N. Agmon, Y. Alhassid, and R. Levine, An algorithm for finding the distribution of maximal entropy, Journal of Computational Physics, vol.30, issue.2, pp.250-258, 1979.
DOI : 10.1016/0021-9991(79)90102-5

T. Anderson, An Introduction to Multivariate Statistical Analysis, Third Edition, 2003.
DOI : 10.2307/2531310

A. Arnoux, A. Batou, C. Soize, and L. Gagliardini, Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics, Journal of Sound and Vibration, vol.332, issue.16, pp.3667-3680, 2013.
DOI : 10.1016/j.jsv.2013.02.019

URL : https://hal.archives-ouvertes.fr/hal-00803461

M. Arnst, D. Clouteau, H. Chebli, R. Othman, and G. Degrande, A non-parametric probabilistic model for ground-borne vibrations in buildings, Probabilistic Engineering Mechanics, vol.21, issue.1, pp.18-34, 2006.
DOI : 10.1016/j.probengmech.2005.06.004

URL : https://hal.archives-ouvertes.fr/hal-00018949

M. Arnst, D. Clouteau, and M. Bonnet, Inversion of probabilistic structural models using measured transfer functions, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.6-8, pp.6-8, 2008.
DOI : 10.1016/j.cma.2007.08.011

S. Au and J. Beck, Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis, Journal of Engineering Mechanics, vol.129, issue.8, pp.901-917, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:8(901)

J. Avalos, E. Swenson, M. Mignolet, and N. Lindsley, Stochastic Modeling of Structural Uncertainty/Variability from Ground Vibration Modal Test Data, Journal of Aircraft, vol.49, issue.3, pp.870-884, 2012.
DOI : 10.2514/1.C031546

K. Bathe and E. Wilson, Numerical Methods in Finite Element Analysis, 1976.

A. Batou and C. Soize, Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain model and fretting-wear estimation, Mechanical Systems and Signal Processing, vol.23, issue.7, pp.2141-2153, 2009.
DOI : 10.1016/j.ymssp.2009.03.018

URL : https://hal.archives-ouvertes.fr/hal-00692169

A. Batou and C. Soize, Rigid multibody system dynamics with uncertain rigid bodies, Multibody System Dynamics, vol.198, issue.1, pp.285-319, 2012.
DOI : 10.1007/s11044-011-9279-2

URL : https://hal.archives-ouvertes.fr/hal-00701567

A. Batou and C. Soize, Calculation of Lagrange Multipliers in the Construction of Maximum Entropy Distributions in High Stochastic Dimension, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, pp.431-451, 2013.
DOI : 10.1137/120901386

URL : https://hal.archives-ouvertes.fr/hal-00851201

A. Batou, C. Soize, and S. Audebert, Model identification in computational stochastic dynamics using experimental modal data, Mechanical Systems and Signal Processing, vol.50, issue.51, pp.50-51, 2014.
DOI : 10.1016/j.ymssp.2014.05.010

URL : https://hal.archives-ouvertes.fr/hal-00989208

A. Batou, C. Soize, and M. Corus, Experimental identification of an uncertain computational dynamical model representing a family of structures, Computers & Structures, vol.89, issue.13-14, pp.13-14, 2011.
DOI : 10.1016/j.compstruc.2011.03.004

URL : https://hal.archives-ouvertes.fr/hal-00684292

O. Bohigas, M. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Physical Review Letters, vol.52, issue.1, pp.1-4, 1984.
DOI : 10.1103/PhysRevLett.52.1

O. Bohigas, M. Giannoni, and C. Schmit, Spectral fluctuations of classically chaoctic quantum systems Quantum Chaos and Statistical Nuclear Physics, pp.18-40, 1986.

O. Bohigas, O. Legrand, C. Schmit, and D. Sornette, Comment on spectral statistics in elastodynamics, The Journal of the Acoustical Society of America, vol.89, issue.3, pp.1456-1458, 1991.
DOI : 10.1121/1.400662

K. Burrage, I. Lenane, and G. Lythe, Numerical Methods for Second???Order Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.29, issue.1, pp.245-264, 2007.
DOI : 10.1137/050646032

E. Capiez-lernout and C. Soize, Nonparametric Modeling of Random Uncertainties for Dynamic Response of Mistuned Bladed Disks, Journal of Engineering for Gas Turbines and Power, vol.126, issue.3, pp.600-618, 2004.
DOI : 10.1115/1.1760527

