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Abstract

This research concerns the updating of computational models in presence of
uncertainties related to the position and the orientation of the sensors and
actuators. Such uncertainties yield uncertainties in the correspondence be-
tween the experimental dynamical responses and the dynamical responses
calculated using the computational model. These uncertainties in the re-
sponse increase with frequency and have to be taken into account when up-
dating the parameters of the computational model in order to obtain a robust
estimation of these parameters. This paper provides a complete methodol-
ogy to take into account and analyse such uncertainties. Furthermore, an
optimal sensor placement method is proposed so that (1) the measured data
are as sensitive as possible with respect to updating parameters and (2) the
measured data are as robust as possible with respect to position/orientation
uncertainties. The methodologies developed here are illustrated through two
numerical applications.

Keywords: model updating, Bayesian inference, uncertain position,
optimal sensor placement

1. Introduction

In the context of computational structural dynamics, the model updating
methods have received much interest during the last four decades [25, 10].
The researches related to model updating methods have been focused in two
main classes of methods. For the first class of methods referred as global
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methods [1, 11, 21, 29], the assembled stiffness and mass matrices are di-
rectly modified regardless the parameters of the computational model. On
the contrary, for the local methods, some chosen physical parameters of the
computational model are updated (see for instance [4, 7]). The research pre-
sented in this paper is related to local updating methods for which the opti-
mal values of the updating parameters are chosen as the ones that make the
experimental observations as closed as possible to the corresponding obser-
vations calculated using the computational model. In the Bayesian updating
method [9, 2], the updating parameters are replaced by random variables
for which the prior probability distribution has to be chosen and an output
prediction error is introduced in order to take into account modelling errors
and measurement noise. Then a posterior probability distribution can be
calculated for the updating parameters using the Bayes rule.

In structural dynamics, the experimental observations are, in general,
constructed using experimental measurements that are collected using ac-
tuators (hammers, shakers, ...) and sensors (accelerometers, deformation
gauges, piezoelectric sensors, ...). The location and orientation of the sen-
sors/actuators on the real structures have to be known exactly so that the
experimental data corresponds to the data calculated using the computa-
tional model. Unfortunately, when dealing with real on-site structures, many
sources of uncertainties may deteriorate the correspondence between the ex-
perimental locations/orientations and the computational locations/orientations:
(1) there may be some slight differences between the real geometry of the mea-
sured structure and the geometry of the computational model, (2) there may
be some manipulation errors during the placement of the sensors/actuators
(more especially for positions which are hard to access), (3) some information
may have not been addressed correctly by the experimenters to the engineers,
and so on. The presence of such uncertainties induces uncertainties on the
outputs of the computational model and as a consequence induces uncertain-
ties in the updated values of the parameters of the computational model.

There are three objectives in this paper. The first objective consists in
constructing a probabilistic model of uncertainties related to the position
and orientation of the sensors and actuators. This probabilistic model has
to be adapted to the framework of a Finite Element (FE) analysis in order
to obtain a stochastic computational model that will be used to propagate
these uncertainties into the computational dynamical response. The second
objective of this paper is to provide a robust model updating methodology
in presence of such uncertainties. The methodology proposed here is based
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on a Bayesian approach. The third objective of this paper is to provide
a methodology for an optimal placement of the sensors/actuators so that
the measurements yields maximum information for the updating procedure
which means that the measured data (1) should be sensitive to the updating
parameter and (2) should be robust with respect to the position/orientation
uncertainties. The method proposed here is based on Information theory [22,
12, 13, 16, 17] and more precisely the use of the Kullback-Leibler divergence to
measure the gain of information provided by the measurement configuration.

Section 2 is devoted to the construction of the nominal computational
model. Then in Section 3, the probabilistic model of position/orientation
uncertainties is constructed. Section 4 concerns the model updating in pres-
ence of positioning uncertainties and Section 5 is devoted to the optimal
sensor/actuator placement. Finally two numerical applications are analysed
in Section 6 in order to illustrate and verify the methodology.

