
HAL Id: hal-01226035
https://hal.science/hal-01226035

Submitted on 7 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Tree Containment Problem for Genetically
Stable Networks in Quadratic Time

Philippe Gambette, Andreas D.M. Gunawan, Anthony Labarre, Stéphane
Vialette, Louxin Zhang

To cite this version:
Philippe Gambette, Andreas D.M. Gunawan, Anthony Labarre, Stéphane Vialette, Louxin Zhang.
Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time. IWOCA
2015, Oct 2015, Verona, Italy. pp.197-208, �10.1007/978-3-319-29516-9_17�. �hal-01226035�

https://hal.science/hal-01226035
https://hal.archives-ouvertes.fr

Solving the Tree Containment Problem for
Genetically Stable Networks in Quadratic Time

Philippe Gambette1, Andreas D. M. Gunawan2, Anthony Labarre1,
Stéphane Vialette1, and Louxin Zhang2

1 Université Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, F-77454,
Marne-la-Vallée, France

2 Department of Mathematics, National University of Singapore

Abstract. A phylogenetic network is a rooted acyclic digraph whose
leaves are labeled with a set of taxa. The tree containment problem is a
fundamental problem arising from model validation in the study of phy-
logenetic networks. It asks to determine whether or not a given network
displays a given phylogenetic tree over the same leaf set. It is known to
be NP-complete in general. Whether or not it remains NP-complete for
stable networks is an open problem. We make progress towards answer-
ing that question by presenting a quadratic time algorithm to solve the
tree containment problem for a new class of networks that we call genet-
ically stable networks, which include tree-child networks and comprise a
subclass of stable networks.

1 Introduction

With thousands of genomes being fully sequenced, phylogenetic networks have
been adopted to study “horizontal” processes that transfer genetic material from
a living organism to another without descendant relation. These processes are a
driving force in evolution which shapes the genome of a species [1, 9].

A rooted (phylogenetic) network over a set X of taxa is a rooted acyclic
digraph with a set of leaves (i.e., vertices of outdegree 0) that are each labeled
with a distinct taxon. Such a network represents the evolutionary history of the
taxa in X, where the tree nodes (i.e., nodes of indegree 1) represent speciation
events. The nodes of indegree at least two are called reticulations and represent
genetic material flow from several ancestral species into an “unrelated” species.
A plethora of methods for reconstructing networks and related algorithmic issues
have been extensively studied over the past two decades [4, 5, 8, 10].

One of the ways of assessing the quality of a given phylogenetic network is to
verify that it is consistent with previous biological knowledge about the species.
Biologists therefore demand that the network display existing gene trees, and the
corresponding algorithmic problem is known as the tree containment problem (or
TC problem for short) [5], which is well-known to be NP-complete [7, 6]. Great
efforts have been devoted to identifying tractable subclasses of networks, such
as binary galled trees [7], normal networks, binary tree-child networks, level-k

1

networks [6], or nearly-stable networks [3]. One of the major open questions in
this setting is the complexity of the TC problem on the so-called stable networks.

A node v in a network is stable if there exists a leaf such that every path
from the root to the leaf passes through v. A network is stable (or reticulation
visible) [5] if every reticulation is stable. Motivated by the study in [2], we make
progress in this work towards determining the complexity of the TC problem on
stable networks by presenting a quadratic-time algorithm for a new class that
we call genetically stable networks. As we shall show, these networks comprise a
subclass of stable, tree-sibling networks, including tree-child networks.

2 Concepts and Notions

2.1 Binary networks

We focus in this paper on binary networks, i.e. networks whose root has in-
degree 0 and outdegree 2, whose internal nodes all have degree 3, and whose
leaves all have indegree 1 and outdegree 0. An internal node in a network N is
called a tree node if its indegree and outdegree are 1 and 2, respectively. It is
called a reticulation (node) if its indegree and outdegree are 2 and 1, respectively.
A node v is said to be below a node u if u is an ancestor of v, i.e. there is a
directed path from u to v in N .

We also assume that in a binary network, there is a path from its root
to every leaf and that a node can be of indegree 1 and outdegree 1. We also
draw an open edge entering the root so that the root becomes a tree node with
degree 3, as shown in Figure 1. For a network or a subnetwork N , we use the
following notation: ρ(N) for its root, L(N) for its leaf set, R(N) for the set
of reticulations, T (N) for the set of tree nodes, V(N) for its vertex set (i.e.,
R(N)∪T (N)∪L(N)∪{ρ(N)}), E(N) for its edge set, p(u) for the set of parents
of u ∈ R(N) or the unique parent of u otherwise, children(u) for the set of
children of u ∈ T (N) or the unique child of u ∈ R(N), and PN (u, v) for the set
of all paths from a node u to a node v in N .