URL : https://hal.archives-ouvertes.fr/hal-00686199

E. Capiez-lernout, C. Soize, J. Lombard, C. Dupont, and E. Seinturier, Blade Manufacturing Tolerances Definition for a Mistuned Industrial Bladed Disk, Journal of Engineering for Gas Turbines and Power, vol.127, issue.3, pp.621-628, 2005.
DOI : 10.1115/1.1850497

URL : https://hal.archives-ouvertes.fr/hal-00688121

E. Capiez-lernout, M. Pellissetti, H. Pradlwarter, G. Schueller, and C. Soize, Data and model uncertainties in complex aerospace engineering systems, Journal of Sound and Vibration, vol.295, issue.3-5, pp.3-5, 2006.
DOI : 10.1016/j.jsv.2006.01.056

URL : https://hal.archives-ouvertes.fr/hal-00686152

E. Capiez-lernout, C. Soize, and M. Mignolet, Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation, Computer Methods in Applied Mechanics and Engineering, vol.271, issue.1, pp.210-230, 2014.
DOI : 10.1016/j.cma.2013.12.011

URL : https://hal.archives-ouvertes.fr/hal-00922708

E. Capiez-lernout, C. Soize, and M. Mbaye, Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity, Journal of Sound and Vibration, vol.356, pp.124-143, 2015.
DOI : 10.1016/j.jsv.2015.07.006

URL : https://hal.archives-ouvertes.fr/hal-01183415

P. Chadwick, M. Vianello, and C. Sc, A new proof that the number of linear elastic symmetries is eight, Journal of the Mechanics and Physics of Solids, vol.49, issue.11, pp.2471-2492, 2001.
DOI : 10.1016/S0022-5096(01)00064-3

H. Chebli and C. Soize, Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems, The Journal of the Acoustical Society of America, vol.115, issue.2, pp.697-705, 2004.
DOI : 10.1121/1.1639335

URL : https://hal.archives-ouvertes.fr/hal-00686209

C. Chen, D. Duhamel, and C. Soize, Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels, Journal of Sound and Vibration, vol.294, issue.1-2, pp.64-81, 2006.
DOI : 10.1016/j.jsv.2005.10.013

URL : https://hal.archives-ouvertes.fr/hal-00686153

R. Cottereau, D. Clouteau, and C. Soize, Construction of a probabilistic model for impedance matrices, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.17-20, pp.17-20, 2007.
DOI : 10.1016/j.cma.2006.12.001

URL : https://hal.archives-ouvertes.fr/hal-00686151

R. Cottereau, D. Clouteau, and C. Soize, Probabilistic impedance of foundation: Impact of the seismic design on uncertain soils, Earthquake Engineering & Structural Dynamics, vol.197, issue.6, pp.899-918, 2008.
DOI : 10.1002/eqe.794

URL : https://hal.archives-ouvertes.fr/hal-00685116

S. Das and R. Ghanem, A Bounded Random Matrix Approach for Stochastic Upscaling, Multiscale Modeling & Simulation, vol.8, issue.1, pp.296-325, 2009.
DOI : 10.1137/090747713

C. Desceliers, C. Soize, and S. Cambier, Non-parametric???parametric model for random uncertainties in non-linear structural dynamics: application to earthquake engineering, Earthquake Engineering & Structural Dynamics, vol.33, issue.3, pp.315-327, 2004.
DOI : 10.1002/eqe.352

URL : https://hal.archives-ouvertes.fr/hal-00686208

C. Desceliers, C. Soize, Q. Grimal, M. Talmant, and S. Naili, Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments, The Journal of the Acoustical Society of America, vol.125, issue.4, pp.2027-2034, 2009.
DOI : 10.1121/1.3087428

URL : https://hal.archives-ouvertes.fr/hal-00684450

C. Desceliers, C. Soize, S. Naili, and G. Haiat, Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range, Mechanical Systems and Signal Processing, vol.32, pp.170-177, 2012.
DOI : 10.1016/j.ymssp.2012.03.008

URL : https://hal.archives-ouvertes.fr/hal-00692871

C. Desceliers, C. Soize, H. Yanez-godoy, E. Houdu, and O. Poupard, Robustness analysis of an uncertain computational model to predict well integrity for geologic CO2 sequestration, Computational Geosciences, vol.3, issue.8, pp.307-323, 2013.
DOI : 10.1007/s10596-012-9332-0

URL : https://hal.archives-ouvertes.fr/hal-00757126

J. Doob, Stochastic Processes, 1990.

A. Doostan and G. Iaccarino, A least-squares approximation of partial differential equations with high-dimensional random inputs, Journal of Computational Physics, vol.228, issue.12, pp.4332-4345, 2009.
DOI : 10.1016/j.jcp.2009.03.006

