0]) | Y € Q) (50)

in which C(™N-No) (x & [2]) is defined by Eq. (30) withV, = N;™, N, = N2,
and[z] = [zo(Ng", N2P).

Step 6: Identification of the prior stochastic model[K*"] of [K] in the general
class of the non-Gaussian random fields

This step consists in identifying the prior stochastic modi&P™ (x)],x € Q}

of {[K(x)],x € Q}, using the maximum likelihood method and the experimental
data seta®P!, ... u®Prew relative to the random model observationof the
stochastic computational model (see Eq. (9)) and using #nanpetric model-
based representation of random observation mddske Eq. (32)). We thus have
to identify the valugzP"] in V,,,(RN*") of [z] such that

vexp

PO = arg  max 10g pym.vvg) (USR5 [2]) (51)
2] [£]€Vim (BN) ; v ( )

in which pom,~,vg) (USPE [2]) is the value, inu = u®P, of the pdfpjem,v.~y) (U; [2])
of the random vectad ™"-4) given (see Eq. (32)) by

UmNNe) — gmN.No) (5 [2]) (52)
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where (€, [z]) — B™NNo (¢ [2]) is the deterministic mapping from™s x
V,.(RY) into RM defined by Eq. (33) with Eq. (31) in whicld,(x)], \;, and
[G;(x)], fori =1, ..., m, are the quantities computed in Step 4.
(i) For [2] fixed inv, (RN) pdfu — pomvg) (U; [2]) Of random variablé) (™-Ns)
is estimated by the multidimensional kernel densny ediionanethod usiN@cpaos
independent realizatior®, . . ., E(chacd of =,
(i) Let us assume thalv > m is generally the case. The parameterization
(2] = Rz ((w]) defined by Eq. (29) is used for exploring, with a random search
algorithm, the subset o¥,,(R”), centered inz] := [20(Na, N,)] € V,u(RY)
computed in Step 5. The optimization problem defined by Eb). iGreplaced by
[zprior] — R[ZO]([wprior]) with
vexp
prior] __ pr.

[wP™] = arg nax ;logmmwg s Rizo ([w])) - (53)
For solving the high-dimension optimization problem ddiily Eq. (53), a ran-
dom search algorithm is used for whi¢h| is modeled by a random matrix
W] = Pro}T[zo]([A]) with values inTj.,;, which is the projection off}.; of a ran-
dom matrix|[A] with values inMy ,,,(R) whose entries are independent normal-
ized Gaussian real-valued random variabiles E{[A];;} = 0 andE{[A]};} = 1.
The positive parameter introduced in Eq. (29) allows for controlling the "di-
ameter” of the subset (centered [in]) that is explored by the random search
algorithm.
(i) The representation of the prior stochastic mogid P (™~:Na) (x)] x € Q}
of random field{[K (x)],x € 2} is given by Egs. (30) and (31) that are rewritten
as

[KPrior(mN.No) ()] = jCmNNa) (x & [PTO]) | Wx e Q, (54)
in which [zP" is given by Eq. (51) and wher&(™":Na) (x & [2P°1) is defined
by Eq.(31) with[z] = [2P"°1],

Step 7: Identification of a posterior stochastic mode[K P*j of [K].

(i) A posterior stochastic modé[KP*s{(x)], x € Q} of random field{[K (x)],x €
(2} can be constructed using the Bayesian method. In such avrmarkethe
coefficients[z] of the polynomial chaos expansiafi"@{N,, N,) = [2]T ¥(E)
(see Eqg. (41)) are modeled by a random md#ix(see [61]) as proposed in [64]
and consequently;| is modeled by & ,,(R")-valued random variablgZ]. The
prior model[ZP" of [Z] is chosen as

[ZP) = R ([WPT) (55)
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in which R .. is the mapping defined by Eq. (29), whér€™'] has been cal-
culated in Step 6, and whef@/P™'] = Proj, ([AP"") is a random matrix

[anor] .
with values inTi.eo, which is the projection offi.»~« of a random matrixAP"']
with values inMy ,,,(R) whose entries are independent normalized Gaussian real-
valued random variables.e. E{[A];;} = 0 and E{[A]};,} = 1. For a suffi-

ciently small value ofs, the statistical fluctuations of tHé,, (RV™™)-valued ran-
dom matrix [ZP"*] are approximatively centered aroufd™]. The Bayesian
update allows the posterior distribution of the random g ] with values

in Tp.m0 to be estimated using the stochastic solutidf™-"s) = Bm-V-No) (=,

R .o ([WP™)) and the experimental data s&tP!, . .. u®®Pree,

(i) The representation of the posterior stochastic mddgPost™»:No) (x)], x €
2} of random field{ [K (x)], x € Q} is given by Egs. (30) and (31) that are rewrit-
ten as

[KPOStm NN (5)] = JCOmNN) (x B R ((WPST)) . YX€Q,  (56)

in which NN is defined by Eq. (31).

(iii) Once the probability distribution ofWP°} has been estimated by Step 7,
v« independent realizations can be calculated for the randeloh[GP°(x)] =
[Go(X)]+327, /@i [Gi(x)] nP°in whichnPst = [ZP°SY” W (=) and wherdZP*s| =

R oo ([WPST). The identification procedure can then be restarted from &te-
placing[G****"] by [GP°SY.