2. Nominal computational model

In this section, the nominal computational model representing a real in-
strumented structure is described. We are interested in the frequency re-
sponse of a linear damped structure, occupying a domain Ω, in the frequency
band of analysis B = [ωmin, ωmax]. Let x be the coordinates of a point in
Ω. Let u(x, ω) be the displacement field defined in the frequency domain
with values in C3. The nominal computational model is constructed using
the FE method. It is assumed that there are no rigid body modes. Let m be
the total number of degrees-of-freedom in the FE model. For all ω ∈ B, the
vector U(ω) ∈ Rm of the m degrees-of-freedom is the solution of the following
matrix equation

(−ω2[M] + iω[D] + [K])U(ω) = F (ω) , (1)

in which [M], [D] and [K] are the (m×m) mass, damping and stiffness matri-
ces and where F(ω) is the vector of the external forces. The reduced nominal
computational model is constructed using the modal analysis method [15].
The n first eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λn associated with the elastic
modes {φ1,φ2, . . . ,φn} are solutions of the following generalized eigenvalue
problem

[K]φ = λ[M]φ . (2)
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The reduced-order nominal computation model is obtained by projecting the
nominal computation model on the subspace spanned by the n first elastic
modes calculated using Eq. (2). Let [Φ] be the m× n matrix whose columns
are the n first elastic modes. We then introduce the approximation U(n)(ω)
of U(ω) such that

U(ω) ≃ U
(n)(ω) = [Φ] q(ω) , (3)

in which the vector q(ω) is the vector of the n generalized coordinates and
is the solution of the following reduced matrix equation

(−ω2[M̃ ] + iω[D̃] + [K̃]) q(ω) = f̃ (ω) , (4)

in which [M̃ ] = [Φ]T [M] [Φ], [D̃] = [Φ]T [D] [Φ] and [K̃] = [Φ]T [K] [Φ] are the

n × n mass, damping and stiffness generalized matrices, and where f̃ (ω) =
[Φ]T F(ω) ∈ Rn is the vector of the generalized forces.

The nominal experimental configuration of the structure is equipped with
ns sensors and na actuators. For each sensor si, i = 1, . . . , ns the acceleration
is measured following the three directions ex, ey and ez. For each actuator ai,
i = 1, . . . , na, a three dimensional point force is applied. It is assumed that
the nominal locations of the sensors and actuators correspond to nodes of the
mesh of the FE model. Let nobs = 3ns and nexc = 3na. Let U

sens,i(ω) in C3

denote the three translation DOFs observed by sensor si and let Usens(ω) =
(Usens,1(ω), . . . ,Usens,ns(ω)) in Cnobs be the observed displacement vector. Let
F
act,i(ω) in C

3 denote the point force applied by actuator ai and let Fact(ω) =
(Fact,1(ω), . . . ,Fact,na(ω)) in Cnexc be the actuator force vector. The observed
displacement vector is linked to the generalized coordinates vector by the
relation

U
sens(ω) = [O]U(n)(ω) = [O] [Φ] q(ω), (5)

and the actuator force vector is linked to the generalized forces vector by the
relation

f̃(ω) = [Φ]T F(ω) = [Φ]T [C]Fact(ω). (6)

In Eqs. (5) and (6), [O] and [C] are two (nobs × m) localization matrices
which have elements equal to zero or one.
Then, using Eqs. (4), (5) and (6), for all ω in B, the observed displacement
vector Usens(ω) is written as

U
sens(ω) = [O][H(ω)][C]Fact(ω) , (7)
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in which the frequency response function [H(ω)] with values in the (m×m)
complex matrices is such that

[H(ω)] = [Φ](−ω2[M̃ ] + iω[D̃] + [K̃])−1[Φ]T , (8)

The response is calculated at nfreq frequencies ω1, . . . , ωnfreq
belonging to fre-

quency band B. We then introduce the output vector z in Rnz such that

z = ẑ(Usens(ω1), . . . ,U
sens(ωnfreq

)), (9)

where ẑ is a non-linear mapping and nz is the number of outputs.

3. Probabilistic model of uncertainties for the uncertain positions

and orientations

3.1. Construction for continuous coordinates

Let xsi
in Ω denote the nominal position of the sensor si and let xai

in Ω
denote the nominal position of the actuator ai. Let x denote xsi

or xai
and

let g(x) in C3 be a vector depending on the nominal position x. In the next
sections, this vector will represent a displacement measured by a sensor or a
force applied by an actuator. It is assumed that the nominal position x and
the orientation of g(x) are not perfectly known. Then g(x) is replaced by
the random vector G(x) with values in C3 such that

G(x) = [R] g(x+X) , (10)

in which the random variable X, which is such that the random variable
x+X is with values in Ω, is a random position vector and [R] is a random
rotation matrix . There are several possibilities for the construction of the
probability models for X and [R].