A B C D

r

p

u

v

u

v
p

d

Fig. 1. (A) A nearly tree-child network. (B) A non-nearly tree-child network, in which
the parents of r are not connected to any leaf by a tree path. (C) A subtree T ′ obtained
by removing an incoming edge from each reticulation in the network in B. (D) A tree
obtained from T ′ by contraction.

2

A path P from u to v in a network is a tree path if every internal node of P ,
that is every node in V(P) \ {u, v}, is a tree node. For a network N and an edge
subset E ⊆ E(N), N−E denotes the subnetwork with vertex set V(N) and edge
set E(N)−E. For a node subset S ⊂ V(N), N −S denotes the subnetwork with
vertex set V(N)− S and edge set {(u, v) ∈ E(N) | u ̸∈ S, v ̸∈ S}. When E or S
has only one element x, we simply write N − x. A leaf in the resulting network
is a dummy leaf if it is not a leaf in the original network N .

2.2 The Tree Containment (TC) Problem

Let N be a binary network and T a binary tree over the same set of taxa. We say
that N displays T if N contains a subtree T ′, obtained by removing an incoming
edge for each reticulation in N , such that T can be obtained from T ′ by:

1. recursively removing dummy leaves (such as d in Figure 1.C), and
2. contracting every path containing only nodes of degree 2 into a single edge

(Figure 1.B-D).

T ′ is then referred to as a subdivision of T in N . Given a binary network and a
binary tree, the tree containment (TC) problem is to determine whether or not
the network displays the tree [5]. This problem is known to be NP-complete [7,
6], and a large part of the current research therefore focuses on finding tractable
classes of binary networks that are as general as possible.

3 Genetically Stable Networks

Let N be a binary network and u, v ∈ V(N). Node u is stable on node v if
every path from ρ(N) to v passes through u. We denote by PDLN (u) the set of
leaves on which u is stable, and say that u is stable (or visible) if PDLN (u) ̸= ∅.
Network N is itself stable if every r ∈ R(N) is stable. The network in Figure 1.A
is stable, whereas the one in Figure 1.B is not. The following result will be useful.

Proposition 1. Let N be a binary network and r ∈ R(N) with p(r) = {u, v}.

(a) If s ∈ V(N) is a stable node, then children(s) contains a tree node.
(b) If N is stable, then both parents of each reticulation are tree nodes.
(c) For any descendant x of r, either u or v is not stable on x.
(d) If r and u are stable on the same leaf, then u is stable on v.
(e) If r is stable on ℓ ∈ L(N) and v is stable on ℓ′ ∈ L(N) but not on ℓ, then u

is not in a path from v to ℓ′. Additionally, there is no z in a path from v to
ℓ′ that is connected to u by a tree path.

If a tree node is stable on a leaf ℓ, then its unique parent is also stable on ℓ,
but the stability of a reticulation does not imply that of its parents. Cordue, Linz
and Semple [2] recently introduced a class of stable networks that we call nearly
tree-child networks and which satisfy the property that every reticulation has a
parent connected to some leaf by a tree path (see Figure 1.A for an example).

3

In this paper, we are interested in stable networks in which every reticulation
has a stable parent. We coin the concept genetic stability (GS) to describe such
networks, which conveys the idea that each reticulation inherits its stability
from one of its parents. Note that in a nearly tree-child network, there is a tree
path from one of the parents of every reticulation to a leaf, so that parent must
be stable. On the other hand, a GS network may not be a nearly tree-child
network3. Therefore, GS networks comprise a proper superclass of the nearly
tree-child networks.

A network is tree-sibling if every reticulation has at least one sibling that is
a tree node [5]. Interestingly, we also have the following fact.

Proposition 2. Every GS network is tree-sibling.

Our result on the complexity of the TC problem for binary GS networks
therefore refines the complexity gap of the TC problem between the classes of
binary tree-child networks, where it can be solved in polynomial time, and tree-
sibling networks where it is NP-complete [6]. Furthermore, a study of the proper-
ties of networks simulated using the coalescent model with recombination shows
that the percentage of simulated networks which are GS is significantly larger
than that of tree-child networks (see http://phylnet.info/recophync/), thus
making that new class significant in practice.

4 Solving the TC Problem For GS Networks

In this section, T denotes a binary tree and N is a genetically stable network on
the same leaf set as T unless noted otherwise.

4.1 Overview of the Algorithm

A cherry is a subtree induced by two sibling leaves ℓ′ and ℓ′′ and their parent
αℓ′,ℓ′′ , which we denote {αℓ′,ℓ′′ , ℓ

′, ℓ′′}. It is easy to see that any tree can be
transformed into a single node by repeatedly deleting the leaves of a cherry and
their incident edges, since this operation turns their parent into a new leaf.