9. Construction of a Family of Algebraic Prior Stochastic Models

We present an explicit construction of a fam{IjK***"(x; s)], x € Q} of alge-
braic prior stochastic models for the non-Gaussian secoder random fieldK ]
indexed byt2, with values inML" (R), which has been introduced in Step 1 of Sec-
tion "Methodology for Solving the Statistical Inverse Probleriigh Stochastic
Dimensiori. This family depends on a hyperparametdrelonging to the admis-
sible seC, that is a subset d&”s, for which the dimension)V,, is assumed to be
relatively small, while the stochastic dimension[kf**"] is high. Fors fixed in
Cs, We give a construction of the random fiélk""*"] and the corresponding gener-
ator of its realizations. In order to simplify the notatioasvill be omitted as long
as no confusion is possible. The formalism and the resuktsemted in Section
"Nonparametric Stochastic Model for Constitutive Equaiimhinear Elasticity
of "Random Matrix Models and Nonparametric Method for UncetaiQuan-
tification” in part 1l of the presenHandbook on Uncertainty Quantificatipare
reused. Two prior algebraic stochastic modKI&™®"| are presented hereinafter.
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m The first one is the algebraic prior stochastic mo&l*"| for the non-
Gaussian positive-definite matrix-valued random fjlithat exhibits anisotropic
statistical fluctuations (initially introduced in [56; 58fnd for which there is a
parameterization with a maximum dfx n(n + 1)/2 spatial-correlation lengths
and for which a positive-definite lower bound is given [60].68n extension of
this model can be found in [28] for the case for which sometp@sdefinite lower
and upper bounds are introduced as constraints.

m The second one is the algebraic prior stochastic mgd&r"] described in
[32; 34] for the non-Gaussian positive-definite matrixeead random fieldK]
that exhibits (i) dominant statistical fluctuations in a sgetiry classV[Y"(R) C
M (R) of dimensionN (isotropic, cubic, transversal isotropic, tetragonag-tr
onal, orthotropic, monoclinic) for which there is a paraemgation withd N
spatial-correlation lengths, (ii) anisotropic statiatiluctuations for which there
is a parameterization with a maximum dfx n(n + 1)/2 spatial-correlation
lengths, and (iii) a positive-definite lower bound.

9.1. General Properties of the non-Gaussian Random Hi€]dwith a Lower
Bound

Let {[K(x)],x € Q} be a non-Gaussian random defined on the probability
spacg®, T, P), indexed by € R¢ with 1 < d < 3, with values inM| (R) with
n = 6, homogeneous oR¢, and of second-ordef;{||[K (x)]||%} < +oc for all x
in Q. Let[K] € MI(R) be its mean value that is independenkghomogeneous
random field) and lefC,] € M (R) be its positive-definite lower bound that is
also assumed to be independenkoFor allx in €2,

(K] = E{KX))} . [KE]-[C] >0 as. (57)

9.2. Algebraic prior stochastic model for the case of anigoiC statistical fluc-
tuations

We consider the case for which the random field exhibits ardp statistical
fluctuations.

Introduction of an adapted representation

The prior stochastic mod€[K*"*"(x)],x € Q} of the random field [K (x)],x €
Q}, is defined on(©, T, P), is indexed by2 C R?, is with values inM (R), is
homogeneous oR¢, and is a second-order random field that is written as

[K=(x)] = [C + [C]'2 [Go()] [C]'?, Wx € Q, (58)
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where [C]'/? is the square root of the matr{K’] in M7 (R), independent ok,
defined by
[C] = [K] - [C] € M;(R). (59)

In Eq. (58),{[Go(x)],x € R?} is a random field defined oi®, 7, P), indexed by
R, with values inM (R), homogeneous oR¢, second-order such that, for all
X in R,

E{[Go()]} = [Iu] » [Go(X)] >0 a.s. (60)
It can then be deduced that, for alin €2,

E{RT™MO} =K, K] =[G >0 as. (61)

Construction of random field [G,] and its generator of realizations

m Random fields{;; as the stochastic germs of the random fi].
Random field{[Gy(x)],x € R4} is constructed as a nonlinear transformation of
n(n 4+ 1)/2 independent second-order, centered, homogeneous, &auasid
normalized random field&/{;;(x),x € R}, <;<x<,, defined on probability space
(©,T,P), indexed byR?, with values inR, and named thetochastic germsf
the non-Gaussian random figld,|. We then have

E{Up(x)} =0 , E{Up(x)’}=1. (62)

Consequently, the random field#/;;(x),x € R?},<;<1<, are completely and
uniquely defined by the(n + 1)/2 autocorrelation function$ = (¢, ...,(s) —
Ry, (¢) = E{Ujr(x + ) U;r(x)} from R? into R, such thatR,, (0) = 1. The
spatial-correlation lengths*, . .., L7* of random field{4;.(x), x € R?} are de-
fined by

+oo
Lg‘f:/ |Ryy (0, Cas - 0)]dCa , a=1,...d, (63)
0

and are generally chosen as parameters for the paramateriza
Example of parameterization for autocorrelation functip,, . The autocorrela-
tion function (corresponding to a minimal parameterizatis written as

Rujk (C) = pj1k<C1) XX pilk(Cd) ) (64)
in which, foralla = 1, ..., d, pi*(0) = 1, and for all¢, # 0,
P (Ca) = A(LLF)? /(w2 C3) sin®(mCa/ (2L7)) (65)
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whereL}", ... [’F are positive real numbers. Each random fiellg is mean-
square continuous oR“ and its power spectral density function definedRsh
has a compact suppoft /L), w /L] x ... x [-n/L* 7/ L¥]. Such a model
hasdn(n +1)/2 real parameterSL’*, .. ., L7"}1<,<x<, that represent the spatial-
correlation lengths of the stochastic ger{dg,(x), x € R} <;<x<,, because