Concerning the random variation location X, the least informative prob-
ability distribution is the uniform distribution in a given support A which is
generally centred at the nominal position x and is such that for all x in A,
x+ x belongs to Ω. In this case, we have

pX(x) =
1

mes(A)
1lA(x) , (11)

in which mes(A) is the measure (volume, surface or length) of support A
and where the indicator function x 7→ 1lA(x) is such that it is equal to 1
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if x ∈ A and is zero otherwise. The support A can be evaluated based
on expert judgement and depends on the precision of the placements of the
sensors and the actuators. If additional information related to the random
position X were available, then more informative probability distributions
could be constructed using the Maximum Entropy method [22, 12, 13, 23].
For instance, if information related to the mean value of the components ofX
were available, then we would obtain a truncated exponential distribution.
In addition, if information related to second-order moment of the compo-
nents of X were also available, then we would obtain a truncated Gaussian
distribution.

There are several ways to parametrize rotation matrices: Euler Angles,
Euler parameters, Rodriguez parameters, and so on (see for instance [26]).
In this paper, we use Euler angles . This parametrization consists in three
successive rotations θx, θy and θz around x−, y− and z−directions (there
exist other possible sequences for Euler angles [26]). This parametrization
which has a direct interpretation allows an expert judgement to be easily
taken into account. Let Θ = (Θx,Θy,Θz) be the random rotation vector.
The probability distribution ofΘ can be defined as uniform in a given support
B ⊂ [−π, π] × [−π/2, π/2] × [−π, π] (for real applications, typical supports
are about ±0.2 rad around each direction). In this case, we have

pΘ(x) =
1

mes(B)
1lB(θ) . (12)

Again, if additional information related to random vector Θ were available
there a more informative probability distribution could be constructed. Then
the random matrix [R] is such that

[R] =




CyCz −SzCx Sy

SzCx + SxSyCz CzCx − SxSySz −SxCy

SxSz − CxSyCz SxCz + CxSySz CxCy


 , (13)

in which Cx = cos(Θx), Cy = cos(Θy), Cz = cos(Θz), Sx = sin(Θx), Sy =
sin(Θy) and Sz = sin(Θz).

3.2. Discretization of the probabilistic model of uncertainties

In the context of the FE method, the displacement u(x, ω) is approxi-
mated for x in Ω by

u(x, ω) = [N(x)]U(ω) , (14)
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in which [N(x)] is the matrix of the shape functions. The displacement
vector Usens,i(ω) = u(xsi

, ω) of the sensor si is replaced by the random vector

U sens,i(ω). Then using Eq.(10), we have

U sens,i(ω) = [Rsi][N(xsi +Xsi)]U(ω) . (15)

Then, by assuming that the FE mesh is fine enough, the random displacement
U sens,i(ω) can be approximated by

U sens,i(ω) ≃ [Rsi][Osi]U(ω) , (16)

in which [Osi] is a (3 × m) random localization matrix that associates the
DOFS of the closest FE node from position xsi + Xsi to the DOFs of the
FE mesh. With such an approximation, we only need the coordinates of the
nodes of the mesh yielding little intrusiveness with respect to commercial
softwares. Finally, the random displacement U sens,i(ω) can be written as

U sens,i(ω) = [Osi]U(ω) , (17)

in which [Osi] = [Rsi][Osi] is a (3×m) random matrix.
Concerning the actuators, let Γ be the part of the boundary of the structure
where forces (possibly zero) are applied. Then for any position x on Γ, the
force field f (x, ω;xai) induced by the point force F

act,i(ω) applied at xai is
such that

f(x, ω;xai
) = δ(x− xai)F

act,i(ω) , (18)

where x 7→ δ(x) is the surface Dirac distribution such that for any continuous
function h(x) we have

∫
Γ
δ(x−xai)h(x)ds(x) = h(xai). Using Eq.(10), the

corresponding random force field F (x, ω;xai
) is written as

F (x, ω;xai
) = δ(x− (xai +Xai))[Rai ]F

act,i(ω) . (19)

The corresponding random force vector F i(ω) related to the FE discretization
is such that

F i(ω) =

∫

Γ

[N(x)]TF (xai , ω;x)ds(x) , (20)

which can be rewritten as

F i(ω) = [N(xai +Xai)]
T [Rai ]F

act,i(ω) , (21)
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and which can finally be approximated by

F i(ω) ≃ [Cai ][Rai ]F
act,i(ω) , (22)

in which [Cai ] is a (m × 3) random localization matrix that associates the
DOFS of the closest FE node from position xai + Xai to the DOFs of the

FE mesh. Finally, the random force vector F i(ω) can be written as

F i(ω) = [Cai ]F
act,i(ω) , (23)

in which [Cai ] = [Cai ][Rai ] is a (m× 3) random matrix.
Finally for all ω in B, the observed random displacement vector U sens(ω)

is written as
U sens(ω) = [O][H(ω)][C]Fact(ω) , (24)

in which the (nobs×m) random localization matrix [O] and the (m×nexc) ran-
dom localization matrix [C] are obtained by assembling the random matrices
[Os1 ], . . . , [Osns