J. Duchereau and C. Soize, Transient dynamics in structures with non-homogeneous uncertainties induced by complex joints, Mechanical Systems and Signal Processing, vol.20, issue.4, pp.854-867, 2006.
DOI : 10.1016/j.ymssp.2004.11.003

URL : https://hal.archives-ouvertes.fr/hal-00686155

F. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I, Journal of Mathematical Physics, vol.3, issue.1, pp.140-175, 1962.
DOI : 10.1063/1.1703773

F. Dyson and M. Mehta, Statistical theory of the energy levels of complex systems, Parts IV,V. J. Math. Phys, vol.4, pp.701-719, 1963.

J. Durand, C. Soize, and L. Gagliardini, Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation, The Journal of the Acoustical Society of America, vol.124, issue.3, pp.1513-1525, 2008.
DOI : 10.1121/1.2953316

URL : https://hal.archives-ouvertes.fr/hal-00685108

C. Fernandez, C. Soize, and L. Gagliardini, Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems: Theory and experimental validation, The Journal of the Acoustical Society of America, vol.125, issue.1, pp.138-153, 2009.
DOI : 10.1121/1.3035827

URL : https://hal.archives-ouvertes.fr/hal-00684495

C. Fernandez, C. Soize, and L. Gagliardini, Sound-Insulation Layer Modelling in Car Computational Vibroacoustics in the Medium-Frequency Range, Acta Acustica united with Acustica, vol.96, issue.3, 2010.
DOI : 10.3813/AAA.918296

URL : https://hal.archives-ouvertes.fr/hal-00684316

G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, 1996.
DOI : 10.1007/978-1-4757-2553-7

S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution and the Bayesian distribution of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAM I, vol.6, pp.721-741, 1984.

R. Ghanem and P. Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal of Applied Mechanics, vol.57, issue.1, pp.197-202, 1990.
DOI : 10.1115/1.2888303

R. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

R. Ghanem and P. Spanos, Stochastic Finite Elements: A spectral Approach, 2003.
DOI : 10.1007/978-1-4612-3094-6

D. Ghosh and R. Ghanem, Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions, International Journal for Numerical Methods in Engineering, vol.28, issue.2, pp.162-184, 2008.
DOI : 10.1002/nme.2066

G. Golub and C. Van-loan, Matrix Computations, Fourth, 2013.

J. Guilleminot, C. Soize, and D. Kondo, Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspects, Mechanics of Materials, vol.41, issue.12, pp.1309-1322, 2009.
DOI : 10.1016/j.mechmat.2009.08.004

URL : https://hal.archives-ouvertes.fr/hal-00684330

J. Guilleminot, A. Noshadravan, C. Soize, and R. Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, pp.1637-1648, 2011.
DOI : 10.1016/j.cma.2011.01.016

URL : https://hal.archives-ouvertes.fr/hal-00684305

J. Guilleminot and C. Soize, Probabilistic modeling of apparent tensors in elastostatics: A MaxEnt approach under material symmetry and stochastic boundedness constraints, Probabilistic Engineering Mechanics, vol.28, pp.118-124, 2012.
DOI : 10.1016/j.probengmech.2011.07.004

URL : https://hal.archives-ouvertes.fr/hal-00686132

J. Guilleminot and C. Soize, Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model, International Journal for Numerical Methods in Engineering, vol.94, issue.108, pp.613-635, 2012.
DOI : 10.1002/nme.3338

URL : https://hal.archives-ouvertes.fr/hal-00699345

J. Guilleminot, C. Soize, and R. Ghanem, Stochastic representation for anisotropic permeability tensor random fields, International Journal for Numerical and Analytical Methods in Geomechanics, vol.66, issue.13, pp.36-1592, 2012.
DOI : 10.1002/nag.1081

URL : https://hal.archives-ouvertes.fr/hal-00724651

J. Guilleminot and C. Soize, On the Statistical Dependence for the Components of Random Elasticity Tensors Exhibiting Material Symmetry Properties, Journal of Elasticity, vol.21, issue.5, pp.109-130, 2013.
DOI : 10.1007/s10659-012-9396-z

URL : https://hal.archives-ouvertes.fr/hal-00724048

J. Guilleminot and C. Soize, Stochastic Model and Generator for Random Fields with Symmetry Properties: Application to the Mesoscopic Modeling of Elastic Random Media, Multiscale Modeling & Simulation, vol.11, issue.3, pp.840-870, 2013.
DOI : 10.1137/120898346