Our algorithm relies on the fact that for any cherry {αℓ′,ℓ′′ , ℓ
′, ℓ′′} in T , N

displays T if and only if there exists a tree node p ∈ T (N) and two disjoint
specific paths (defined later) P ′ ∈ PN (p, ℓ′) and P ′′ ∈ PN (p, ℓ′′) such that the
modified network N − [(V(P ′) ∪ V(P ′′)) \ {p}] displays the modified tree T −
{ℓ′, ℓ′′}, if we identify leaf p in the modified network with leaf αℓ′,ℓ′′ (the parent
node of the cherry in T) in the modified tree. Therefore, our algorithm is a
recursive procedure which executes the following tasks at each recursive step:

S1: Select a cherry {αℓ′,ℓ′′ , ℓ
′, ℓ′′} in T , and determine the corresponding node p

and paths P ′ and P ′′.
S2: If we fail to find such a node and such paths,N does not display T . Otherwise,

recurse on N − [(V(P ′) ∪ V(P ′′)) \ {p}] and T − {ℓ′, ℓ′′}.
3 See e.g. the network given at http://phylnet.info/isiphync/network.php?id=4

4

4.2 Three Lemmas

The difficulty in implementing the proposed approach is that a network can
display a tree through different subdivisions of the tree and the parent node and
edges of a cherry may correspond to different tree nodes and paths in different
subdivisions. Therefore, we first prove that the two paths corresponding to the
edges of a cherry have special properties.

Lemma 1 (Cherry path). Let N display T and {αℓ′,ℓ′′ , ℓ
′, ℓ′′} be a cherry in

T . Then αℓ′,ℓ′′ corresponds to a tree node p in each subdivision T ′ of T in N .
Moreover, assume that P ′ and P ′′ are the paths in T ′ that correspond to arcs
(αℓ′,ℓ′′ , ℓ

′) and (αℓ′,ℓ′′ , ℓ
′′), respectively. Then the following properties hold:

(1) The node p is not stable on any leaf ℓ ̸∈ {ℓ′, ℓ′′}.
(2) No vertex in P ′ \ {p} is stable on a leaf other than ℓ′.
(3) No vertex in P ′′ \ {p} is stable on a leaf other than ℓ′′.

In the following discussion, we focus on paths P from an internal node x to
a leaf ℓ having the following property:

(⋆) Each u ∈ V(P) \ {x} is either stable only on ℓ or not stable at all.

A path satisfying condition (⋆) is called a specific path (with respect to ℓ). We
use SPN (x, ℓ) to denote the set of specific paths from x to ℓ ∈ L(N). A path P
from u to v is said to be unstable specific if no x ∈ V(P) \ {u, v} is stable, where
u and v are non-leaf nodes. Note that in a GS network, an unstable specific
path is a tree path, since every reticulation is stable. Finally, for a path P and
a, b ∈ V(P), we use P [a, b] to denote the subpath of P from a to b.

Lemma 2 (Cherry path uniqueness). Let N be a GS network, ℓ1, ℓ2 ∈
L(N), and a′, a′′ ∈ T (N). If there exist two paths P ′

1 ∈ SPN (a′, ℓ1) and P ′
2 ∈

SPN (a′, ℓ2) such that V(P ′
1) ∩ V(P ′

2) = {a′} and two paths P ′′
1 ∈ SPN (a′′, ℓ1)

and P ′′
2 ∈ SPN (a′′, ℓ2) such that V(P ′′

1) ∩ V(P ′′
2) = {a′′}, then:

(1) Either a′′ is a descendant of a′ in P ′
1 ∪ P ′

2 or vice versa.
(2) If a′′ is a descendant of a′ in P ′

2 and u1 is the highest common node in P ′
1

and P ′′
1 (Figure 2.A), then one of the following facts holds:

(a) P ′
1[a

′, u1] = (a′, u1) ∈ E(N), and P ′′
1 [a

′′, u1] is unstable specific.
(b) P ′′

1 [a
′′, u1] = (a′′, u1) ∈ E(N) and a′′ is stable on ℓ2.

Proof. (1) Assume the statement is false. Since both P ′
i and P ′′

i end at ℓi, they
must intersect for i = 1, 2. Let ui be the highest common node in P ′

i and P ′′
i ,

i = 1, 2. Clearly, u1 and u2 are reticulations stable on ℓ1 and ℓ2, respectively; for
each i, the only node common to P ′

i [a
′, ui] and P ′′

i [a
′′, ui] is ui (Figure 2.B-D).

If P ′
1[a

′, u1], P
′′
1 [a

′′, u1], P
′
2[a

′, u2], and P ′′
2 [a

′′, u2] are all edges (Figure 2.B),
then a′ and a′′ are the parents of both u1 and u2. Since N is GS, either a′ or
a′′ is stable. Clearly a′ and a′′ are not stable on ℓ1 and ℓ2, so stability should
involve another leaf ℓ below u1 or u2; but this is not possible because there is
always a path from a′ (resp. a′′) to ℓ avoiding a′′ (resp. a′). Therefore, one of
these four subpaths contains more than one edge. We assume without loss of
generality that P ′

1[a
′, u1] has more than one edge and v and w are the parents

of u1 in P ′
1 and P ′′

1 , respectively, where v ̸= a′. We consider two subcases.