] and the random matrices [Ca1 ], . . . , [Cana
] respectively. It

is interesting to compare Eq. (24) to Eq. (7). Finally, the deterministic
localization matrices [O] and [C] are just replaced by random localization
matrices [O] and [C]. Therefore the calculation of independent realizations
of the random displacement U sens(ω) is little intrusive with respect to com-
mercial softwares. Furthermore, once the elastic modes have been calculated
initially using the nominal computational model, no additional eigenvalue
problem has to be solved to calculate the random response of the model.
Only calculations at the reduced-order level have to be performed.

The output vector z becomes a random vector Z = ẑ(U sens(ω1), . . . ,
U sens(ωnfreq

)) with values in Rnz .
4. Updating of the parameters

Let h be the vector of the nh parameters to be updated. This parameters
can be related to mass, stiffness, damping or geometry properties. Let Ch be
the admissible set for the vector h. Then for all h in Ch, Eq. (24) is rewritten
as

U sens(ω,h) = [O][H(ω,h)][C]Fact(ω) , (25)

and then

Z(h) = f z(U
sens(ω1,h), . . . ,U

sens(ωnfreq
,h)) . (26)
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The uncertainties induced by modeling errors and measurement errors (ex-
cept sensor and actuator placement errors) are modeled by an output predic-
tion error N which is assumed to be a centred Gaussian random vector with
covariance matrix [CN ], which has also to be updated or is directly given
based on expert judgement. For readability purpose, it is assumed that the
covariance matrix [CN ] of the output error is given and therefore is not to
be updated. The generalization of the hereinafter derived equations to the
case of a covariance matrix to be updated is straightforward [2, 3, 17]. Then
the observed random Zobs is defined by

Zobs = Z(h) +N , (27)

Let zexp be the measured vector corresponding to random output vector Zobs.
The Bayesian updating method [9, 2, 3] consists in replacing the deterministic
parameter h by the random variable Hprior with values in Ch and for which
the prior probability distribution p

H
prior(h) is given. For any random variable

X, let EX denote the mathematical expectation with respect to X. Then
the posterior distribution pHpost(h | zexp) is given by

pHpost(h | zexp) =
1

c
p
Z

obs|Hprior(zexp | h)× p
H

prior(h) , (28)

in which c = EH
prior{p

Z
obs|Hprior(zexp | Hprior)} is a normalization constant.

For computational purpose, the likelihood function p
Z

obs|Hprior(zexp | h) is
rewritten as follow

p
Z

obs|Hprior(zexp | h) = EN{p
Z

obs|N ,Hprior(zexp | N ,h)} . (29)

From Eq.(27), it can be deduced that

p
Z

obs|N ,Hprior(zexp | n,h) = p
Z|Hprior(zexp − n | h) . (30)

Then the posterior distribution pHpost(h | zexp) can be rewritten as

pHpost(h | zexp) =
ℓ(h, zexp)

E
H

prior{ℓ(Hprior, zexp)}
× p

H
prior(h) , (31)

where ℓ(h, zexp) = EN{p
Z|Hprior(zexp − N | h)} is the likelihood function.

Then several estimators ĥ of the parameter h can be constructed. This esti-
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mation can be chosen as the value that maximizes the posterior distribution
pHpost(h | zexp) yielding the maximum a posteriori probability estimation
method:

ĥ = arg max
h∈Ch

ℓ(h, zexp) p
H

prior(h) . (32)

The optimization problem defined by Eq. (32) is, in general, non-convex.
If the number nh of updating parameters is large, the maximum can be
search using a random search algorithm such as an evolutionary algorithm
[25, 8, 24]. If the prior probability distribution pHprior(h) is uniform on the
support Ch then the estimator (32) becomes a maximum likelihood estimator.
The estimate ĥ can also be constructed as the mean values of random variable
Hpost, i.e

ĥ = EH
post{Hpost} =

E
H

prior{Hprior ℓ(Hprior, zexp)}

E
H

prior{ℓ(Hprior, zexp)}
, (33)

