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Abstract

The quasi-periodic oscillation of the vocal folds causes perturbations in the
length of the glottal cycles which are known as jitter. The observation of the
glottal cycles variations suggests that jitter is a random phenomenon described
by random deviations of the glottal cycle lengths in relation to a correspond-
ing mean value and, in general, its values are expressed as a percentage of the
duration of the glottal pulse. The objective of the paper is the construction of
a stochastic model for jitter using an one-mass mechanical model of the vocal
folds, which assumes complete right-left symmetry of the vocal folds, and which
considers motions of the vocal folds only in the horizontal direction. Concerning
the study design, the jitter has been the subject for researchers due to its impor-
tant applications such as the identification of pathological voices (nodules in the
vocal folds, paralysis of the vocal folds, or even, the vocal aging, among others).
Large values for jitter variations can indicate a pathological characteristic of
the voice. Concerning the model, the corresponding stiffness of each vocal fold
is considered as a stochastic process and its modeling is proposed. The results
that are presented concern the probability density function of the fundamental
frequency related to the voice signals produced, which are constructed and are
compared for different levels of jitter. Some samples of synthesized voices in
these cases are obtained. As conclusions, it is showed that jitter could be ob-
tained using the model proposed. The Praat software was also used in order to
verify the measures of jitter in the synthesized voice signals.

Keywords: Stochastic modeling, voice production, mechanical models, jitter.

Email addresses: ecataldo@im.uff.br (E. Cataldo),
christian.soize@univ-paris-est.fr (C. Soize)

Preprint submitted to Journal of Voice December 23, 2015



1. Introduction

The systems of voice production are important sensorial structures, which
permit to the human beings communicate, share information, exchange ideas,
feelings, emotions, intentions, etc. The inefficiency of these structures or its
absence can make even the social life more difficult. In addition, there are peo-
ple who depend upon their voices to work, such as broadcasters, singers and
other. So, the interest of evaluating the vocal structures remains important for
the human voice production. Roughly speaking, an air stream coming from the
lungs passes through the trachea, vocal and nasal structures, and reaches the
mouth. In particular, in voiced speech production, where vowels are included,
the production of the voice signal is due to the oscillation of the vocal folds,
which modifies the airflow into pulses of air (the so-called glottal signal) which
will be further filtered and amplified by the vocal tract and, finally, radiated by
the mouth. However, the oscillations of the vocal folds are not exactly periodic
and the pulses of air, which compose the glottal signal, have not exactly the
same time duration. The small random fluctuation in each glottal cycle length
is called jitter and its study is particularly important in different areas related
to the voice generation. One of the first works for quantifying the jitter was
proposed by Lieberman [1] who has characterized it by introducing a factor
representing all perturbations greater than 0.5 ms. Other preliminary works
were based on the calculations of a typical value related to the differences be-
tween the lengths of the cycles and their mean values or, more rarely, from the
instantaneous frequencies and their mean values. Basically, these works agree
with the fact that typical values of the jitter are between 0.1% and 1% of the
fundamental period, for the so-called normal voices; that is, without presence
of pathologies. The jitter value can be seen as a measure of the irregularity
of a quasi-periodic signal and it can be a good indicator of the presence of
pathologies such as vocal fold nodules or a vocal fold polyp [2, 3, 4, 5]. It is
important to say that, in general, jitter decreases as the fundamental frequency
increases. The majority of the authors concludes that it is possible to discrimi-
nate healthy voices from pathological voices using jitter characteristics and even
to recognize speakers [6, 7, 8, 9, 10]. Jitter can be used for measuring the voice
quality, for indicating the presence of pathologies related to the voice, and even
for helping the speech recognition [11, 12, 13]. Some authors have even used
jitter to discuss the relation between age and changes in vocal jitter [14, 15].
In general, to investigate the presence of pathologies related to the voice it is
necessary to extract not only jitter from the voice signal, but also other mea-
sures, like shimmer and HNR (harmonic-noise ration) [16, 17]. There are some
important mechanical models discussed in the literature to produce voice and
even to simulate some pathologies or irregularities related to voice production
[18, 19, 20, 21]. Erath et al. [22] made a good review of lumped-element models
of voiced speech, discussing since the anatomy and physiology of the vocal folds
up to applications of lumped-element vocal fold models in speech research, in-
cluding the discussing of mechanical models and pathological phonation. Shinji
Deguchi and Juki Kawahara [23] present a continuum-based numerical model
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of phonation to simulate human phonation with vocal nodules. Fraile et al.
[24] simulate vocal tremor using a high-dimensional discrete vocal fold model.
However, all of these models are deterministic. There are also some discussions
about generation of chaotic voice signals using mechanical models as the one
proposed by Wong et al. [2], who develops a mass-spring model which is a hy-
brid of the two-mass and the longitudinal string models, proposed by Ishizaka
and Flanagan [19] and Titze [20], respectively. The model is used to simulate
the motion of normal and asymmetric vocal folds. With variation of tissue mass
and stiffness, subharmonic and chaotic vibrations in the displacement of the vo-
cal folds are obtained. It is concluded that similar vibratory characteristics also
appeared in pathological speech data analyzed using time domain jitter and
shimmer measures and a harmonics-to-noise ratio metric. This model is also
deterministic and some authors, as Lieberman [1] and Schoengten [25], suggest
that jitter designates feeble random cycle-to-cycle perturbations of the glottal
cycle lengths. In general, the authors who work with models of jitter (or the
variations of the fundamental frequency) do not introduce mathematical mod-
els for the voice production and only a few authors consider stochastic models
[26, 27, 28, 29]. Some motivations for developing models of jitter include the
discussion about the mechanisms that may cause the movements of the vocal
folds to be aperiodic. The causes of glottal aperiodicities are multiple and in
this paper we discuss one of these causes. Models of jitter may also help to
improve naturalness or mimic hoarse voices and also a motivation is to con-
firm the mathematical form of markers that would characterize perturbed cycle
lengths statistically rather than heuristically [30]. The objective of this paper
is to construct a stochastic model of jitter based on the use of the voice produc-
tion deterministic model introduced by Flanagan and Landgraf [18], including
the modifications brought from the Ishizaka and Flanagan model and those in-
troduced by the authors. Previous works have discussed stochastic mechanical
models to produce voice [26, 27] considering some model parameters as uncer-
tain and modeled by random variables for which prior probability distributions
have been constructed and then updated. However, the approach used here is
different and consists of modeling the stiffness as a stochastic process. Once the
stochastic modeling is done, a nonlinear stochastic differential equation has to
be solved. The synthesis of voice signals is then obtained in taking into account
different levels of jitter.