+o0
/0 R (0r- o 0)] dCa) = L (66)

m Defining an adapted family of functions for the nonlineangérmation
Let {u — h(u;a)}.>0 be the adapted family of functions froRinto 0, +o0],
in which « is a positive real number, such thdt = h(U;a) is a gamma ran-
dom variable with parameterwhile I/ is a normalized Gaussian random variable
(E{U} = 0 andE{U?} = 1). Consequently, for all in R, we have

h(u;a) = Fil(Fu(u)) , (67)

in whichu — Fy(u) = [ \/%eﬂ’?/? dv is the cumulative distribution func-
tion of the normalized Gaussian random varialdleThe functionp — Fy.'(p),
from ]0, 1] into |0, 4o, is the reciprocal function of the cumulative distribu-
tion functiony — Fr,(y) = [ ﬁ t*~te~tdt of the gamma random variable
I, with parametem, in which I'(a) is the gamma function defined BYa) =

[t et dt

m Defining the random field [Gy(x)],x € R?} and its generator of realiza-
tions
For allx fixed inR¢, the available information is defined by Eq. (60)) and by the
constrain E{log(det[Gy(X)])}| < 400, which isintroduced in order that the zero
matrix be a repulsive value for the random maf®g(x)]. The use of the maxi-
mum entropy principle under the constraints defined by tadable information
leads to taking the random matrjg,(x)] in ensemble SEG defined in Section
"Ensemble S of Positive-Definite Random Matrices With a Unit Mean Value
of ”"Random Matrix Models and Nonparametric Method for UncertiaQuantifi-
cationi’ in part Il of the presenHandbook on Uncertainty Quantificatiofiaking
into account the algebraic representation of any randomixrialonging to en-
semble S, the spatial-correlation structure of random figR}] is then intro-
duced in replacing the Gaussian random variablgdy the Gaussian real-valued
random fields{¢/;;.(x),x € R?} defined above, for which the spatial-correlation
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the random field{[Gy(x)],x € R}, defined on probability spad®, T, P), in-
dexed byR?, with values inM ! (R) is constructed as follows:

(i) Let {U;r(x),x € R} <<, be then(n + 1)/2 independent random fields
introduced above. Consequently, foraih R,

E{Up(x)} =0 , E{Upx)?*}=1 , 1<j<k<n. (68)

(i) Let ¢ be the real number, independentxosuch that

0<d<+/(n+1)/(n+5) < 1. (69)

The parameted allows for controlling the statistical fluctuations (dispien) of
the random fieldG,).
(iii) For all x fixed in R?, the random matri%G,(x)] is written as

[Go(x)] = (LI [L(X)], (70)

in which [L (x)] is the upper(n x n) real triangular random matrix defined as
follows:
o Forl < j <k < n, then(n + 1)/2 random fields{[L (x)],x,x € Q} are
independent.
« Forj < k, the real-valued random fieldL (x)];x, X € 2} is defined by
[L(X)]jx = onU;r(X) in which o, is such that,, = §/v/n + 1.
« Forj = k, the positive-valued random fieldL (x)],;, x € Q} is defined by
IL(X)];; = on /2 h(U;;(X),a;) inwhicha; = (n+1)/(26%) + (1 — j)/2.
(iv) The representation of random fiel@,| defined by Eq. (70) allows for com-
puting realizations of the family of dependent random neasi{ [Gy(x')], ...,
[Go(x")]} in whichx!,... x"» are N, given points in(, which are expressed
using the realizations di/;;.(x'), . .., U;x(x"?) }1<j<r<n that are simulated using
either the representation adapted to a large valué,pbr another one adapted to
a small or moderate value of, (see [58]).

m A few basic properties of random fiel@,].
The random field{[G,(x)], x € Q}, defined on(©, T, P), indexed byR<, with
values inM; (R), is a homogeneous, second-order, and mean-square carginuo
random field. For alk in R?,

E{[IGo(X)I[x} < +oo ,  E{[Go(X)]} = [L,]. (71)
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It can be proved that the introduced dispersion parameteesmonds to the fol-
lowing definition

1/2
o= {LEtlG] - (LI} 72)

which shows that
E{]|Go(x) [[3} = n(6* +1), (73)
in which ¢ is independent ok. For all x fixed in R?, the probability density

function with respect to the measutéG = 2""~/* T[,_._, . dG}; of random
matrix [Gy(X)] is independent of and is written as

Do) (C1) = Ly e (1G1) % Cisy (et [G]) 55 e {— (D [GJ} ,

202
(74)
whereCg, is the positive constant of normalization. For alfixed in R¢, the
random variabled[Gy(x)];x, 1 < j < k < 6} are mutually dependent. In
addition, the system of the marginal probability distribns of random field
{[Go(x)],x € Q} is completely defined and is not Gaussian. There exists a posi
tive constant; independent ok, but depending on, such that for alk in R,

E{[[[Go(x)]"[I"} < be < +o0. (75)

Since[Gy(x)] is a random matrix with values iR (R), then[Gy(x)]~! exists
(almost surely). However, since almost sure convergenes dot imply mean-
square convergence, Eq. (75) cannot simply be deduced? Eef2 U 92 be the
closure of the bounded s@t We then have
E{(sup || [GoX)]'[)*} =& < +o0, (76)
XeN

in which sup is the supremum and whefe < ¢; < +oo is a finite positive
constant.