5

1. If w = a′′ (Figure 2.C), a′′ is clearly not stable on both ℓ1 and ℓ2. If a
′′ is

stable on a leaf ℓ ̸∈ {ℓ1, ℓ2}, then ℓ cannot be a descendant of u1, otherwise
the path from a′ to ℓ through u1 would avoid a′′, a contradiction. If ℓ is not
a descendant of u1 but is a descendant of the child z of a′′ in P ′′

2 , then every
path from ρ(N) to ℓ must contain the edge (a′′, z) and z. This implies that
z is stable on ℓ, contradicting that z is in the specific path P ′′

2 . Therefore, a
′′

is not stable on any leaf. Since N is GS, v must be stable on a leaf ℓ3. Since
P ′
1 is a specific path and v ̸= a′, ℓ3 = ℓ1. This implies that v is an ancestor

of a′′ and so is a′, which contradicts the assumption.
2. If w ̸= a′′ (Figure 2.D), either v or w is stable, because N is GS and they

are the parents of u1. Without loss of generality, we may assume w is stable.
Since P ′′

1 is a specific path, w must be stable on ℓ1. By Proposition 1.(d), w
is stable on v, so w either is in P ′

1[a
′, v] or is an ancestor of a′. The former

contradicts the fact that u1 is the highest common node in P ′
1 and P ′′

1 ,
whereas the latter implies that a′ is a descendant of a′′, which contradicts
the assumption.

(2) Using the same notation as in (1) (Figure 2.A), since N is GS, either v
or w is stable. If v is stable on ℓ1, by Proposition 1.(d), v is stable on w. So
v = a′ and P ′

1[a
′, u1] is just (v, u1). Let x be in P ′′

1 [a
′′, u1]− {a′′}. If x is stable,

it must be stable on ℓ1, since it is in P ′′
1 . This contradicts the fact that there is

a path from ρ(N) to ℓ1 through u1 avoiding x. Therefore, P ′′
1 [a

′′, u1] is unstable
specific.

If v is stable on ℓ ̸= ℓ1, then v = a′. Otherwise, v would be an internal node
of P ′

1, contradicting the fact that P ′
1 is in SPN (a′, ℓ1). If v is not stable, then

w must be stable, there are two possible cases. If w ̸= a′′, it must be stable on
ℓ1, as it is in P ′′

1 . Therefore, either w is in P ′
1[a

′, u1], contradicting that u1 is the
highest common node in P ′

1 and P ′′
1 , or w is an ancestor of a′, contradicting that

a′ is an ancestor of a′′. If w = a′′, then it is stable on ℓ2 and P ′′
1 [a

′′, u1] is simply
(w, u1). ⊓⊔

A

v w
w

B C

v

D

v

Fig. 2. Illustration of the different cases in the proof of Lemma 2.

Let αℓ1,ℓ2 be the parent of ℓ1 and ℓ2 in T . Lemma 2.(1) implies that the set
of nodes {a | ∃ P1 ∈ SPN (a, ℓ1), P2 ∈ SPN (a, ℓ2) s.t. V(P1) ∩ V(P2) = {a}} is

6

totally ordered by the descendant relation, i.e. all its elements appear in a path
from ρ(N) to ℓ1. So there is a unique tree node, say p, that is the lowest among
all such nodes. Moreover, for any node a in the set, from which there are specific
paths P1 and P2 going to ℓ1 and ℓ2 respectively, Lemma 2.(2) states that if p is
a node in P2, then the path from p to P1 is an unstable specific path (and vice
versa). The next lemma will utilize this property to show that there is a subtree
T ′ of N that is a subdivision of T , in which p corresponds to αℓ1,ℓ2 .

Let t ∈ T (N). For ℓ1, ℓ2 ∈ L(N) and two specific paths whose only com-
mon vertex is t, P1 ∈ SPN (t, ℓ1) and P2 ∈ SPN (t, ℓ2), we set N(P1, P2) to be
the subnetwork with vertex set V(N) and edge set E(N) − {(x, y), (y, x) | x ∈
V (Q) and y ̸∈ V (Q)} − {(x, y), (y, x) |x ∈ V (P1)\{t} and y ∈ V (P2)\{t}}
where Q = (P1∪P2)\{t}. Note that N(P1, P2) is the subnetwork obtained after
removing all the edges not in the paths, but incident at some node in Q.