2. Deterministic model used

The deterministic model used as start is the nonlinear one-mass model pro-
posed by Flanagan and Landgraf to generate voice. The complete model is
composed by two subsystems: the subsystem of the vocal folds (source) and the
subsystem of the vocal tract (filter). The two subsystems are coupled by the
glottal flow. During the phonation, the filter is excited by the sequence of pulses
of the glottal signal. Each vocal fold is represented by a mass-stiffness-damper
system and a symmetric system composed by two vocal folds is constituted. The
vocal tract is represented by a standard configuration of concatenated tubes
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[1, 31]. The complete model considered here presents some modifications in
relation to the original Flanagan and Landgraf model. Some of them have been
introduced by Ishizaka and Flanagan, and others by Cataldo et al. [26, 32]. The
system of differential equations to be solved can be divided in three parts (see
Fig. 1 that illustrates a sketch of the model):

• A nonlinear integro-differential equation for the glottal flow that is coupled
with the vocal tract, called the coupling equation (Eq. (1)).

• A system of linear integro-differential equations related to the sound acous-
tic propagation through the vocal tract and called the sound acoustic
propagation equation (Eq. (7)).

• A nonlinear differential equation related to the dynamics of the vocal folds
and called the vocal folds dynamic equation (Eq. (8)).

Figure 1: Sketch of the Flanagan and Landgraf model (1968).

Before describing these three equations, we define what are the unknowns of
these equations.

• The coupling equation is a scalar nonlinear integro-differential equation
whose unknown time-dependent function is the real-valued function t 7→
ug(t) that models the acoustic volume velocity through the glottis. This
equation depends on the real-valued function t 7→ u1(t) that is related to
the first tube of the sound acoustic propagation into the vocal tract (see
hereinafter).

