K. Akutagwa, K. Yamaguchi, A. Yamamoto, H. Heguri, H. Jinnai et al., Mesoscopic Mechanical Analysis of Filled Elastomer with 3D-Finite Element Analysis and Transmission Electron Microtomography, Rubber Chemistry and Technology, vol.81, issue.2, pp.182-189, 2008.
DOI : 10.5254/1.3548203

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, vol.17, issue.8, pp.43999-1036, 1990.
DOI : 10.1002/cpa.3160430805

H. Amor, J. J. Marigo, and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.57, issue.8, pp.1209-1229, 2009.
DOI : 10.1016/j.jmps.2009.04.011

G. I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, Journal of Applied Mathematics and Mechanics, vol.23, issue.3, pp.622-636, 1959.
DOI : 10.1016/0021-8928(59)90157-1

P. E. Bernard, N. Moës, and N. Chevaugeon, Damage growth modeling using the Thick Level Set (TLS) approach: Efficient discretization for quasi-static loadings, Computer Methods in Applied Mechanics and Engineering, vol.233, issue.236, pp.11-27, 2012.
DOI : 10.1016/j.cma.2012.02.020

URL : https://hal.archives-ouvertes.fr/hal-01433786

M. J. Borden, T. J. Hughes, C. M. Landisb, and V. Verhooselc, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Computer Methods in Applied Mechanics and Engineering, vol.273, pp.100-118, 2012.
DOI : 10.1016/j.cma.2014.01.016

D. P. Braides, Approximation of Free Discontinuity Problems, 1998.

G. T. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, vol.33, issue.20-22, pp.2899-2938, 1996.
DOI : 10.1016/0020-7683(95)00255-3

F. Cazes and N. Moës, Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture, International Journal for Numerical Methods in Engineering, vol.339, issue.1, 2015.
DOI : 10.1002/nme.4886

N. Chandra, H. Li, C. Shet, and H. Ghonem, Some issues in the application of cohesive zone models for metal???ceramic interfaces, International Journal of Solids and Structures, vol.39, issue.10, pp.392827-2855, 2002.
DOI : 10.1016/S0020-7683(02)00149-X

Y. Chen, M. Pani, F. Taddei, and C. Mazzà, Large-Scale Finite Element Analysis of Human Cancellous Bone Tissue Micro Computer Tomography Data: A Convergence Study, Journal of Biomechanical Engineering, vol.136, issue.10, p.136101013, 2014.
DOI : 10.1115/1.4028106

R. De-borst, J. J. Remmers, and C. V. Verhoosel, Evolving Discontinuities and Cohesive Fracture, Procedia IUTAM, vol.10, pp.125-137, 2014.
DOI : 10.1016/j.piutam.2014.01.014

M. J. Van-den-bosch, P. J. Schreurs, and M. D. Geers, An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion, Engineering Fracture Mechanics, vol.73, issue.9, pp.1220-1234, 2006.
DOI : 10.1016/j.engfracmech.2005.12.006

D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, pp.100-104, 1960.
DOI : 10.1016/0022-5096(60)90013-2

G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, vol.46, issue.8, pp.1319-1342, 1998.
DOI : 10.1016/S0022-5096(98)00034-9

A. Godman and A. Bentur, Bond effects in high-strength silica fume concretes, ACI. Mater. J, vol.86, issue.5, 1989.

C. Jaeger, Rock mechanics and engineering, 1979.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.13-143647, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

K. M. Lee and O. Buyukozturk, Fracture mechanics parameters influencing the mechanical properties of high-performance concrete, ACI. Spe. P, p.149, 1994.

C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rateindependent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Meth. Appl. Mech. Eng, vol.199, pp.2776-2778, 2010.

C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering, vol.55, issue.10, pp.1273-1311, 2010.
DOI : 10.1002/nme.2861

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.131-150, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1002/cpa.3160420503

J. Lamon, N. Carrère, and E. Martin, The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites, Compos. Part A, vol.31, pp.1179-1190, 2000.