Definition of the hyperparameter s
The hyperparameter € C, C RY: of the APSM{[K***"(x; s)],x € Q} that has
been constructed for the anisotropic statistical fluctunej is constituted of:

« the reshaping ofC,] € M (R) (the lower bound) anf] € M (R) (the
mean value),

« thedn(n + 1)/2 positive real numberg,L}", ..., [’*}, <1<, (the spatial-
correlation lengths, for the parameterization given ingkample) and (the dis-
persion) such that < § < \/(n+1)/(n +5).
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9.3. Algebraic prior stochastic model for the case of domtrsatistical fluctua-
tions in a symmetry class with some anisotropic statisficatuations

We now consider the case for which the random field exhibitsidant statis-
tical fluctuations in a symmetry class and some anisotrdptcstical fluctuations.

Positive-definite matrices belonging to a symmetry class
A given symmetry class is defined by a sulgEY™(R) of M} (R) such that any
matrix [M] belonging taM »™(R) is written as

N
(M]=>"m; [EP™ . m=(m,....,my) €ECn CRY | [E7 € MJ(R),
j=1

(77)
inwhich{[E>",j = 1,..., N} is the matrix basis afL2™(R) (Walpole’s tensor
basis [75] in the framework of the elasticity theory), andenthe admissible
subset,, of R" is defined by

N
Cn={meRY | > my[E" € M (R)}. (78)
j=1
It should be noted that matricég,”", ..., [Ey"] are symmetric but are not pos-

itive definite. For the usual material symmetry classes pthssible values oV
are the following:2 for isotropic,3 for cubic, 5 for transversely isotropid or 7
for tetragonalg or 7 for trigonal,9 for orthotropic,13 for monoclinic, and21 for
anisotropic. The following properties are proved (see B3):

(i) If [M] and[M’] belong toM>™(R), then for alla andb in R, a [M] + b [M’] €
MM™(R), and

[M][M'] € MP™R) ,  [M]T'eMPM(R) . [M]V2eMPMR). (79)

(i) Any matrix [N] belonging taV[»™(R) can be written as

N =epu(V]) . V= 3w [BPT . y= (o) €RY, (80)

in which expy, is the exponential of symmetric real matrices. It should bed
that matrix[\] is a symmetric real matrix but does not belong\i’™(R) (be-
causey is in RY and not inC,, and therefore[\/] is not positive definite).
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(iif) From Eqgs. (77) and (80), it can be deduced that
N N
expu(Y_yi [E™) = Y mi(y) [EP7 , VyeRY, (81)
j=1 j=1

inwhichm(y) = (mi(y), ..., mn(y)) belongs t&m ) that is defined by Eq. (78).
Let [€] be the matrix inM3 (R) such thatl],; =< [E], [E"]) > and let
F(y) = (Fi(y), ..., Fn(y)) be the vector irRY such that

Fi(y) =<<eXpM(Z yi [E7), [E)>

j=1
For ally fixed inRY, m(y) is the unique solution ifiny, of the linear system,

[Elm(y) = F(y). (82)

It should be noted that, in the purely computational framdtioat is proposed in
the previous sectionMethodology for Solving the Statistical Inverse Problem in
High Stochastic Dimensidnan explicit calculation otF(y) is not required. For
each numerical value of vectgy vectorm(y) is computed by solving the linear
equation defined by Eq. (82) in whicR(y) is numerically calculated.

Introduction of the matrices [C], [S], and [A] related to the mean value of the
matrix-valued random field.
Let [C] be the matrix ilVLT (R), independent of, representing the mean value of
the random matrixC(x)] = [K(X)] — [C/]. From Eqg. (57), it can then be deduced
that

C] = [K] - [C/] € M (R). (83)

Let [A] be the deterministic matrix iR ¥™(R), independent af, representing the
projection of the mean matri] on the symmetry clasel¥™(R),

[A] = P([C]) € MP™(R), (84)

in which [C] is defined by Eq. (83) and whefe¥™is the projection operator from
M!(R) ontoM2™(R).

(i) For a random field with values in a given symmetry claswit < 21 (there
are no anisotropic statistical fluctuations), the matriéésand|[C;] belong to the
symmetry class and consequenfty] must belong taV[®™(R), and thus]A] is
equal to[C].
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(ii) If the class of symmetry is anisotropic (thds = 21), thenM»™(IR) coincides
with Mt (R) and again|4] is equal to the mean matrjg’] that belongs t&/1 7 (R).
(iii) In general, for a given symmetry class witfi < 21, and due to the presence
of anisotropic statistical fluctuations, the mean valt¢ of the random matrix
[C(x)] = [K(X)] = [C/] belongs taM[} (R) but does not belong tHI¥™(R). For
this case, an invertible deterministic x n) real matrix[S] is introduced such that

[C] = [S]" [A][S].- (85)

The construction ofS] is performed as follows. L€tLo] and[L 4] be the upper
triangular real matrices with positive diagonal entriesitBng from the Cholesky
factorization of matrice§”| and[A4],

[C] = [L] [Le] o [A] = [La]" [La]. (86)
Therefore, the matrixS] is defined by

[S] = [La] ™" [Le].- (87)

It should be noted that for cases (i) and (ii) above, Eq. (86 thatS| = [7,,].