• The sound acoustic propagation equation is constituted of n + 1 scalar
linear integro-differential equations for which the n + 1 unknown time-
dependent functions are the real-valued functions
t 7→ u1(t), . . . , un(t), uR(t).

• The vocal folds dynamic equation is a scalar nonlinear differential equation
whose unknown time-dependent function is the real-valued function t 7→
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x(t) that is the displacement of the mass of the vocal folds. For all t, x(t)
is generated by the vocal folds dynamic equation. The solution x of such
an equation is constructed for all t and is used as follows:

– The collision of the vocal folds occurs at a time t when x(t) reaches a
given critical value x0 (defined after) and, at this time t, the glottis
closes. The glottis remains closed so that the values {x(τ), t ≤ τ ≤ t′}
of x (that are generated by the vocal folds dynamic equation are such
that x(τ) ≤ x0, and until the time t′ that is such that x(τ ′) > x0 for
τ ′ > t′; x0 is a value related to the initial space between the vocal
folds, before phonation starting (Eq. (6)).

– For {t ≤ τ ≤ t′}, when the glottis is closed, ug and dug/dt remain
zero, ug(τ) = dug(τ)/dτ = 0, the damping is modified in the vocal
folds dynamic equation, but the propagation of sound goes on in the
vocal tract .

Coupling equation. This coupling nonlinear equation in ug and u1, for which
coefficients depend on x(t), is written as

{Rv(x(t)) +Rk(x(t), ug(t))} ug(t) + {Lg(x(t)) + L1}
dug(t)

dt
+

1

c1

∫ t

0

{ug(τ) − u1(τ)} dτ − ps(t) = 0 ,
(1)

where the coefficients Rv(x(t)), Rk(x(t), ug(t)), and Lg(x(t)) are defined by

Rv(x(t)) = 12µ d ℓ2 [Ag(x(t))]
−3 , (2)

Rk(x(t), ug(t)) = 0.44 ρ |ug(t)| [Ag(x(t))]
−2 , (3)

Lg(x(t)) = ρ d [Ag(x(t))]
−1 , (4)

in which Ag(x(t)) is the glottal area that depends on x(t) and that is written as

Ag(x(t)) = Ag0 + ℓ x(t) , (5)

with ℓ the length of each vocal fold, and where Ag0 is such that the critical value
x0 is written as

x0 = −Ag0/ℓ . (6)

In Eqs. (2) to (4), µ is the air kinematic viscosity, d is the vocal fold thickness,
and ρ is the air density. In Eq. (1), ps(t) is the subglottal pressure that is given
and the coefficients c1 and L1 are defined hereinafter. When the glottis is closed
at a time t, Eq. (1) becomes

1

c1

∫ t

0

{ug(τ) − u1(τ)} dτ − ps(t) = 0 .

Sound acoustic propagation equation. We consider the configuration of the vocal
tract proposed by [31]. The vocal tract is represented as a transmission line of
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n cylindrical tubes, for which the section areas are A1, . . . , An (the last area
An corresponds to the mouth) and where the tube lengths are ℓ1, . . . , ℓn. For
i = 1, . . . , n, the corresponding inductances are given by Li = ρ ℓi/(2Ai) and
the capacitances by ci = ℓiAi/(ρc

2
a) in which ca is the sound velocity in air.

To take into account the lost of the vocal tract, resistances are introduced in
series and are such that ri = (Si/A

2
i )
√

ρ µω/2 where Si is the length of the
i-th circumference and ω = (k/m)1/2 is the eigenfrequency frequency of the
undamped vocal folds. The line transmission ends with a radiation load for
which the inductance is written as LR = (8 ρ/(3π))

√
πAn and the resistance

as rR = 128 ρ ca/(9π
2An). Consequently, the linear integro-differential equa-

tions related to the wave acoustic propagation through the vocal tract, which is
coupled to Eq. (1) by time-dependent function u1, are written as