Lemma 3 (Choice of the lower path). Let N be a GS network and ℓ1 and
ℓ2 be two sibling leaves in T . Assume that t ∈ T (N) and P1 ∈ SPN (t, ℓ1) and
P2 ∈ SPN (t, ℓ2) are two specific paths whose only common vertex is t such that
N(P1, P2) displays T . For any path P from u to v in which every x ∈ V(P)\{u, v}
is not stable:
(1) If V(P) ∩ V(Pj) = {u} and V(P) ∩ V(Pj′) = {v}, where {j′, j} = {1, 2}, T

is also displayed in N(Pj [u, ℓj], P [u, v] ∪ Pj′ [v, ℓj′]).
(2) If V(P) ∩ V(Pj′) = ∅ and V(P) ∩ V(Pj) = {u, v}, where {j, j′} = {1, 2}, T

is also displayed in N(Pj′ , Pj − Pj [u, v] + P [u, v]).

Lemma 3.(1) implies that if N displays T , there is a subtree T ′ that is a
subdivision of T , such that p corresponds to αℓ1,ℓ2 . The next section includes an
algorithm to find the node p.

4.3 The Algorithm

We use two lists at each node u to represent the input network N and the input
tree T : the list parent(u) comprises the nodes from which u has an edge, and
the list children(u) consists of nodes to which u has an edge.

We say that a node u is reachable from the network root if there is a path
from the root to u. Using a breadth-first search, we can determine the sets
of descendants for each vertex in O(|E(N)| + |V(N)|) time. To determine the
stability of a node u, one can compute the set Rnot(u) of leaves that are reachable
from the root in N−u. Obviously, the set PDLN (u) of nodes on which u is stable
is L(N)−Rnot(u), so u is stable if and only if Rnot(u) ̸= L(N). Therefore, we can
determine whether or not a node is stable on a leaf in time O(|E(N)|+ |V(N)|).

We first find two sibling leaves l1 and l2 with parent αl1,l2 , which takes
O(|L(T)|) time. We then extend a specific path starting at l1 by moving a node
up each time to find a p ∈ T (N) such that if N displays T , there is a subdivision
of T in which p corresponds to αl1,l2 . Assume we arrive at a node w. If w is
stable on a leaf z ̸∈ {l1, l2}, then we conclude that N does not display T . If w
is stable on l2, or if there is a specific path from w to l2, then w must be p if N
displays T and we are done, so we continue our analysis by assuming otherwise.

7

If w is a tree node, we simply move up to its unique parent p(w). If w is a
reticulation, it is stable on l1. Let p(w) = {u, v}. We have to chose either u or v
to move up using the stability property that w is only stable on l1 and at least
one of u and v is stable. By Proposition 1.(c), u and v cannot both be stable on
l1. If u is stable on l1 and v is stable on l2, by Proposition 1.(d), u must also
be stable on l2. Therefore, we just need to consider eight different conditions
(Table 1) to choose u or v to move up.

Table 1. When w is stable on l1, there are six combinations of its parents u and v for
consideration. Here, l(u, v) = u if u is a descendant of v, or v otherwise

Cond. S/N Stability of u Stability of v Selection

C1 PDLN (u)\{l1, l2} ̸= ∅ PDLN (v)\{l1, l2} ̸= ∅ Neither

C2 PDLN (u)\{l1, l2} ̸= ∅ PDLN (v) ⊆ {l1, l2} v

C3 u is stable on l1 v is not stable v

(and eventually on l2)

C4 u is not stable v is stable only on l2 v

C5 PDLN (u) ⊆ {l1, l2} PDLN (v)\{l1, l2} ̸= ∅ u

C6 u is not stable v is stable on l1 u

(and eventually on l2)

C7 u is stable only on l2 v is not stable u

C8 u is stable on l2 v is stable on l2 l(u, v)

If condition C1 holds, w cannot be a node in the path corresponding to
the edge (αl1,l2 , l1) in any subdivision T ′ of T . This is because a leaf in either
PDLN (u) \ {l1, l2} or PDLN (v) \ {l1, l2} will not appear in any T ′ that can be
contracted into a tree in which l1 and l2 are siblings. Similarly, if C2 holds, u
cannot be a node in the path corresponding to the edge (αl1,l2 , l1) in a subdivision
T ′ of T . Therefore, we select v. If C3 holds, since u and w are stable on l1, by
Proposition 1.(d), u is stable on v and we move to v if v is not stable. If C4 holds,
by Proposition 1.(e), if u is below v, there is a reticulation r′ such that there is
a tree path from r′ to u, r′ is not above l2, and r′ is below v. This implies that
r′ is stable on a leaf other than l and l2, so we choose v. If u is not below v, then
we also choose v because we need to choose the lower one. Conditions C5–C7 are
symmetric to C2–C4 and so we select u to move up if they are true. If C8 holds,
then, u is a descendant of v or vice versa. Clearly, we have to choose whichever
is lower than the other. Algorithm 1 summarizes the whole procedure.