URL : https://hal.archives-ouvertes.fr/hal-00854121

A. Gupta, D. Nagar, &. Chapman, /. Hall, B. Crc et al., Matrix Variate Distributions, 2000.

E. Hairer, C. Lubich, G. Wanner, and G. , Geometric Numerical Integration . Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01403326

W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.57-97, 1970.
DOI : 10.1093/biomet/57.1.97

D. Hristopulos, Spartan Gibbs Random Field Models for Geostatistical Applications, SIAM Journal on Scientific Computing, vol.24, issue.6, pp.2125-2162, 2003.
DOI : 10.1137/S106482750240265X

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.
DOI : 10.1103/PhysRev.106.620

J. Kapur and H. Kesavan, Entropy Optimization Principles and Their Applications, 1992.
DOI : 10.1007/978-94-011-2430-0_1

M. Kassem, C. Soize, and L. Gagliardini, Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle, Journal of Sound and Vibration, vol.330, issue.5, pp.937-946, 2011.
DOI : 10.1016/j.jsv.2010.09.008

URL : https://hal.archives-ouvertes.fr/hal-00684293

R. Khasminskii, Stochastic Stability of Differential Equations, 2012.

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differentials Equations, 1992.

R. Langley, A non-Poisson model for the vibration analysis of uncertain dynamic systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.455, issue.1989, pp.3325-3349, 1999.
DOI : 10.1098/rspa.1999.0453

O. Legrand and D. Sornette, Coarse-grained properties of the chaotic trajectories in the stadium, Physica D: Nonlinear Phenomena, vol.44, issue.1-2, pp.229-235, 1990.
DOI : 10.1016/0167-2789(90)90057-V

O. Legrand, C. Schmit, and D. Sornette, Quantum Chaos Methods Applied to High-Frequency Plate Vibrations, Europhysics Letters (EPL), vol.18, issue.2, pp.101-106, 1992.
DOI : 10.1209/0295-5075/18/2/002

URL : https://hal.archives-ouvertes.fr/in2p3-00005442

L. Ma??trema??tre, O. Knio, and O. , Spectral Methods for Uncerainty Quantification with Applications to Computational Fluid Dynamics, 2010.

D. Luenberger, Optimization by Vector Space Methods, 2009.

H. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.12-16, 2005.
DOI : 10.1016/j.cma.2004.05.027

M. Mbaye, C. Soize, J. Ousty, C. , and E. , Robust Analysis of Design in Vibration of Turbomachines, Journal of Turbomachinery, vol.135, issue.2, pp.21008-21009, 2013.
DOI : 10.1115/1.4007442

URL : https://hal.archives-ouvertes.fr/hal-00684506

M. Mehrabadi and S. Cowin, EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS, The Quarterly Journal of Mechanics and Applied Mathematics, vol.43, issue.1, pp.15-41, 1990.
DOI : 10.1093/qjmam/43.1.15

M. Mehta, Random Matrices and the Statisticals Theory of Energy Levels, 1967.

M. Mehta, Random Matrices, Revised and Enlarged Second Edition, 1991.

M. Mehta, Random Matrices, Third Edition, 2014.

N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, pp.335-341, 1949.
DOI : 10.1080/01621459.1949.10483310

M. Mignolet and C. Soize, Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.267-278, 2008.
DOI : 10.1016/j.probengmech.2007.12.027

URL : https://hal.archives-ouvertes.fr/hal-00685147

M. Mignolet and C. Soize, Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.45-48, pp.45-48, 2008.
DOI : 10.1016/j.cma.2008.03.032

URL : https://hal.archives-ouvertes.fr/hal-00686140

M. Mignolet, C. Soize, and J. Avalos, Nonparametric Stochastic Modeling of Structures with Uncertain Boundary Conditions/Coupling Between Substructures, AIAA Journal, vol.51, issue.6, pp.1296-1308, 2013.
DOI : 10.2514/1.J051555

URL : https://hal.archives-ouvertes.fr/hal-00686147

R. Murthy, M. Mignolet, and A. Shafei, Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics???Part I: Formulation, Journal of Engineering for Gas Turbines and Power, vol.132, issue.9, pp.92501-92502, 2009.
DOI : 10.1115/1.3204645

R. Murthy, M. Mignolet, and A. Shafei, Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics???Part II: Applications, Journal of Engineering for Gas Turbines and Power, vol.132, issue.9, pp.92502-92503, 2010.
DOI : 10.1115/1.3204650