Introduction of an adapted representation for the random fidd.
The prior stochastic modélK*™*"(x)],x € Q} of the second-order random field
{[K(x)],x € 2}, indexed by2 C R?, with values inM ' (R), is written as

[KP=00)] = [C] + [S]TIAM)]? [Go ()] A2 [S] . vxeQ.  (88)

in which the deterministi¢n x n) real matrix[S] is defined by Eg. (85), and
where{[Gy(x)], x € Q} and{[A(x)],x € Q} are random fields indexed B/ and
homogeneous oR“. Consequently, the random fie[¢K**"(x)], x € Q} that is
indexed by, is the restriction t&2 ¢ R¢ of a homogeneous random field.

m Anisotropic statistical fluctuations described {5, (x)], x € R?}.
The random field [Gy(X)], x € R4} models the anisotropic statistical fluctuations.
This random field and its generator of realizations are caotd in the previous
paragraph Construction of random fielG,| and its generator of realizatiofis
of Section "Algebraic prior stochastic model for the case of anisotaxiatistical
fluctuation$ (see Eq. (70)). The random fiel|{G,(x)],x € Q} is defined on
the probability spacéo, T, P), is indexed byR?, with values inM (R), is non-
Gaussian, homogeneous, second-order, and mean-squgineioan onR?,
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« For allx in R?, the mean value of random matfi&,(x)] is matrix[/,,] (see
Eq. (71)).

« The level of the anisotropic statistical fluctuations istcolked by the disper-
sion parametef (independent ok) such that) < § < \/(n+1)/(n+5) (see
Eq. (72)).

« The hyperparametey;, of random fieldG,] is constituted of the dispersion
parametes and of the spatial-correlation length&?”, ... L7F}, i<, that are
positive real numbers (see Eqg. (63)).

m Statistical fluctuations in the given symmetry class descrby{[A(x)],x €
R4}
The random field [A(x)], x € R?} models the statistical fluctuations belonging to
the given symmetry clasel?Y™(R). This random field, defined on the probability
spacg©’, T', P'), is statistically independent of random figli5,(x)], x € R?},
is indexed byR?, with values inM®™(R) c M (R), non-Gaussian, homoge-
neous, second-order, and mean-square continuol& orin Eq. (88), for allx
fixed in R?, the random matri¥A(x)]'/? is the square root of random matrix
[A(x)], and due to Eq. (79), is with valuesiMi>™(R) C M (R).

. For allx in R?, the mean value of random matrfi&(x)] is the matrix|A]
(independent ok and defined by Eq. (84)) such that

E{[AMX)]} =[4] € MM(R) Cc M (R). (89)

« In order that, for alk in R?, the zero matrix be a repulsive value for random
matrix [A(x)], the following constraint is introduced,

E{log(detA(X)])} = ca , Jea] < +o00, (90)

in which real constant, is independent of.
« The level of the statistical fluctuations belonging to theegisymmetry class
is controlled by the dispersion parameigr(independent ox) defined by

 [BUAN-ARY  [EUAXEY
5A‘\/ 1A ‘\/ fap b B

« Due to the statistical independence[Afx)] and[G,(x)], taking the mathe-
matical expectation of the two members of Eg. (88), and frays. E83) and (85),
it can be deduced that, for alin €2,

E{RT = (K], K™= [C] >0 a.s. (92)
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Remarks concerning the control of the statistical fluctuatons and the limit
cases

m Anisotropic statistical fluctuations going to zd— 0).

For a given symmetry class with < 21, if the level of anisotropic statistical
fluctuations goes to zeroe., if § — 0, which implies that, for alk in R¢, random
matrix [Gy(X)] goes to[],,] (in probability distribution), and implies thatl| goes
to [C] and thugS] goes to[/,,], then Eq. (86) shows thaK***"(x)] — [C/] goes
to [A(X)] (in probability distribution), which is a random matrix \Witzalues in
MM™(R). Consequently, if there are no anisotropic statisticatdiatons § = 0),
then Eq. (88) becomes

K¥H)] =[G+ AKX, vxeq, (93)
and{[K***"(x)],x € Q} is a random field indexed by with values inM¥™(R).

m Statistical fluctuations in the symmetry class going to £&5o— 0).
If the given symmetry class is anisotropi¥ (= 21) and if64, — 0, then[A] goes
to the mean matri)C] and[S] goes to[/,,], and Eq. (88) shows th&""*"(x)] —
[Cy] goes to][C]"/2 [Gy(x)] [C]*/? (in probability distribution), which is a random
matrix with values iV} (R). Consequently, if there are no statistical fluctuations
in the symmetry classi( = 0), then Eq. (86) becomes

[K*=(x)] = [Cd] + [C]V2 [Go(¥)] (€], YxeQ, (94)
which is Eq. (58).

Parameterization of random field {[A(X)], x € R?}.
Random field{[A(x)], x € R?}, with values inM»™(R) C M. (R), is written as

AX)] =42 [N] [4]72 . vxeR’, (95)

in which {[N(x)],x € R¢} is the random field indexed bR with values in
M>™(R),

N

IN(X)] = expy (Y _Y;(X) [EP™) . VxeRY, (96)

J=1
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in which exp,,; denotes the exponential of the symmetric real matricesravhe
Y (X) = (Yi(X),. .., Yx(X)), and wherd Y (x), x € R?} is a non-Gaussian random
field defined on(©’, 77, P'), indexed byR¢ with values inR", homogeneous,
second-order, mean-square continuou®6nUsing the change of representation
defined by Egs. (81) and (82), random mafiix)| defined by Eg. (96) can be

rewritten as
N

INGOT = D my (Y (%)) B2 (97)
j=1
m Remark concerning the set of the values of random mgai(ix)].
For all x fixed in R?, [N(x)] is a random matrix with values iM>™(R) (see
Eq. (96)) and4] is in MY™M(R) (see Eqg. (89)). From Egs. (79) and (95), it can be
deduced that random matri&(x)] is in M¥™(R) C M (R).