In the context of Monte Carlo estimation [20], this latter rewriting only re-
quires independent realizations of random variableHprior, which are easier to
obtain than independent realizations of random variable Hpost for which the
generation would require the use of a Monte Carlo Markov Chain (MCMC)
method. Let hprior,1, . . . ,hprior,nsim,h be nsim,h independent realizations of
random variable hprior and let n1, . . . ,nnsim,n be nsim,n independent realiza-

tions of random variable N . Then the estimation ĥnsim,h
related to Eq. (33)

is constructed using the Monte Carlo simulation method, i.e.,

ĥnsim,h
=

∑nsim,h

i=1 hprior,i ℓ̂(hprior,i, zexp)
∑nsim,h

i=1 ℓ̂(hprior,i, zexp)
(34)

where the function ℓ̂(h, zexp) is an estimation of the likelihood function such
that

ℓ̂(h, zexp) =
1

nsim,n

nsim,n∑

k=1

p̂
Z|Hprior(zexp − nk | h) , (35)

where p̂
Z|Hprior is a multivariate kernel density estimator [27] of the probabil-

ity distribution p
Z|Hprior which is constructed using nsim,p independent real-

izations of the random localization matrices [O] and [C] (Hprior being fixed).
It is recalled that, for each realization of Hprior, the calculation of the elastic
modes, which is time-consuming has to be calculated only one time. Then the
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calculation of the independent realizations of random variableZ givenHprior,
which are useful for estimating p

Z|Hprior using a kernel density estimator are
not time-consuming. The computational cost related to the expectation with
respect to random variable N is also negligible once the probability distri-
bution p

Z|Hprior is estimated. In case of large dimension for random variable
Z, the estimation of p

Z|Hprior using a multivariate kernel density estimator
becomes inaccurate. To improve the accuracy, we can introduce the random
variable Z̃ = [V ]−1(Z − E{Z}), in which [V ] is related to the Cholesky
factorization of the covariance matrix [CZ ] = E{(Z −E{Z})(Z −E{Z)T},
i.e, [CZ ] = [V ][V ]T . Then it can be verified that the components of random

vector Z̃ are uncorrelated but dependent and we have the relation

p
Z|Hprior(z | h) =

1

det ([V ])
p
Z̃|Hprior([V ]−1(z − E{Z}) | h) . (36)

Since the construction the components of random vector Z̃ are uncorrelated,
a multivariate kernel density estimator p̂

Z̃|Hprior for Z̃ | Hprior can be con-
structed with a good accuracy. Then a multivariate kernel density estimator
p̂Z|Hprior for random variable Z | Hprior can be constructed using Eq. (36).

5. Optimal sensor location

The objective now is to determine the optimal nominal locations xs1
, . . . ,

xsns
and xa1

, . . . ,xaas
for the sensors and actuators respectively. A review

of previous methodologies for optimal sensors/actuators placements in linear
and non-linear structural dynamics can be found for instance in [18, 5, 19].
In the present paper, the optimal positions are searched in order to collect
the maximum information for updating the parameter h. This means that
we want that the dynamical responses measured at the optimal positions
should be (1) as sensitive as possible with respect to the parameter h and
(2) as robust as possible with respect to positioning uncertainties (and to
modeling errors if they are not negligible). In [16, 17, 18], the authors have
proposed to use the Shannon differential entropy [22, 12, 13] to quantify the
information that is provided by each sensor/actuator configuration. More
precisely, this method consists in minimizing the entropy (or uncertainty)
related to the posterior probability distribution pHpost . In the present pa-
per, the Kullback-Leibler (KL) divergence [14, 13], which is commonly used
in Bayesian experimental design (and more specifically for optimal sensor
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placement [6, 28]) and which is the opposite of the Shannon entropy in case
of uniform prior, is used instead. Let xs,a = (xs1

, . . . ,xsns
,xa1

, . . . ,xaas
) and

let Cxs,a
be the admissible space for xs,a. The KL divergence between the

prior distribution p
H

prior and the posterior distribution pHpost is defined by

KL(pHpost , p
H

prior) =

∫

R
nh

pHpost(h) log(
pHpost(h)

p
H

prior(h)
)dh

= EH
post{log(

pHpost(Hpost)

pHprior(Hpost)
)}, (37)

where log is the natural logarithm. The KL divergence is non-negative and
measures the difference of quantity of information between p

H
prior and pHpost .

This KL divergence depends on the measured vector zexp which is not avail-
able during the design of the experimental configuration. Therefore the ex-
perimental vector has to be constructed numerically using for instance the
response znom of the nominal model for which the updating parameter h

is set to a nominal value hnom. Using Eq. (31) with zexp = znom, the KL
divergence is rewritten as

KL(pHpost, p
H

prior) = E
H

prior{log(
ℓ(Hprior, znom)

E
H

prior{ℓ(Hprior, znom)}
) (38)

×
ℓ(Hprior, znom)

E
H

prior{ℓ(Hprior, znom)}
}

=
E

H
prior{log(ℓ(Hprior, znom))ℓ(Hprior, znom)}

E
H

prior{ℓ(Hprior, znom)}

− log(E
H

prior{ℓ(Hprior, znom)}) .