R. Murthy, X. Wang, R. Perez, M. Mignolet, and L. Richter, Uncertainty-based experimental validation of nonlinear reduced order models, Journal of Sound and Vibration, vol.331, issue.5, pp.1097-1114, 2012.
DOI : 10.1016/j.jsv.2011.10.022

R. Murthy, J. Tomei, X. Wang, M. Mignolet, and A. Shafei, Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamics: Unbalance and Balancing Aspects, Journal of Engineering for Gas Turbines and Power, vol.136, issue.6, pp.62506-62507, 2014.
DOI : 10.1115/1.4026166

R. Neal, Slice sampling, The Annals of Statistics, vol.31, issue.3, pp.705-767, 2003.
DOI : 10.1214/aos/1056562461

A. Nouy, Recent Developments in Spectral Stochastic Methods for??the??Numerical Solution of Stochastic Partial Differential Equations, Archives of Computational Methods in Engineering, vol.24, issue.2, pp.251-285, 2009.
DOI : 10.1007/s11831-009-9034-5

URL : https://hal.archives-ouvertes.fr/hal-00366636

A. Nouy, Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems, Archives of Computational Methods in Engineering, vol.225, issue.1, pp.403-434, 2010.
DOI : 10.1007/s11831-010-9054-1

URL : https://hal.archives-ouvertes.fr/hal-00461099

A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, European Journal of Applied Mathematics, vol.19, issue.03, pp.339-373, 2014.
DOI : 10.1023/B:ACAP.0000013855.14971.91

R. Ohayon and C. Soize, Structural Acoustics and Vibration, The Journal of the Acoustical Society of America, vol.109, issue.6, 1998.
DOI : 10.1121/1.1352086

URL : https://hal.archives-ouvertes.fr/hal-00689039

R. Ohayon and C. Soize, Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification, International Journal of Aeronautical and Space Sciences, vol.13, issue.2, pp.127-153, 2012.
DOI : 10.5139/IJASS.2012.13.2.127

URL : https://hal.archives-ouvertes.fr/hal-00713892

R. Ohayon and C. Soize, Advanced Computational Vibroacoustics. Reduced-Order Models and Uncertainty Quantification, 2014.
DOI : 10.1017/cbo9781107785328

URL : https://hal.archives-ouvertes.fr/hal-01162161

A. Papoulis, Signal Analysis, 1977.

M. Pellissetti, E. Capiez-lernout, H. Pradlwarter, C. Soize, and G. Schueller, Reliability analysis of a satellite structure with a parametric and a non-parametric probabilistic model, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.2, pp.344-357, 2008.
DOI : 10.1016/j.cma.2008.08.004

C. Poter, Statistical Theories of Spectra: Fluctuations, 1965.

H. Pradlwarter and G. Schueller, Local Domain Monte Carlo Simulation, Structural Safety, vol.32, issue.5, pp.275-280, 2010.
DOI : 10.1016/j.strusafe.2010.03.009

T. Ritto, C. Soize, F. Rochinha, and R. Sampaio, Dynamic stability of a pipe conveying fluid with an uncertain computational model, Journal of Fluids and Structures, vol.49, pp.412-426, 2014.
DOI : 10.1016/j.jfluidstructs.2014.05.003

URL : https://hal.archives-ouvertes.fr/hal-00987873

C. Robert and G. Casella, Monte Carlo Statistical Methods, 2005.

R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method, 2008.

S. Sakji, C. Soize, and J. Heck, Probabilistic Uncertainty Modeling for Thermomechanical Analysis of Plasterboard Submitted to Fire Load, Journal of Structural Engineering, vol.134, issue.10, pp.1611-1618, 2008.
DOI : 10.1061/(ASCE)0733-9445(2008)134:10(1611)

URL : https://hal.archives-ouvertes.fr/hal-00685092

S. Sakji, C. Soize, and J. Heck, Computational stochastic heat transfer with model uncertainties in a plasterboard submitted to fire load and experimental validation, Fire and Materials, vol.5, issue.109, pp.109-127, 2009.
DOI : 10.1002/fam.982

URL : https://hal.archives-ouvertes.fr/hal-00684423

C. Schmit, Quantum and classical properties of some billiards on the hyperbolic plane, Chaos and Quantum Physics, pp.333-369, 1991.
URL : https://hal.archives-ouvertes.fr/in2p3-00005026