m Available information for random matrifN(x)].
For allx fixed inR?, substituting the representation [@f(x)] defined by Eq. (95)
into Egs. (89) and (90), yields the following available infation for random
matrix [N(x)],
E{INX)I} = [1], (98)
E{log(det[N(X))} =en 5 |en| < 400, (99)

in which real constanty is independent aof.

m Available information for random matriX (x).
Substituting the representation (x)] defined by Eq. (96) into the constraint
defined by Eq. (99) yields the following constraint f6(x),

N
EQ Y, ()u[EY} =cy , fen| <400, VXeR” (100)

J=1

Substituting the representation (x)] defined by Eq. (97) into the constraint
defined by Eq. (98), yieId:E{ZﬁV:1 m;(Y(x)) [E} = [I,]. Performing the
projection of this equation on the bagigZ.”"], k = 1,..., N} yields (similarly
to Eq. (82)),[£] E{m(Y (X))} = Z inwhichZ = (Z,, ..., Zy) is the vector irR"Y
such thatZ, =< [I,,], [E.”™"]) >. The constraint offiN(x)] defined by Eq. (98) is
transferred in the following constraint &f(x),

E{m(Y(x)}=[6]7'ZT on RY, (101)
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The constraints defined by Eqgs. (100) and (101) are globalyitten as
E{g(Y(x))} =f on R'Y, (102)

in which

e Y= dy) = (q1(Y),- .., 91.n(Y)) is the mapping fronR" into R'*" such
thatg, (y) = >0, y; r[E™ andgy;(y) = m;(y) for j=1,..., N.

o f = (f1,..., fizn) is the vector iR such thatf; = cy and fi,; =
{[€]'Z};forj=1,...,N.

Construction of the pdf for random vector Y (x) using the MaxEnt principle.
For all x fixed inR?, the probability density functiog — pyx (y) from R into
R* of the R"-valued random vectoY (x), is independent ok (Y is homoge-
neous). This pdf is constructed using the maximum entrojmcime presented in
Section 'MaxEnt for Constructing the pdf of a Random Vetwfir” Random Ma-
trix Models and Nonparametric Method for Uncertainty Quécation” in part Il

of the presenHandbook on Uncertainty Quantificatipander the constraints de-
fined by the normalization conditiof}, v pv(x (y) dy = 1 and by Eq. (102). For
ally in R, the pdf is written as

Py (Y) = co(A%) exp(— < A%, g(y) >) , VyeRY, (103)

in which cg(A) is defined by

co(A) = {/RN exp(— < A, 9(y) >)dy}_ , AERTY (104)

where the Lagrange multipliex®® = (X5, ..., A\{% ) belongs to an admissible
setCy C R'*" and is calculated for satisfying Eq. (102) by using the efici
numerical method presented iNUmerical Calculation of the Lagrange Multipli-
ers’ with the MCMC generator presented itenerator for Random Vectof
and Estimation of the Mathematical Expectations in High Bmsiori of ” Ran-
dom Matrix Models and Nonparametric Method for Uncertai@uantificatiori

in part Il of the presentiandbook on Uncertainty Quantification

Remark. In pdf py ) (y) constructed with Eq. (103), the Lagrange multiph&f!
depends only on one real parameter thatis Such a parameter has no physical
meaning and must be expressed as a functiomf the coefficient of variation
d4 defined by Eq. (91), such that, = x(d4). This means that the family of the
pdf constructed with Eq. (103) is reparameterized as a imaf the dispersion
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parmetep 4 usingcy = x(04). An explicit expression of function cannot be ob-
tained and is constructed numerically in using Eq. (91) incWHz{|| A(X) ||%} =

o1 ey < EPTTAL LA B > fon my(¥) mi(y) pro (y) dy.

Constructing a spatial-correlation structure for random field {Y (x),x € R?}
and its generator.

A spatial-correlation structure is introduced as propas¢8l] for the non-Gauss-
ian second-order homogeneous random f{dx), x € R¢} with values inR”,
for which its first-order marginal probability density fureny — pyx (y) (see
Eq. (103)) is imposed. This pdf is independentxcdnd depends on dispersion
paramete,. Such a spatial-correlation structure for random fig¥x),x €
R?} is transferred to random fielfA(x), x € R¢} thanks to the transformation
defined by Egs. (95) and (96), which is written, for alin R¢, as[A(x)] =
[A]2 expyg (3052, V(%) [E57]) [A]/2,

m Introduction of a Gaussian random fiefB(x),x € R9} that defines the
spatial-correlation structure
(i) LetB = (B, ..., By) be arandom field defined on the probability probability
space(©’, 7', P'), indexed byR?, with values inR", such that the components
By, ..., By are N independent real-valued second-order random fields tleat ar
Gaussian, homogeneous, centered, normalized and mearesantinuous. The
continuous autocorrelation functign— [Rg(¢)] = E{B(x+¢) B(x)"} from R?
into My (R) is thus diagonal,

[Re(C)ljr = 61 R;(C) , [Re(0)] = [In], (105)

in which ¢ — R;(¢)] = E{B;(x + ¢) B;(x)}, from R? into R, is the autocor-
relation function of the centered random figl&;(x), x € R¢}. For all fixedj,
since the second-order random figl8;(x),x € R?} is Gaussian and centered,
this random field is completely and uniquely defined by it®aatrelation func-
tion R;(¢) = E{B;(x + ¢) B;(x)} defined for all¢ = ({,...,¢) in R? and
such thatR;(0) = 1. The spatial-correlation lengtfig, . .., L7 of random field
{B;(x),x € R} are defined by

e [l
0

In the parameterization of each autocorrelation funciiprthe parameterls{, ce
I}, are generally chosen as hyperparameters.
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Example of parameterization for autocorrelation functin A minimal param-
eterization can be defined d&(¢) = p1(¢1) x ... x p5(¢4) in which, for all
a=1,...,d,pl(0) =1and where, fot, # 0,

pa(Ca) = 4(L7)*/ (7)) sin*(7mCa/(202)) .

in which L], ..., I are positive real numbers. Each random figldis mean-
square continuous oR? and its power spectral density function definedRsh
has a compact suppofty7/L] ,7/L]] x ... x [-r/Lj],=/L}]. The parame
ters,IL,{, o ,]Lfl, represent the spatial-correlation lengths of the stdaehgerm
{B;(x),x € R%}.