A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, Journal of Applied Mechanics, vol.54, issue.3, pp.525-531, 1987.
DOI : 10.1115/1.3173064

T. T. Nguyen, J. Yvonnet, K. Sab, M. Bornert, C. Chateau et al., On the choice of numerical parameters in the phase field method for simulating crack initiation with experimental validations

T. T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, and C. Chateau, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Engineering Fracture Mechanics, vol.139, pp.18-39, 2014.
DOI : 10.1016/j.engfracmech.2015.03.045

URL : https://hal.archives-ouvertes.fr/hal-01140963

M. Ortiz and A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, International Journal for Numerical Methods in Engineering, vol.142, issue.9, pp.1267-1282, 1999.
DOI : 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7

S. Osherand and N. Paragios, Geometric level set methods in imaging, vision, and graphics, 2003.

W. Ren, Z. Yang, R. Sharma, C. H. Zhang, and P. J. Withers, Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete, Engineering Fracture Mechanics, vol.133, pp.24-39, 2015.
DOI : 10.1016/j.engfracmech.2014.10.016

R. Romani, M. Bornert, D. Leguillon, R. L. Roy, and K. Sab, Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation ??? Theoretical predictions based on a coupled criterion, European Journal of Mechanics - A/Solids, vol.51, pp.172-182, 2015.
DOI : 10.1016/j.euromechsol.2014.12.002

J. G. Rots, Computational modeling of concrete fracture, 1988.

L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin et al., X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.200, pp.273-286, 2003.
DOI : 10.1016/S0168-583X(02)01689-0

URL : https://hal.archives-ouvertes.fr/hal-00475146

C. Sandino, P. Kroliczek, D. D. Mcerlain, and S. K. Boyd, Predicting the permeability of trabecular bone by micro-computed tomography and finite element modeling, Journal of Biomechanics, vol.47, issue.12, pp.3129-3134, 2014.
DOI : 10.1016/j.jbiomech.2014.06.024

N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering, vol.15, issue.11, pp.1549-1570, 2000.
DOI : 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A

URL : https://hal.archives-ouvertes.fr/hal-01006859

N. Tsafnat, G. Tsafnat, and A. S. Jones, Micro-finite element modelling of oke blends using x-ray microtomography, Fuel, vol.87, pp.13-142983, 2008.

V. Tvergaard, Model studies of fibre breakage and debonding in a metal reinforced by short fibres, Journal of the Mechanics and Physics of Solids, vol.41, issue.8, pp.1309-1326, 1993.
DOI : 10.1016/0022-5096(93)90081-P

V. Tvergaard and J. W. Hutchinson, The influence of plasticity on mixed mode interface toughness, Journal of the Mechanics and Physics of Solids, vol.41, issue.6, pp.1119-1135, 1993.
DOI : 10.1016/0022-5096(93)90057-M

C. V. Verhoosel and R. De-borst, A phase-field model for cohesive fracture, International Journal for Numerical Methods in Engineering, vol.1, issue.220, pp.43-62, 2013.
DOI : 10.1002/nme.4553

Y. S. Wang, G. Y. Huang, and D. Gross, On the mechanical modeling of functionally graded interfacial zone with a Griffith crack: plane deformation, International Journal of Fracture, vol.125, issue.1, pp.189-205, 2004.
DOI : 10.1023/B:FRAC.0000021042.28804.f1

G. N. Wells and L. J. Sluys, A new method for modelling cohesive cracks using finite elements, International Journal for Numerical Methods in Engineering, vol.3, issue.12, pp.502667-2682, 2001.
DOI : 10.1002/nme.143

X. P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids, vol.42, issue.9, pp.1397-1434, 1994.
DOI : 10.1016/0022-5096(94)90003-5

J. Yvonnet, A fast method for solving microstructural problems defined by digital images: a space Lippmann-Schwinger scheme, International Journal for Numerical Methods in Engineering, vol.40, issue.1, pp.178-205, 2012.
DOI : 10.1002/nme.4334

URL : https://hal.archives-ouvertes.fr/hal-00822037

F. Zhou and J. F. Molinari, Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency, International Journal for Numerical Methods in Engineering, vol.59, issue.1, pp.1-24, 2004.
DOI : 10.1002/nme.857