V. Barbu, A. , and G. Tessitore, Carleman estimates and controllability of linear stochastic heat equations, Appl. Math. Optim, vol.47, issue.2, pp.97-120, 2003.

P. Brémaud, Point processes and queues : martingale dynamics. Springer series in statistics, 1981.
DOI : 10.1007/978-1-4684-9477-8

R. Buckdahn, M. Quincampoix, and G. Tessitore, A Characterization of Approximately Controllable Linear Stochastic Differential Equations, Stochastic partial di¤ erential equations and applications? VII, pp.53-60, 2006.
DOI : 10.1201/9781420028720.ch6

F. Confortola, M. Fuhrman, and J. Jacod, Backward stochastic di¤erential equations driven by a marked point process: an elementary approach, with an application to optimal control, Annals of Applied Probability, 2015.

A. Crudu, A. Debussche, and O. Radulescu, Hybrid stochastic simpli?cations for multiscale gene networks, BMC Systems Biology, pp.3-89, 2009.

R. F. Curtain, Invariance Concepts in Infinite Dimensions, SIAM Journal on Control and Optimization, vol.24, issue.5, pp.1009-1030, 1986.
DOI : 10.1137/0324059

M. H. Davis, Markov models and optimization, volume 49 of Monographs on Statistics and Applied Probability, 1993.

E. Fernández-cara, M. J. Garrido-atienza, and J. , On the approximate controllability of a stochastic parabolic equation with a multiplicative noise, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.328, issue.8, pp.675-680, 1999.
DOI : 10.1016/S0764-4442(99)80233-X

D. Goreac, A Kalman-type condition for stochastic approximate controllability, Comptes Rendus Mathematique, vol.346, issue.3-4, pp.183-188, 2008.
DOI : 10.1016/j.crma.2007.12.008

D. Goreac, Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions, Applied Mathematics and Optimization, vol.14, issue.4, pp.105-132, 2009.
DOI : 10.1007/s00245-009-9068-y

URL : https://hal.archives-ouvertes.fr/hal-00693128

D. Goreac, A note on the controllability of jump diffusions with linear coefficients, IMA Journal of Mathematical Control and Information, vol.29, issue.3, pp.427-435, 2012.
DOI : 10.1093/imamci/dns001

URL : https://hal.archives-ouvertes.fr/hal-00728378

D. Goreac, Controllability Properties of Linear Mean-Field Stochastic Systems, Stochastic Analysis and Applications, vol.245, issue.2, pp.280-297, 2014.
DOI : 10.1007/BF01442887

URL : https://hal.archives-ouvertes.fr/hal-00879277

D. Goreac and M. Martinez, Algebraic invariance conditions in the study of approximate (null-)controllability of Markov switch processes, Mathematics of Control, Signals, and Systems, vol.16, issue.3, pp.551-578, 2015.
DOI : 10.1007/s00498-015-0146-1

URL : https://hal.archives-ouvertes.fr/hal-01061543

M. L. Hautus, Controllability and observability conditions of linear autonomous systems, Proc. Ser. A 72 Indag, pp.443-448, 1969.

N. Ikeda and S. Watanabe, Stochastic Di¤ erential Equations and Di¤ usion Processes, 1981.

B. Jacob and J. R. Partington, On controllability of diagonal systems with one-dimensional input space, Systems & Control Letters, vol.55, issue.4, pp.321-328, 2006.
DOI : 10.1016/j.sysconle.2005.08.008

B. Jacob and H. Zwart, Exact observability of diagonal systems with a finite-dimensional output operator, Systems & Control Letters, vol.43, issue.2, pp.101-109, 2001.
DOI : 10.1016/S0167-6911(00)00117-1

M. Jacobsen, Point Process Theory And Applications. Marked Point and Piecewise Deterministic Processes, 2006.

S. Krishna, B. Banerjee, T. V. Ramakrishnan, and G. V. Shivashankar, Stochastic simulations of the origins and implications of long-tailed distributions in gene expression, Proceedings of the National Academy of Sciences, vol.102, issue.13, pp.4771-4776, 2005.
DOI : 10.1073/pnas.0406415102

S. Peng, Backward stochastic di¤erential equation and exact controllability of stochastic control systems, Progr. Natur. Sci, vol.4, pp.274-284, 1994.

D. Russell and G. Weiss, A General Necessary Condition for Exact Observability, SIAM Journal on Control and Optimization, vol.32, issue.1, pp.1-23, 1994.
DOI : 10.1137/S036301299119795X

E. J. Schmidt and R. J. Stern, Invariance theory for infinite dimensional linear control systems, Applied Mathematics & Optimization, vol.8, issue.1, pp.113-122, 1980.
DOI : 10.1007/BF01442887

M. Sirbu and G. Tessitore, Null controllability of an infinite dimensional SDE with state- and control-dependent noise, Systems & Control Letters, vol.44, issue.5, pp.385-394, 2001.
DOI : 10.1016/S0167-6911(01)00158-X