(i) For all countable ordered subséts< | < ... <71, < rpp; < ...0f RT, the
sequence of random field8"+"++* (x), x € R4} en

« are mutually independent random fields,

. are such thaty k € N, {B"™"*+(x),x € R?} is an independent copy of
{B(x),x € R4}, which implies thatw{B"*"*+(x)} = E{B(x)} = 0 and that

E{B"¥"s+1(x) (BT’“T’““(X))T} = E{B(x) B(X)T} = [Rg(0)] = [In]. (106)

m Defining anx-dependent family of normalized Wiener stochastic prasess
{Wy(r), > 0} containing the spatial-correlation structure
Let {Wy(r),r > 0} be thex-dependent family of stochastic processes defined on
probability spacg®©’, 7/, P’), indexed byr > 0, with values inR", such that
W, (0) = 0 almost surely and, for ak fixed R? and for all0 < s < r < +o0, the
incrementAW;" := Wy (r) — Wi(s) is written as

AW = /r — s B (X) . (107)

From the properties of random fie[d(x), x € R¢} and of the family of random
fields {B™"*+1(x),x € R}y for all countable ordered subséts< 7, < ... <

T, < The1 < ..., itis deduced that, for ak fixed in R,

(i) the componentWél), ce ) of W, are mutually independent real-valued
stochastic processes,

(i) {Wx(r),r > 0} is a stochastic process with independent increments,

(iii) Forall 0 < s < r < 400, the incremenAW;" = W, (r) — W(s) is a
R¥-valued second-order random variable which is Gaussiarterd, and with
a covariance matrix that is written &aw;-] = E{AW}] (AW} = (r —

5) [In)-
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(iv) SinceW,(0) = 0, and from (i), (ii), and (iii), it can be deduced thaW/«(r), r >
0} is aR"-valued normalized Wiener process.

m Constructing random fieldY (x),x € R4} and its generatar
The construction of random fielfly (x), x € R?} is carried out by introducing a
family (indexed byx in R9) of Itd stochastic differential equations (ISDE),

« for which the Wiener process is the famifiyV,(r), > 0} that contains the
imposed spatial-correlation structure defined by Eq. (105)

« that admits the same unique invariant measure (indepewdent which is
defined by the pdby () given by Egs. (103)-(104).
Taking into account Eq. (103), the potential+ ®(u), fromRY into R, is defined
by

®(u) =< A% g(u)> . (108)

For allx fixed inR?, let { (Uy(r), Vx(r)),r > 0} be the Markov stochastic process
defined on the probability spa¢®’, 7', P’), indexed byr > 0, with values in
RY x R¥, satisfying, for all- > 0, the following ISDE,

dUy(r) = V(1) dr, (209)
dVx(r) = =V, ®(Ux(r)) dr — % FoVx(r) dr + v/ fo dWi(r), (110)

with the initial conditions,
Ug(0) =up , Vx(0)=vVvy a.s., (1112)

in which u, andv, are given vectors ifR" (that are generally taken as zero in
the applications) ang, > 0 is a free parameter whose usefulness is explained
below. From Egs. (82) and (102), it can be deduced that fonati— ®(u): (i) is
continuous orRY, (ii) is such thau — ||V, ®(u)|| is a locally bounded function

on RY (i.e. is bounded on all compact setsRi¥). In addition the Lagrange
multiplier A%, which belongs t€, ¢ R'*", is such that

inf ®(u) - +oo If R— 400, (112)
flull>F
inf &(u) = ¢y, with o € R (113)
ucR™
V@ ()| e Y du < 400 (114)
Rn
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Taking into account (i), (ii), and Eqgs. (112) to (114), usifigeorems 4 to 7 in
pages 211 to 216 of Ref. [55] for which the Hamiltonian is taksH(u,v) =
|v||?/2+ ®(u), and using [17; 39] for the ergodic property, it can be dedubat
the problem defined by Eqgs. (109) to (111) admits a uniquéisoluFor allx fixed
in R4, this solution is a second-order diffusion stochastic pss¢(Uy (1), Vx(r)),

r > 0}, which converges to a stationary and ergodic diffusiontsstic process
{(US(rsy), V3i(rsr), st > 0}, whenr goes to infinity, associated with the invariant
probability measuré’s(du, dv) = ps(U, V) dudv (that is independent of). The
probability density functiorfu, v) — ps(u,v) onRY x R is the unique solution
of the steady-state Fokker-Planck equation associatédigs. (109)-(110), and
is written (see pp. 120 to 123 in [55]), as

pal¥) = e exp{—3VII* — @(W)}, (115

in which ¢y is the constant of normalization. Equations (103), (108Y @.15)
yield

Py (y) = / psly,;v)dv Yy eRY. (116)
RN

Random variablé/ (x) (for which the pdfpy () is defined by Eq. (103)) can then
be written, for all fixed positive value af;, as