As we have seen, the property that each reticulation has a stable parent is
crucial in enabling a correct choice at a reticulation stable on a leaf under con-
sideration. A simple condition allows us to determine whether we have reached
p while moving up from x: there is a unstable specific tree path from p to l2 or
to a reticulation stable on l2, because there is a specific path from p to l2. Thus,
we obtain Algorithm 2 to solve the TC problem.

8

Algorithm 1: Move up one node to find p

Procedure MoveUpInSpecificPath(w, l1, l2, P , N)
Input: node w, leaves l1 and l2 and path P in network N
Output: false if N does not display T , true if no final decision can yet be

made
1 if w is a tree node then
2 P ← P ∪ {w}; N ← N − (parent(w), w); w ← parent(w);

// Select a parent at a reticulation

3 if w is a reticulation stable on l1 with parents {u, v} then
4 if C1 then
5 return false;

6 if C2 or C3 or C4 or (C8 and v is lower) then
7 P ← P ∪ {w}; N ← N − (u,w); w ← v;

8 if C5 or C6 or C7 or (C8 and u is lower) then
9 P ← P ∪ {w}; N ← N − (v, w); w ← u;

10 return true;

11 else
12 return false;

Theorem 1. Algorithm 2 solves the TC problem for GS networks in quadratic
time.

Proof. Assume the input network N displays the input tree T , and let SDN (T)
be the set of subdivisions of T in N . Let αℓ1,ℓ2 be the parent of the sibling leaves
ℓ1 and ℓ2 in T selected in line 3 of Algorithm 2. Recall that by Lemma 2, the
set {a | ∃P1 ∈ SP(a, ℓ1), P2 ∈ SP(a, ℓ2) s.t. V(P1) ∩ V(P2) = {a}} has a lowest
element p. If N displays T , by Lemma 3, p must correspond to αℓ1,ℓ2 in some
subdivision of T in N . We now show that Algorithm 2 correctly finds p.

Let Pi be the path from p to ℓi in a subdivision T ′ ∈ SDN (T) corresponding
to the edge ({αℓ1,ℓ2 , ℓ1, ℓ2}, ℓi) in the cherry in T for i = 1, 2. By Lemma 1, P1

and P2 are specific paths. Let us prove that the first while-loop exits at w1 = p .
Assume t is the last vertex in P1 at which the algorithm has moved off during the
first while-loop before stopping at w1 = w ̸= p (Figure 3.A). So t is a reticulation
with a parent v in P1 and the other parent u to which the algorithm moved from
t. Let P be the path consisting of all vertices visited by the algorithm after t.

Since t is a reticulation in P1, it is stable on ℓ1. By the definition of the
moving up procedure MoveUpInSpecificPath, moving from t to u implies that
C5, C6, C7 or C8 holds. C5 cannot be true, as v is in P1 and cannot be stable
on a leaf not equal to ℓ1. If C8 holds, then v = p. u is not in P2, otherwise u is
lower than p and there are specific paths from u to ℓ1, ℓ2. If u is not in P2, then
it is above p since it is stable on ℓ2, but then it is also above v, contradicting
that we choose u. If C7 is valid, then the algorithm should stop at u, as u is
stable on ℓ2, implying w = u. This is impossible as w is not in P2. If C6 is valid,

9

then v is stable on ℓ1 and u is not stable. By Proposition 1.(d), v is stable on u,
which implies that v is an ancestor of w or vice versa.

1. If node v is an ancestor of w (Figure 3.B), then P can be extended into a
path P from v to u. Since v is stable on ℓ1, there are no reticulations in
P [v, w]. Furthermore, no node in P [v, w] is stable on a leaf, since the first
edge of P is not in T ′. Otherwise, if a node y in P [v, w] is stable on ℓ, y is
not in T ′, and then ℓ is not in T ′, contradiction. That the algorithm stopped
at w implies that (i) w is a reticulation with both parents being stable on a
leaf not in {ℓ1, ℓ2}, or (ii) there is an unstable specific path P ′ from w to a
node s that is stable on ℓ2.
Case (i) is not true, because we have observed that the parent of w in P
is not stable. If case (ii) is true, s must be in P2. We have another pair of
specific paths P [w, t] ∪ P1[t, ℓ1] and P ′[w, s] ∪ P2[s, ℓ2], which is impossible
because w is not in P1 ∪ P2 (Lemma 2.(1)).

2. If node w is an ancestor of v (Figure 3.C), then since v is stable on ℓ1, the
path P taken by the algorithm from u to w must go through v, contradicting
the choice of t. Using an argument similar to the one presented above, we can
show that the second while-loop stops at p correctly . After the execution of
the two while loops, we have that w1 = w2 = p. By Lemma 3, the recursive
call in Step 3 is correct.