(L1 + L2)
du1(t)

dt
+ (r1 + r2)u1(t) +

1

c2

∫ t

0

{u1(τ) − u2(τ)} dτ+
1

c1

∫ t

0

{u1(τ) − ug(τ)} dτ = 0 ,

(Li + Li+1)
dui(t)

dt
+ (ri + ri+1)ui(t)+

1

ci+1

∫ t

0

{ui(τ) − ui+1(τ)} dτ+
1

ci

∫ t

0

{ui(τ) − ui−1(τ)} dτ = 0 , i = 2, . . . , n− 1 ,

(Ln + LR)
dun(t)

dt
+ rn un(t)− LR

duR(t)

dt
+

1

cn

∫ t

0

{un(τ) − un−1(τ)} dτ = 0 ,

LR
d(uR(t)− un(t))

dt
+ rR uR(t) = 0 .

(7)

Vocal folds dynamic equation. The nonlinear differential equation in x for the
vocal folds dynamics, which is coupled with the vocal-tract (through ug(t)) is
written as

m
d2x(t)

dt2
+ {c+ c∗(x(t))} dx(t)

dt
+ k x(t) + a1 pB(x(t), ug(t)) = a2 ps(t) , (8)

in which a1 = 1.87 ℓd
2 and a2 = ℓd

2 , where x(t) is the displacement of the mass
m of one vocal fold, k is its stiffness, and c is its damping coefficient when the
glottis is opened (when the glottis is closed, there is an additional damping).
The coefficient c∗(x(t)) and the nonlinear function pB(x(t), ug(t)) are defined
as follows:
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• If x(t) ≥ x0 (the glottis is closed), then

c∗(x(t)) = 2α
√
mk , pB(x(t), ug(t)) = 0 , (9)

in which α > 0 is a given damping rate.

• If x(t) < x0 (the glottis is opened), then

c∗(x(t)) = 0 , pB(x(t), ug(t)) =
(1/2) ρ |ug(t)|2
(Ag0 + ℓ x(t))2

. (10)

Remarks on the deterministic system and the stochastic modeling of
the jitter.

• In Eqs. (1) to (10), the values of the parameters can be found in [26, 33, 34].

• Eqs. (1) to (10) constitute a set of nonlinear coupled equations.

• In Eq. (1), dug(t)/dt does not exist at a time t for which the glottis is
closing or is opening. Such a non existence is taken into account by the
numerical scheme of time integration during the computation [26, 34].

• The analysis of the existence and uniqueness of a solution and the possible
bifurcations are very difficult to analyze from a mathematical point of
view. However, these equations have been numerically studied by several
authors and a knowledge on the type of the solutions that can be obtained
is available (in particular, see hereinafter).

• The voice production model constructed defined by Eqs. (1) to (10) can
effectively produce the phonation using only the few control parameters
introduced in the model. It is important to note that there is a range
for the values of the control parameters, which allows for obtaining a
regular phonation. For example, if the subglottal pressure is too low, the
phonation will not be possible. On the other side, if it is too high, the vocal
folds can oscillate in a nonperiodic manner . The parameters considered in
this paper, called the typical glottal condition, make sure that glottal-flow
signal reaches a periodic steady-state for the deterministic model defined
by Eqs. (1) to (10).

• Preliminary studies have shown that small variations of the control pa-
rameters can be associated with a physiological action that allows for
producing the sounds that are targeted. Some types of pathologies can
be simulated for certain values of the control parameters, in particular for
the mass m and the stiffness k of the vocal folds.

• In previous works [26, 27, 33], the tension parameter of the vocal folds
(which is a parameter describing a relation between mass m and stiffness
k of the vocal folds and which can be found, for instance, in [19], was con-
sidered as a random variable and its probability density function was con-
structed and identified by solving an inverse stochastic problem. Further,
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it was updated using the Bayesian method [27]. In this paper, we consider
a stochastic model for k that is modeled by a stochastic processK(t) in or-
der to generate a jitter in the voice production for the phonation. The cor-
responding nonlinear stochastic differential equation is obtained by substi-
tuting in Eq. (8), stiffness k by K(t). Consequently, ug, u1, . . . , un, uR and
x become stochastic processes Ug, U1, . . . , Un, UR, X , which have to verify
Eqs. (1) to (10) and then, these nonlinear stochastic integro-differential dif-
ferential equations have to be solved. We are interested in constructing the
asymptotic stationary solution which corresponds to a ”quasi-periodic”
steady state, showing that the normal voices and also some pathologi-
cal voices can be characterized with such a stochastic model of the voice
production.