Here again, this rewriting has the advantage to use a generator of realizations
of Hprior instead of Hpost. Then the KL divergence can be estimated using
the Monte Carlo simulation method, i.e.,

K̂L(pHpost , p
H

prior) =

∑nsim,h

i=1 log(ℓ̂(hprior,i, znom))ℓ̂(hprior,i, znom)
∑nsim,h

i=1 ℓ̂(hprior,i, znom)
(39)

− log(
1

nsim,h

nsim,h∑

i=1

ℓ̂(hprior,i, znom)) ,
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in which the estimated likelihood function ℓ̂(h, znom) is given by Eq. (35).
The computation of the KL divergence for a given sensor/actuator configu-
ration xs,a is summarized on Table 1.

Choose a sensor/actuator configuration xs,a ∈ Cxs,a
.

Calculate znom using Eqs. (7) and (9).
for i = 1, . . . , nsim,h do

Generate realization hprior,i of random vector Hprior.
for j = 1, . . . , nsim,p do

Generate realization [Oj] of random matrix [O].
Generate realization [Cj ] of random matrix [C].
Calculate z(hprior,i; [Oj], [Cj ]) using Eqs. (25) and (26).

Estimate the probability distribution z 7→ p̂
Z|Hprior(z | hprior,i) using a

kernel density estimator.
for k = 1, . . . , nsim,n do

Generate realization nk of the noise vector N .
Evaluate p

Z|Hprior(zexp − nj | hprior,i).

Estimate ℓ̂(h, zexp) using Eq. (35).

Estimate K̂L(pHpost , pHprior ;xs,a) using Eq. (39).

Table 1: Computation of the KL divergence.

The optimal value xopt
s,a for the sensor/actuator nominal locations is the

one that maximizes the KL divergence (quantity of information) and is there-
fore solution of the following optimization problem

xopt
s,a = arg max

xs,a∈Cxs,a

KL(pHpost , p
H

prior ;xs,a) . (40)

This optimization problem can be solved using an evolutionary algorithm. In
[17], a sequential algorithm has been proposed in order to place the sensors
one at a time.
Remarks:

-The most extensive steps are related to the computation of the modal bases
[Φ(hprior,1)], . . . , [Φ(hprior,nsim,h)] for each sensor/actuator configuration. In
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order to save computational time, the same realizations hprior,1, . . . , hprior,nsim,h

of the random vector Hprior and the same realizations of the modal bases
[Φ(hprior,1)], . . . , [Φ(hprior,nsim,h)] can be used for each configuration. Never-
theless, this pre-computation of the modal bases requires a lot of memory
space available.
- The convergence of the KL divergence K̂L(pHpost , p

H
prior ;xs,a) with respect

to nsim,h, nsim,p and nsim,n should be studied for each sensor/actuator con-
figuration or at least for the nominal sensor/actuator configuration.

6. Application

6.1. 1D-Application: uniform bar

This first application is related to the frequency response of a uniform bar
with length L = 1 m, section S = 10−3 m2, Young’s modulus E = 109 Pa,
mass density ρ = 9000 kg/m3.

6.1.1. Reduced-order model and experimental responses

For such a simple structure, the elastic modes can be calculated explic-
itly. For α ∈ N∗, the eigenfrequencies λα = α2π2E/(ρL2) are associated with
the mass-normalized elastic modes φα = 2 sin(απx/L)/L, x ∈ [0, L]. A unit
point force is applied at x = xa such that the corresponding generalized forces
are fα = 2 sin(απxa/L)/L. In a first stage, in order to construct the experi-
mental responses, the modal dampings ξα are equal to 0.04. The frequency
band of analysis is B1 = [0; 3250] × 2π rad/s. The reduced-order model is
constructed using the 15 first elastic modes in order to a have a good conver-
gence of the response in the band B1. The frequency response is calculated
at xa = 0.3 m and for observation points P1 and P2 located at xs = 0.5 m
and xs = 0.25 m respectively. The functions ω 7→ log10(ω |Usens,P1(ω)|) and
ω 7→ log10(ω |Usens,P2(ω)|) are plotted on Figure 1. As expected, the reso-
nance corresponding to the second elastic mode (166 Hz) vanishes for point
P1 and the resonance corresponding to the fourth elastic mode (667 Hz)
vanishes for points P1 and P2.