Y (X) = US(rg) = TETOO U«(r) in probability distribution (117)
The free parametef, > 0 introduced in Eq. (110), allows a dissipation term to
be introduced in the nonlinear second-order dynamicaksy$formulated in the
Hamiltonian form with an additional dissipative term) fdstaining more rapidly
the asymptotic behavior corresponding to the stationadyeagodic solution as-
sociated with the invariant measure. Using Eq. (117) anceitbedic property of
stationary stochastic proceds, it should be noted that, i is any mapping from
RY into an Euclidean space such tafw(Y (x))} = [ov w(Y) pv(x dy is finite,

then

E{w(Y(x))} = lim l/o w(Uy(r,0")) dr, (118)

R—+o00
in which, for8" € ©', U(-, ') is any realization ob.
Discretization scheme of the family of ISDE

A discretization scheme must be used for numerically sglgs. (109) to (111).
For general surveys on discretization schemes for ISDEgWee the reader to [40;
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70] (among others). The present case, related to a Hanahahjinamical system,
has also been analyzed using an implicit Euler scheme in [Agfeinafter, we
present the Stormer-Verlet scheme (see [32; 34]), whiah isfficient scheme that
preserves energy for nondissipative Hamiltonian dynalsigstems (see [35] for
reviews about this scheme in the deterministic case, ankard the references
therein for the stochastic case).

Let © > 1 be an integer. For ak in R?, the ISDE defined by Egs. (109) to
(111) is solved on the finite intervél , (1 — 1) Ar], in which Ar is the sampling
step of the continuous index parameteiThe integration scheme is based on the
use of theu sampling points;, = (k — 1) Arfor k = 1,..., u, and the following
notations are used)? = U, (1), VE = V,(ry,), andWF = Wy (7)), with U] =
Uo, Vi = Vg, andW, = W,(0) = 0. From Eq. (107) and fok = 1,...,u — 1, the
incrementAWS ! = WEH _ W¥ is written as

AW = VArB*(x) |, V¥YxeR?, (119)

-----

copies of random fieldB(x),x € R?}. Fork = 1,...,u — 1, the Stormer-Verlet
scheme is written as

1 A
= Ul SRV (120)
1-0b Ar | pgd \/%
Vk+1 — Vk Loz _vJU Awarl 121
X o Ty Tt (121)
1A
Ukt — Uit 77” Vians (122)
1
whereb = f, Ar /4, and whereL "7 is the RV-valued random variable such
thatLy > = —{V,o(u)} ey For a given realizatiod’ in ©’, the sequence
u=Uy

{UF(#),k = 1,...,u} is constructed using Egs. (120) to (122). The discretiza-
tion of Eq. (118) yields the following estimation of the mathatical expectation,

B0} = lim 8,00 5,00 = ———— 3" w(Ui(#), (123

in which, for f, fixed, the integer.,, > 1 is chosen to remove the transient part of
the response induced by the initial condition. For detaiscerning the optimal
choice of the numerical parameters, such@$:, fo, A., Uy, andvy, we refer the
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reader to [59; 33; 34].

Definition of the hyperparameter s

The hyperparameter parametee C, C RY: of the algebraic prior stochastic
model{ [K***"(x; 5)], x € 2}, which has been constructed for the dominant statis-
tical fluctuations belonging to a given symmetry class ofehigionn, with some
anisotropic statistical fluctuations, are constitutedha fuantities summarized
hereinafter:

« the reshaping ofC,] € M (R) (the lower bound) anf] € M (R) (the
mean value),

« for the control of the anisotropic statistical fluctuatigneodeled by random
field [Go]), thedn(n + 1)/2 positive real numbers,Li*, ..., [7*}, <1<, (the
spatial-correlation lengths, for the parameterizatiaregiin the example), and
(the dispersion) such that< § < v/(n+1)/(n +5),

« for the control of the statistical fluctuations belongingateymmetry class
(modeled by random fielgh]), thed N positive real numberglL], ..., L2} <j<n
(the spatial-correlation lengths, for the parameterzagiven in the example),
andd 4 (the dispersion) such that< d 4.

10. Key Research Findings, and Applications

Additional ingredients for statistical reduced models, synmetry properties
and generators for high-stochastic dimension

m Karhunen-Loeve’s expansion revisited for vector-valumadom fields and
identification from a set of realizations: scaling [50], afaviori error and optimal
reduced basis [51].

m Construction of a basis adaptation in homogeneous chacsspés].

m ISDE-based generator for a class of non-gaussian vecloed/eandom fields
in uncertainty quantification [32; 34].

m Random elasticity tensors of materials exhibiting symgnptoperties [29;
30; 32] and stochastic boundedness constraints [11; 28; 30]

m Random fields representations and robust algorithms fordeweatification
of polynomial chaos representations in high dimension feoset of realizations
[62; 64; 49; 48; 51; 66].

Tensor-valued random fields and continuum mechanics of hetegenous ma-

terials
m Composites reinforced with fibers with experimental idigcdtion [26; 27].
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m Polycrystalline microstructures [28].

m Porous materials with anisotropic permeability tensodoan field [31], and
with interphases [33].

m Human cortical bone with mechanical alterations in ultrasoange [16].

11. Conclusions

A complete advanced methodology and the associated towés been pre-
sented for solving the challenging statistical inverseofam related to the exper-
imental identification of a non-Gaussian matrix-valuedd@n field that is the
model parameter of a boundary value problem, using somejand limited ex-
perimental data related to a model observation. Many agjpbies and validation
of this methodology can be found in the given references.
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