• The construction of the stochastic processK(t) is explained in hereinafter.

3. Generating Jitter

3.1. Stochastic modelling of jitter

Let {K(t), t ∈ R} be a stochastic process indexed by the real line R, with
values in R

+, which models stiffness k in Eq. (8). As the objective of the
stochastic model is to enrich the deterministic model of the voice production,
and since we are interested in constructing a stochastic perturbation (the jitter
effect) of the periodic solution that is produced when the stiffness is a constant
k, it is coherent to introduce a stationary stochastic process for {K(t), t ∈ R}
(because, if a constant k can be viewed as a particular stationary stochastic
process, while a constant k cannot be viewed as a nonstationary stochastic pro-
cess). Consequently, the deterministic equations defined by Eqs. (1), (7), and
(8) for deterministic time functions ug, u1, . . . , un, uR and x become stochastic
equations for stochastic processes denoted by Ug, U1, . . . , Un, UR, X , which are
written as follows.

Stochastic vocal folds dynamic equation. The vocal folds dynamic equation
(defined by Eqs. (8) to (10)) in x(t) depending on ug(t) becomes a nonlin-
ear stochastic differential equation for the stochastic process X(t) coupled with
the stochastic process Ug, such that

m
d2X(t)

dt2
+{c+c∗(X(t))} dX(t)

dt
+K(t)X(t)+a1 pB(X(t), Ug(t)) = a2 ps(t) ,

(11)

in which c∗(X(t)) and pB(X(t), Ug(t)) are such that

• If X(t) ≥ x0 a.s. (the glottis is closed), then

c∗(X(t)) = 2α
√
mK(t) , pB(X(t), Ug(t)) = 0 a.s . (12)

8



• If X(t) < x0 a.s. (the glottis is opened), then

c∗(X(t)) = 0 a.s. , pB(X(t), Ug(t)) =
(1/2) ρ |Ug(t)|2
(Ag0 + ℓX(t))2

. (13)

Stochastic coupling equation. The coupling nonlinear equation (defined by Eq. (1)
with Eqs. (2) to (6)) in ug and coupled with u1, for which the coefficients de-
pend on x(t), become a stochastic coupling equation for the stochastic process
Ug and coupled with the stochastic process U1, for which the coefficients depend
on stochastic process X , and is written as

{Rv(X(t)) +Rk(X(t), Ug(t))}Ug(t) + {Lg(X(t)) + L1}
dUg(t)

dt
+

1

c1

∫ t

0

{Ug(τ) − U1(τ)} dτ − ps(t) = 0 ,
(14)

where the stochastic coefficients Rv(X(t)), Rk(X(t), Ug(t)), and Lg(X(t)) are
defined by Eqs. (2) to (5). When the glottis is closed at a time t, Eq. (14)
becomes

1

c1

∫ t

0

{Ug(τ) − U1(τ)} dτ − ps(t) = 0 . (15)

Stochastic sound acoustic propagation equation. The resistances r1, . . . , rn of
the vocal tract become stochastic processes R1, . . . , Rn such that, for all t and
for all i = 1, . . . , n,

Ri(t) = (Si/A
2
i )
√
ρ µΩ(t)/2 , Ω(t) = (K(t)/m)1/2 , (16)

and, consequently, the sound acoustic propagation equation (defined by Eq. (7))
in u1, . . . , un, uR becomes a stochastic sound acoustic propagation equation with
stochastic coefficients for the stochastic processes U1, . . . , Un, UR, which is writ-
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ten as




(L1 + L2)
dU1(t)

dt
+ (R1(t) +R2(t))U1(t) +

1

c2

∫ t

0

{U1(τ) − U2(τ)} dτ+
1

c1

∫ t

0

{U1(τ)− Ug(τ)} dτ = 0 ,

(Li + Li+1)
dUi(t)

dt
+ (Ri(t) +Ri+1(t))Ui(t)+

1

ci+1

∫ t

0

{Ui(τ) − Ui+1(τ)} dτ+
1

ci

∫ t

0

{Ui(τ) − Ui−1(τ)} dτ = 0 , i = 2, . . . , n− 1 ,

(Ln + LR)
dUn(t)

dt
+Rn(t)Un(t)− LR

dUR(t)

dt
+

1

cn

∫ t

0

{Un(τ)− Un−1(τ)} dτ = 0 ,

LR
d(UR(t)− Un(t))

dt
+ rR UR(t) = 0 .