6.1.2. Probabilistic model of positioning uncertainties and random response

Since the problem is 1D (no rotation), we only have to consider uncer-
tainties for the positions xs and xa related to the observation point and the
excitation point respectively. These positions are replaced by the random po-
sitions xs+Xs and xa+Xa in which random variables Xs and Xa are uniform
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Figure 1: Frequency response in velocity for points P1 (left figure) and P2 (right figure).

random variables defined on support [−0.04, 0.04]. For xs = 0.5 m (point P1)
and xs = 0.25 m (point P2), for xa = 0.3 m, the random frequency responses
are plotted on Fig. 2. The confidence regions with probability level 0.9 and
the mean values are estimated using the Monte Carlo simulation method with
1000 realizations. The convergence of the L2-norm of the mean value with
respect to the number of Monte Carlo simulations is plotted on Fig. 3. It
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Figure 2: Random frequency response in velocity for points P1 (left figure) and P2 (right
figure): Mean response (thick line) and confidence region (thin lines).

can be seen on Fig. 2 that compared to Fig. 1, a random resonance related to
the second elastic mode appears for point P1 and a random resonance related
to the fourth elastic mode appears for points P1 and P2. It can also be seen
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Figure 3: Convergence of the mean value with respect to the number of Monte Carlo
simulations.

that the level of fluctuation related to the first resonance mode is higher for
point P2 and the level of fluctuation related to the second resonance mode
is higher for point P1. Indeed, point P1 corresponds to a maximum (with
zero slope for the tangent) for the first elastic mode and corresponds to a
zero (with maximum slope for the tangent) for the second elastic mode and
then the first resonance is little sensitive to a variation of observation posi-
tion while the second resonance is very sensitive to a variation of observation
position. For the first elastic mode, point P2 corresponds to a larger slope
of the tangent than point P2 then the first resonance is more sensitive to a
variation of observation position for point P2. As a last remark for Fig. 2, it
can be seen that a stochastic averaging takes place for large frequencies due
to the decreasing of the spatial wavelength with respect to frequency.

6.1.3. Optimal sensor/actuator placement

It is now assumed that the modal dampings ratio ξ1 and ξ2 are uncertain
and have to be updated using experimental measurements of frequency re-
sponses. The experimental frequency response is constructed using the nomi-
nal model (with nominal values 0.04 for ξ1 and ξ2) introduced in Section 6.1.1
and the random responses are constructed using the stochastic model intro-
duced in Section 6.1.2. It is assumed that there is no modeling errors and the
random variable N is zero almost surely. For the updating, the frequency re-
sponses are restricted to the range B = [0, 433]×2π rad/s. The output vector
z is made up of the concatenation of the functions ω 7→ log10(ω |Usens,xs(ω)|)
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calculated at 10 frequencies regularly spaced in the range B. Therefore
nz = 10. The objective is to determine the optimal locations xopt

s and xopt
a

for the sensor and the actuator respectively. The prior distributions for the
random modal dampings Ξprior

1 and Ξprior
2 are uniform distributions on the

interval [0.02, 0.06]. Two cases are considered. For the Case 1, the modal
dampings ξ1 and ξ2 are considered separately and then two optimal config-
urations are determined separately. For the Case 2, the modal dampings ξ1
and ξ2 are considered in a single step and a unique optimal configuration is
determined.

For Case 1, the KL divergences KL(pΞpost
1

, pΞprior
1

; xs, xa) and KL(pΞpost
2

,

pΞprior
2

; xs, xa) are estimated using the Monte Carlo simulation method with

nsim,h = 1000 realizations. For each realization, the likelihood is estimated
using nsim,p = 800 realizations of the random positions (as explained in the
body of this paper, these 800 realizations are performed at reduced-order level
and are therefore not time consuming). The results are shown on Figs. 4 and 5
respectively It can be seen on Fig. 4 that for the updating of modal damping
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Figure 4: KL divergence (xs, xa) 7→ KL(pΞpost
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prior
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;xs, xa).

ξ1 the optimal configuration is xopt
s = 0.5 and xopt

a = 0.5. Indeed, even if all
the points of the bar are equally sensitive to ξ1, the middle of the bar is,
as explained above, the location where the response (for the first resonance)
is the most robust with respect to positions xs and xa and is therefore the
optimal position for both xs and xa. The symmetry with respect to the line
xs = xa is due to the reciprocity property of the nominal model and to the
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probabilistic models for Xs and Xa which are identical here. The symmetry
with respect to the line xs+xa = 1 is due to the symmetry of the application
with respect to the middle of the bar. Concerning ξ2, it can be seen on Fig. 5
that there are four optimal configurations which are such that xopt

s = 0.25 or
xopt
s = 0.75 and xopt

a = 0.25 or xopt
a = 0.75. These configurations correspond

to points where the response (for the second resonance) is the most robust
with respect to positions xs and xa.

