Hierarchical image segmentation relying on a likelihood ratio test

Abstract : Hierarchical image segmentation provides a set of image seg-mentations at different detail levels in which coarser details levels can be produced by simple merges of regions from segmentations at finer detail levels. However, many image segmentation algorithms relying on similarity measures lead to no hierarchy. One of interesting similarity measures is a likelihood ratio, in which each region is modelled by a Gaussian distribution to approximate the cue distributions. In this work, we propose a hierarchical graph-based image segmentation inspired by this likelihood ratio test. Furthermore, we study how the inclusion of hierarchical property have influenced the computation of quality measures in the original method. Quantitative and qualitative assessments of the method on three well known image databases show efficiency.
Type de document :
Communication dans un congrès
ICIAP 2015, Sep 2015, Genova, Italy. Springer, LNCS (9280), Image Analysis and Processing — ICIAP 2015. <10.1007/978-3-319-23234-8_3>
Liste complète des métadonnées


https://hal-upec-upem.archives-ouvertes.fr/hal-01229844
Contributeur : Yukiko Kenmochi <>
Soumis le : mardi 17 novembre 2015 - 11:49:08
Dernière modification le : mardi 24 novembre 2015 - 09:23:36
Document(s) archivé(s) le : jeudi 18 février 2016 - 13:40:34

Fichier

2015-conf-iciap-sprt.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Silvio Jamil Guimarães, Zenilton Kleber G. Do Patrocinio, Yukiko Kenmochi, Jean Cousty, Laurent Najman. Hierarchical image segmentation relying on a likelihood ratio test. ICIAP 2015, Sep 2015, Genova, Italy. Springer, LNCS (9280), Image Analysis and Processing — ICIAP 2015. <10.1007/978-3-319-23234-8_3>. <hal-01229844>

Partager

Métriques

Consultations de
la notice

227

Téléchargements du document

115