(17)

3.1.1. Construction of a stochastic model for K(t)

The following properties of the stochastic process {K(t), t ∈ R} are intro-
duced in order to obtain a suitable solution for stochastic equations: Eqs. (1)
to (7) and Eqs. (11) to (13):

(i) For all t, 0 < k0 ≤ K(t) a.s. , where k0 is a positive constant.

(ii) {K(t), t ∈ R} is a stationary stochastic process (for the reason given before).

(iii) {K(t), t ∈ R} is a second-order stochastic process, mean-square continu-
ous, with mean value k = E{K(t)} > k0 > 0. The centered stochastic process
Kc is such that K(t) = Kc(t) + k. The autocorrelation function of stochas-

tic process Kc is written, for all real τ , as RKc
(τ) =

∫ +∞

−∞
eiωτSKc

(ω) dω in
which the positive-valued function SKc

(ω) is the power spectral density func-
tion and, for all fixed t, the variance of the random variable K(t) is such that

σ2
K = RKc

(0) =
∫ +∞

−∞
SKc

(ω) dω.

(iv) For all fixed t in R, the random variable K(t) is written as

K(t) = k0 + (k − k0)(z + Z(t))2 . (18)

The stochastic process Z and the real constant z must be constructed in order
that, for all t in R, E{(z+Z(t))2} = 1 and E{(z+Z(t))4} < +∞. The stochas-
tic process {Z(t), t ∈ R} is constructed as a second-order Gaussian stochastic
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process, indexed by R, with values in R, which is centered, mean-square contin-
uous, stationary and ergodic, physically realizable, whose power spectral density
function SZ(ω) is written as

SZ(ω) =
1

2π

a2

ω2 + b2
, a > 0 , b > 0 , (19)

in which a and b must satisfy the constraint equation E
{
(z + Z(t))2

}
= 1 that

can be written as

z2 +

∫ +∞

−∞

a2

2π(ω2 + b2)
dω = 1 =⇒ z2 = 1− a2

2b
, (20)

which yields the following constraint inequality for a and b,

b > 0 , 0 < a <
√
2b . (21)

Consequently, Gaussian stochastic process Z can be viewed as the linear filtering
Z = h ∗ N∞ of the centered Gaussian white noise N∞ (generalized stochastic
process) whose power spectral spectral density function is SN∞

(ω) = 1/(2π),

by the causal and stable linear filter whose frequency response function ĥ(ω) =∫ +∞

0 e−iωth(t) dt = a/(iω + b) (because SZ(ω) = |ĥ(ω)|2 SN∞
(ω)). Introducing

the linear Itô stochastic differential equation,

dY (t) = −b Y (t) dt+ a dW (t) t > 0 , (22)

with the initial condition Y (0) = 0 a.s., in which W is the real-valued normali-
zed Wiener process indexed by [0,+∞[, it can be proved [35, 36] that Eq. (22)
has a unique solution {Y (t), t ≥ 0} such that, for t0 → +∞, the stochastic
process {Y (t), t ≥ t0} is stochastically equivalent to the stationary stochastic
process Z (note that Y is not stationary on R

+ for the positive shift, but is
asymptotically stationary). In practice, this means that, if t0 is chosen suffi-
ciently large, Y and Z are the same Gaussian stationary and ergodic second-
order centered stochastic process for which the power spectral density function
is given by Eq. (19). Consequently, Eq. (22) can be used for generating trajec-
tories of stochastic process Z.

3.2. Jitter measurements

There are different types of measures for jitter listed below.

