C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

J. Guilleminot, A. Noshadravan, R. Ghanem, and C. Soize, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, pp.200-217, 2011.
DOI : 10.1016/j.cma.2011.01.016

URL : https://hal.archives-ouvertes.fr/hal-00684305

C. Soize, A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45-46, pp.200-245, 2011.
DOI : 10.1016/j.cma.2011.07.005

URL : https://hal.archives-ouvertes.fr/hal-00684294

J. Guilleminot and C. Soize, On the Statistical Dependence for the Components of Random Elasticity Tensors Exhibiting Material Symmetry Properties, Journal of Elasticity, vol.21, issue.5, pp.109-130, 2013.
DOI : 10.1007/s10659-012-9396-z

URL : https://hal.archives-ouvertes.fr/hal-00724048

J. Guilleminot and C. Soize, Random fields with symmetry properties: Application to the mesoscopic modeling of elastic random media, SIAM Multiscale Modeling & Simulation, pp.840-870, 2013.

J. Guilleminot and C. Soize, It?? SDE--based Generator for a Class of Non-Gaussian Vector-valued Random Fields in Uncertainty Quantification, SIAM Journal on Scientific Computing, vol.36, issue.6, pp.36-2763, 2014.
DOI : 10.1137/130948586

A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, European Journal of Applied Mathematics, vol.19, issue.03, pp.339-373, 2014.
DOI : 10.1023/B:ACAP.0000013855.14971.91

T. T. Le, J. Guilleminot, and C. Soize, Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite, Computer Methods in Applied Mechanics and Engineering, vol.303, p.under review, 2015.
DOI : 10.1016/j.cma.2015.10.006

URL : https://hal.archives-ouvertes.fr/hal-01158280