This shows that if N displays T , our algorithm finds the lowest image of the
parent of ℓ1 and ℓ2 together with specific paths P1 and P2 in a subdivision of T .
By Lemma 3, N displays T if and only if T − ℓ1− ℓ2 is displayed in N −P1−P2.
This concludes the proof of correctness of the algorithm.

Regarding the time complexity of the algorithm: note that each recursive
step removes two sibling leaves from the input tree and that N has at most
|E(N)| = O(|L(N)|) nodes (see [3]). In different recursive steps, the nodes whose
stability is examined are different, and the time spent on checking stability is
at most |V(N)| × O(|E(N)| + |V(N)|) = O(|L(N)|2). Before entering the next
recursive step, the nodes that have been visited in the current step are removed.
Therefore, the algorithm has quadratic time complexity. ⊓⊔

Fig. 3. Illustration for the proof of Theorem 1.

10

Algorithm 2: Deciding whether a given GS network displays a given tree.

Procedure Tree-Display(N , T)
Input: a GS network N with information on stability, a tree T
Output: true if N displays T , false otherwise

1 if T is a single node then
2 return true;

3 Compute a cherry {αℓ1,ℓ2 , ℓ1, ℓ2} in T ;
4 w1 ← parent(ℓ1); P1 ← {ℓ1, w1}; // Initialize to start with ℓ1

/* Move up to reach the lowest p corresponding to αℓ1,ℓ2 in a

subdivision of T */

5 while no unstable specific path from w1 to ℓ2 or a node stable on ℓ2 do
6 if MoveUpInSpecificPath(w1, ℓ1, ℓ2, P1, N) = false then
7 return false;

8 w2 ← parent(ℓ2); P2 ← {ℓ2, w2}; // Initialize to move up at ℓ2
9 while w2 ̸= w1 and w2 is below w1 do

10 if MoveUpInSpecificPath(w2, ℓ2, ℓ1, P2, N) = false then
11 return false;

12 if w2 ̸= w1 then
13 return false;

14 return Tree-Display(N − P1 − P2, T − ℓ1 − ℓ2);

5 Conclusion

In the present work, we introduced the class of GS networks to study the TC
problem. In [3], we developed a quadratic-time algorithm for nearly stable net-
works by iteratively selecting an edge entering a reticulation to delete in the end
of a longest path in a nearly stable network. Here, using a different approach,
we have proved that the TC problem can also be solved in quadratic time for
GS networks.

A trivial 2|R(N)| · poly(|L(N)|) algorithm solves the TC problem as follows:
for each reticulation, simply guess which entering edge to delete. However, the
number of reticulations can be quite large e.g. in the case of bacterial genomes [9],
and many gene families need to be examined. Therefore, our proposed algorithm
with low time complexity is definitely valuable for model verification in compar-
ative genomics.

Several problems remain open for future study. First, Figure 4 summarizes
the inclusion relationships between the network classes defined in this paper and
other well-studied classes defined in [5]. Galled networks are a generalization
of level-1 networks (also called galled trees), comprising a subclass of stable
networks [5]. The complexity of the TC problem for galled networks is open.

Second, a natural generalisation of the TC problem is to decide whether
a given network displays another given network. Is it possible to determine in
polynomial time whether a given GS network displays another given one?

11

Fig. 4. Inclusion relationships between GS networks and other classes, represented by
colored rectangles. A class that is drawn within another one is a subclass of the latter;
an arrow points from a nested class cluster to another if classes in the former are all a
superclass of the classes in the latter. A network is tree-child if every node in it has a
child that is a tree node.

6 Acknowledgments

The project was financially supported by Merlion Programme 2013.

References

1. Chan, J. M., et al. (2013) Topology of viral evolution. PNAS, 110, 18566-18571.
2. Cordue, P., Linz, S., Semple, C. (2014). Phylogenetic networks that display a tree

twice. Bulletin Math. Biol., 76, 2664-2679.
3. Gambette, P., et al. (2015) Locating a tree in a phylogenetic network in quadratic

time, In Proc. of RECOMB’2015, pp. 96-107. Springer.
4. Gusfield, D. (2014) ReCombinatorics: The Algorithmics of Ancestral Recombina-

tion Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge, USA.
5. Huson, D. H., Rupp, R., Scornavacca, C. (2010) Phylogenetic Networks. Cambridge

University Press, Cambridge, UK.
6. van Iersel, L., Semple, C., Steel, M. (2010) Locating a tree in a phylogenetic net-

work. Inform. Proces. Lett., 110, 1037-1043.
7. Kanj, I. A., Nakhleh, L., Than, C., Xia, G. (2008) Seeing the trees and their

branches in the network is hard. Theoret. Comput. Sci., 401, 153-164.
8. Nakhleh, L. (2013) Computational approaches to species phylogeny inference and

gene tree reconciliation. Trends Ecol. Evol., 28, 719-728.
9. Treangen, T. J., Rocha, E. P. (2011) Horizontal transfer, not duplication, drives

the expansion of protein families in prokaryotes. PLOS Genetics, 7, e1001284.
10. Wang, L., Zhang, K., Zhang, L. (2001) Perfect phylogenetic networks with recom-

bination. J. Comput. Biol., 8, 69-78.