(i) Absolute. It is the cycle-to-cycle variation of the fundamental frequency,
i.e, the average absolute difference between consecutive periods, in seconds,
expressed as

Jitabs =
1

N − 1

N−1∑

i−1

| Ti − Ti+1 | , (23)
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in which Ti are the lengths of each glottal cycle and N is the number of periods
considered.

(ii) Local. It is the average absolute difference between consecutive periods,
divided by the average period, and given by

Jitloc =

1

N − 1

N−1∑

i−1

| Ti − Ti+1 |

1

N

N∑

i=1

Ti

. (24)

In general, the value 1.040% is considered as a threshold for the occurrence of
a pathology.

(iii) RAP. It is the relative average perturbation, the average absolute difference
between a period and the average of it and its two neighbors, divided by the av-
erage period. In general, 0.680% is considered as a threshold for the occurrence
of a pathology.

(iv) PPQ5. It is the five-point period perturbation quotient, computed as the
average absolute difference between a period and the average of it and its four
closest neighbors, divided by the average period. In general, 0.840% is consid-
ered as a threshold for pathology; as this number was based on jitter measure-
ments influenced by noise, the correct threshold is probably lower.

(v) DDP. It is the five-point period perturbation quotient, computed as the
average absolute difference between a period and the average of it and its four
closest neighbors, divided by the average period.

4. Simulations

The objective of this section is to simulate voice signals considering the
stochastic model proposed and, consequently, with jitter. The subglottal pres-
sure ps(t) (given in Pa) is a function of time defined (according to the results
obtained in [32]) by

ps(t) =





800 sin (5πt) , 0 ≤ t < 0.1
800 , 0.1 ≤ t ≤ 1.9

800 sin

(
5πt

9

)
, 1.9 < t ≤ 2 .

(25)

The graph of function ps is displayed in Fig. 2. The values of the parameters
for the deterministic model are the following: Ag0 = 0.05 × 10−2m2, ρ =
0.12 kg/m3, ca = 346.3m/s, µ = 1.86 × 10−4 kg/(m2s), m = 0.24 × 10−2 kg,

12
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Figure 2: Graph of the subglottal pressure t 7→ ps(t).

ℓ = 1.4 × 10−2m, d = 0.3 × 10−2m, k0 = 40N/m, k = 115N/m. For the
damping coefficient, it was considered c = 0 and α = 1, i.e, only during the
collision the damping was considered, as in [? ]. The constants a and b (verifying
Eq. (21)) are taken as a = 40 and b = 1, 000, 000. The stochastic solver is the
Monte Carlo method. The number of realizations is N = 2× 88, 200 = 176, 400,
with a time step ∆t = 1/fs = 1/88200 s. The time of simulation for each
realization is then given by N ×∆t = 2 s. This number is enough in order to
warrant the convergence of the solution to a stationary and ergodic stochastic
process. Below, we consider only the asymptotic stationary and ergodic solution.
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For such an asymptotic solution, the expected values E{K(t)} and E{K(t)2}
are thus independent of t and can be estimated by

E{K(t)} = lim
t→+∞

K(t) , K(t) =
1

t

∫ t

0

K(t′)dt′ , (26)

E{K(t)2} = lim
t→+∞

K2(t) , K2(t) =
1

t

∫ t

0

K(t′)2dt′ , (27)

which allows for verifying when the ergodicity property is reached (due to the
use of stochastic process Y instead of stochastic process Z). Only the first 1, 000
points are considered for plotting the graphs shown in Fig. 3. Since stochastic
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Figure 3: (a) Graph of the mean value K, in relation to the number of realizations. (b) Graph
of the second-moment of K; that is, K2, in relation to the number of realizations.

process K is stationary, for any fixed t, the cumulative distribution function
FK(k) of the random variable K(t) is independent of t and is such that

FK(k) = Proba{K(t) ≤ k} = E{1[−∞,k](K(t))} ,

1]−∞,k](k
′) =

{
1 , if k′ ≤ k
0 , if k′ > k.