G. Schueller, Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis - recent advances, Structural Engineering and Mechanics, vol.32, issue.1, pp.1-20, 2009.
DOI : 10.12989/sem.2009.32.1.001

L. Schwartz, Analyse II Calcul Différentiel et Equations Différentielles, 1997.

R. Serfling, Approximation Theorems of Mathematical Statistics, 1980.

C. Shannon, A mathematical theory of communication. Bell System Tech, J, vol.27, pp.379-423, 1948.

C. Soize, Oscillators submitted to squared Gaussian processes, Journal of Mathematical Physics, vol.21, issue.10, pp.2500-2507, 1980.
DOI : 10.1063/1.524356

URL : https://hal.archives-ouvertes.fr/hal-00770397

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, 1994.
DOI : 10.1142/2347

URL : https://hal.archives-ouvertes.fr/hal-00770411

C. Soize, A nonparametric model of random uncertainties in linear structural dynamics, Progress in Stochastic Structural Dynamics. Publications LMA-CNRS, pp.109-138, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00773301

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, The Journal of the Acoustical Society of America, vol.109, issue.5, pp.1979-1996, 2001.
DOI : 10.1121/1.1360716

URL : https://hal.archives-ouvertes.fr/hal-00686287

C. Soize, Random matrix theory and non-parametric model of random uncertainties in vibration analysis, Journal of Sound and Vibration, vol.263, issue.4, pp.893-916, 2003.
DOI : 10.1016/S0022-460X(02)01170-7

URL : https://hal.archives-ouvertes.fr/hal-00686213

C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.12-16, 2005.
DOI : 10.1016/j.cma.2004.06.038

URL : https://hal.archives-ouvertes.fr/hal-00686187

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.1583-1611, 2008.
DOI : 10.1002/nme.2385

URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, International Journal for Numerical Methods in Engineering, vol.80, issue.21-26, pp.939-970, 2010.
DOI : 10.1002/nme.2712

URL : https://hal.archives-ouvertes.fr/hal-00684322

C. Soize, Stochastic Models of Uncertainties in Computational Mechanics, 2012.
DOI : 10.1061/9780784412237

URL : https://hal.archives-ouvertes.fr/hal-00749201

C. Soize and I. Poloskov, Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation, Computers & Mathematics with Applications, vol.64, issue.11, pp.3594-3612, 2012.
DOI : 10.1016/j.camwa.2012.09.010

URL : https://hal.archives-ouvertes.fr/hal-00746280

C. Soize and H. Chebli, Random Uncertainties Model in Dynamic Substructuring Using a Nonparametric Probabilistic Model, Journal of Engineering Mechanics, vol.129, issue.4, pp.449-457, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:4(449)

URL : https://hal.archives-ouvertes.fr/hal-00686215

J. Spall, Introduction to Stochastic Search and Optimization, 2003.
DOI : 10.1002/0471722138

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.94-120, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490

D. Talay, Simulation of stochastic differential systems, Probabilistic Methods in Applied Physics, pp.54-96, 1995.
DOI : 10.1007/3-540-60214-3_51

URL : https://hal.archives-ouvertes.fr/inria-00075246

D. Talay, Stochastic Hamiltonian system: exponential convergence to the invariant measure and discretization by the implicit Euler scheme, Markov Processes and Related Fields, vol.8, pp.163-198, 2002.

R. Tipireddy and R. Ghanem, Basis adaptation in homogeneous chaos spaces, Journal of Computational Physics, vol.259, pp.304-317, 2014.
DOI : 10.1016/j.jcp.2013.12.009

L. Walpole, Elastic Behavior of Composite Materials: Theoretical Foundations, Adv. Appl. Mech, vol.21, pp.169-242, 1981.
DOI : 10.1016/S0065-2156(08)70332-6

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, 1997.

R. Weaver, Spectral statistics in elastodynamics, The Journal of the Acoustical Society of America, vol.85, issue.3, pp.1005-1013, 1989.
DOI : 10.1121/1.397484

E. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Mathematical Proceedings of the Cambridge Philosophical Society, vol.47, issue.04, pp.790-798, 1951.
DOI : 10.1017/S0305004100027237

E. Wigner, Distribution laws for the roots of a random Hermitian matrix In: Poter CE (ed) Statistical Theories of Spectra: Fluctuations, pp.446-461, 1965.

M. Wright and R. Weaver, New directions in linear acoustics and vibration . Quantum chaos, random matrix theory, and complexity, 2010.

O. Zienkiewicz and R. Taylor, The Finite Element Method For Solid And Structural Mechanics, 2005.