12

Appendix: Omitted Proofs

Proof (Proposition 1).

(a) See Proposition 1.(3) in [3].
(b) It clearly follows from (a).
(c) It follows from the fact that there is a path from the root to r avoiding at

least one parent of r.
(d) Let u and r be stable on a leaf ℓ. For a path P from r to ℓ, the concatenation

of the edge (v, r) and P produces a path avoiding u. Therefore, any path
from ρ(N) to v must go through u, implying that u is stable on v.

(e) If u is in a path between v and ℓ′, the stability of v on ℓ′ implies that every
path from ρ(N) to u must go through v and therefore v is also stable on ℓ,
a contradiction.
Assume z is a node between v and ℓ′. If there is a tree path from z to u,
then every path P from ρ(N) to u must pass through z. If P does not pass
through v, the subpath of P from ρ(N) to z can be extended into a path
from ρ(N) to ℓ′ that does not go through v, contradicting our assumption
that v is stable on ℓ′. Therefore, we have shown that v is stable on u and
therefore on ℓ, which is impossible and implies that the second statement in
(e) is true. ⊓⊔

Proof (Proposition 2). Let N be a GS network and r be a reticulation in N with
parents p1 and p2. Since N is GS, either p1 or p2 is stable, so we assume wlog
that p1 is stable. By Proposition 1.(a), p1 must have another child that is a tree
node, and N is therefore a tree-sibling network. ⊓⊔

Proof (Lemma 1). Let T ′ be a subdivision of T in N and αℓ′,ℓ′′ correspond to
p ∈ V(T ′). Recall that T ′ is obtained by removing an incoming edge at each
reticulation. Each r ∈ R(N) becomes a degree-2 node in T ′ if it is in T ′. Thus,
p is a tree node in T ′.

(1) Let ℓ ̸∈ {ℓ′, ℓ′′} be a leaf in N . Since ρ(T ′) is identical to ρ(N), there is a
unique path X from ρ(N) to ℓ in T ′. Since p corresponds to αℓ′,ℓ′′ , ℓ is not
below p in T ′ and thus X does not pass through p. Therefore, p is not stable
on ℓ.

(2) Let P ′ = (uk+1 = p, uk, . . . , u1, u0 = ℓ′). Suppose on the contrary that uj

is stable on some leaf ℓ ̸= ℓ′ for some 1 ≤ j ≤ k. Then in T ′, ℓ must be a
descendant of uj , implying that uj is a common ancestor of ℓ and ℓ′ in T ′.
This contradicts our assumption that ℓ′ and ℓ′′ belong to a cherry in T .

(3) The proof is similar to that of case (2). ⊓⊔

Proof (Lemma 3).

(1) Without loss of generality, we assume that j′ = 1 and j = 2 (Figure 5.A).
Note that P [u, v]∪P1[v, ℓ1] is a path from u to ℓ1. Assume T ′ is a subdivision
of T in N(P1, P2). Since P1 and P2 are the unique path from t to ℓ1 and
ℓ2 in T ′, respectively, and every node in P has degree-2 in N(P1, P2), t is

13

the node corresponding to the parent of ℓ1 and ℓ2 in the display T ′ of T
(Figure 5.A).
Since v is a reticulation in P1, it is stable only on ℓ1. There are two cases
for consideration. Let N ′′ = N(P2[u, ℓ2], P [u, v] ∪ P1[v, ℓ1]).
If P [u, v] is the edge (u, v), define T ′′ = T ′ −E(P1[t, v]) + (u, v). Clearly, T ′′

is a subdivision of T in N ′′. Therefore T is displayed in N ′′.
If P contains more than one edge, there are no reticulations other than v in
P [u, v], as any reticulation is stable. By definition, the first and last edge of
P are not in N(P1, P2). Since P does not contains any reticulations, all the
branches and nodes of P are not in T ′. Therefore, T ′′ = T ′ − P1[t, v] + P is
a subtree in N ′′. Clearly, T is a contraction of T ′′, in which the parent of ℓ1
and ℓ2 corresponds to u.

(2) Without loss of generality, we may assume that j = 2 and T ′ is a subdivision
of T in N(P1, P2). Since v is a reticulation in P2, v is stable only on ℓ2. Since
there is no stable node in P except for v, all nodes other than v are tree
nodes. Since the first and last edges are not in N(P1, P2), all the nodes other
than v are not in T ′. Therefore, T ′′ = T ′ −P2[u, v] +P is a subdivision of T
in N(P1, P2 − P [u, v] + P). ⊓⊔

t t

Fig. 5. Illustration for the proof of Lemma 3.

14