Due to the ergodic property of stochastic process K,

FK(k) = lim
t→+∞

FK(k; t) , FK(k; t) =
1

t

∫ t

0

1]−∞,k](K(t′))dt′ .
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Fig. 4 shows the graphs of t 7→ FK(k; t) for different values of k, considering
only the first 1, 000 time steps of the time simulation. In order to illustrate how
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Figure 4: For several values of k, graph of the cumulative distribution function FK , in relation
to the number of realizations. The lower graph corresponds to the minimum value of k, and
the upper graph to its maximum value.

the variation of the fundamental frequency (jitter) is achieved, three samples
of voice signals are simulated: one considering only the deterministic model,
without jitter (a = 0), and the two others with different levels of jitter (a = 40
and a = 160).
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Samples of the glottal signal ( Ug) simulated are shown in Fig. 5, considering
the case in which an /a/ vowel is produced. It can be observed the variation
of the amplitude, called shimmer, associated to the jitter. It can be noted that
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400
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time (s)

Figure 5: Glottal signal without jitter (a) and with jitter (b) a = 40 and (c) a = 160, amplitude
variation synthesized by the described model.

the variation of the time interval for the glottal pulses varies and this implies
variation in its amplitudes. In Fig. 5 there are not variations in the time interval
and consequently in the amplitudes; that is, there are neither jitter nor shimmer.

16



The stochastic output pressure is calculated by PR(t) = d
dtUR(t) and the

plots corresponding to the glottal flows (Fig. 5) are given in Fig. 6. Maybe it
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Figure 6: Output pressure signal without jitter (a) and with jitter (b) a = 40 and (c) a = 160,
synthesized by the described model.

is not too easy to observe the variation of the fundamental frequency in these
plots. A good way to observe such a variation of the fundamental frequency is
to construct the probability density function (pdf) associated to it.
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Then, two voice signals are simulated corresponding to different values of a
(two different levels of the jitter), and the pdf’s are constructed (Fig. 7). Some
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Figure 7: Probability density functions of the fundamental frequency considering two different
levels of Jitter: a = 40 (continuous line) and a = 160 (dashed line).

results obtained with the vowels synthesis, in the deterministic case, and with
two different levels of jitter (a = 0, a = 40 and a = 160) can be found and heard
in https://www.dropbox.com/s/mwaq3u6ad96po7x/male140Hz.zip?dl=0,
for which detn corresponds to the case without jitter, N1 corresponds to a = 40
and N2 corresponds to a = 160.

Using the signals synthesized, with two different levels of jitter, the Praat
software [37] was used for measuring jitter, considering approximately the same
number of periods and during the time the subglottal pressure is constant. Then,
Tab. (1) is constructed:

Vowel level Abs Loc RAP PPQ5 DDP
A N1 43.2e-6 0.6 % 0.361 % 0.367 % 1.084 %

N2 182.21e-6 2.553 % 1.522 % 1.504 % 4.566 %
E N1 32.122e-6 0.448 % 0.254 % 0.272 % 0.761 %

N2 133.35e-6 1.575 % 0.808 % 0.852 % 2.453 %
I N1 36.821e-6 0.504 % 0.313 % 0.285 % 0.939 %

N2 116.614e-6 1.599 % 0.948 % 1.028 % 2.845 %
O N1 32.200e-6 0.483 % 0.271 % 0.318% 0.813 %

N2 149.048e-6 2.197 % 1.225 % 1.388 % 3.674 %
U N1 41.421e-6 0.577 % 0.360 % 0.313 % 1.080 %

N2 190.009e-6 2.650 % 1.659 % 1.414 % 4.977 %

Table 1: Jitter measurements calculated by using Praat software.
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5. Conclusions

An approach has been proposed for constructing a stochastic model for cre-
ating jitter in a mechanical model that allows for producing voice. Such a
model considers the stiffness related to the vocal folds as a stochastic process
and the corresponding voice signals have been simulated. The probability den-
sity function of the fundamental frequency constructed for different values of
the parameters associated to the stochastic model can then be estimated. The
comparison between the probability density functions shows that the fundamen-
tal frequency has variations in relation to a mean value, showing that jitter has
effectively been generated. The voice signals have also been synthesized and it
can be perceived the different sounds related to a normal voice, without jitter,
and with jitter for two different levels of jitter. One of them is very similar to
a normal voice with a low percentage of variation of the fundamental frequency
while the other one has a much greater variation that characterizes a hoarse
voice that can indicate the occurrence of a pathology.
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