For Case 2, the modal dampings ξ1 and ξ2 are considered in a single step.
Let be ξ = [ξ1, ξ2] andΞ = [Ξ1,Ξ2]. The KL divergence KL(pΞpost, p

Ξ
prior; xs, xa)

is plotted on Fig. 6. It can be seen on Fig. 6 that the optimal configurations
are again xopt

s = 0.25 or xopt
s = 0.75 and xopt

a = 0.25 or xopt
a = 0.75. The

KL divergence is quite large for the configuration xs = 0.5 and xa = 0.5.
Indeed this configuration provides very robust information for ξ1 and due to
uncertainties this configuration also provides few information for ξ2.

6.1.4. Identification of the modal dampings

The posterior distribution pΞpost(ξ | zexp) is calculated for the optimal
configuration xopt

s = 0.25 and xopt
a = 0.25 and is plotted on Fig. 7. The

marginal posterior distributions pΞpost
1

(ξ1 | zexp) and pΞpost
2

(ξ2 | zexp) are
plotted on Fig. 8. It is recalled that the prior distributions for Ξ1 and
Ξ2 are uniform on the interval [0.02, 0.06]. The estimated mean values are
E{Ξ1} = 0.041 and E{Ξ2} = 0.040 which are closed from the values from
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Figure 6: KL divergence (xs, xa) 7→ KL(pΞpost , pΞprior ;xs, xa).
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Figure 7: Configuration xopt
s = 0.25 and xopt

a = 0.25. Left figure: Posterior distribution
pΞpost(ξ | zexp). Right figure: Zoom.

which experimental responses have been generated (0.04). The estimated
coefficients of variation (ratio between the standard deviation and the mean
value) are δΞ1

= 0.24 and δΞ2
= 1.2 × 10−3. Then the use of this optimal

experimental configuration provides a very robust estimate for the modal
damping ξ2 and a quite robust estimate for the modal damping ξ1, or in other
words, the large position uncertainties for the sensor and actuator yields very
few errors on the estimation of ξ2 and acceptable errors for the estimation
of ξ1. In order to obtain a very robust estimate for ξ1, we can add another
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sensor or use two experimental configurations. For the configuration xs = 0.5
and xa = 0.5, the posterior distribution pΞpost(ξ | zexp) is plotted on Fig. 9
and the marginal posterior distributions pΞpost

1
(ξ1 | z

exp) and pΞpost
2

(ξ2 | z
exp)

are plotted on Fig. 10. It can be seen in these figures that this configuration
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Figure 9: Configuration xopt
s = 0.5 and xopt

a = 0.5. Left figure: Posterior distribution
pΞpost(ξ | zexp). Right figure: Zoom.

would yield a very robust estimate for ξ1 but a poor estimate for ξ2.
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6.2. 3-D application

6.2.1. Nominal model and its deterministic response

This second application is related to the plane structure represented in
Fig. 11. This structure is made up of two parts: a rigid frame (red plate
on Fig. 11) and flexible substructures (blue plates on Fig. 11). The rigid
frame has Young’s Modulus 2.1×1012 Pa, mass density 9800 kg/m3, Poisson
ratio 0.29 and thickness 4.0 × 10−3 m. The flexible plates are all identical
and have Young’s Modulus 1.7× 1012 Pa, mass density 7800 kg/m3, Poisson
ratio 0.29 and thickness 4.0 × 10−4 m. The frequency band of analysis is
B = [0; 2500] Hz. In the band B, the structure has 89 elastic modes. There
are both global elastic modes which involve displacements of all the struc-
ture and local elastic modes for which the displacement is localized on one
flexible plate and which are associated with small spatial wavelengths. The
damping is modeled by a Rayleigh model so that the damping ratio is 0.04 at
frequencies 50 Hz and 2500 Hz. A unit force is applied at point P1 located on
the rigid frame (see Fig. 11). The frequency responses of the nominal model
are calculated at points P1, P2 (located on the rigid frame, see Fig. 11)
and P3 (located on a flexible plate, see Fig. 11) following the normal direc-
tion. The functions ω 7→ log10(ω |Usens,P1(ω)|), ω 7→ log10(ω |Usens,P2(ω)|) and
ω 7→ log10(ω |Usens,P3(ω)|), in which Usens,Pi(ω) is the displacement of point
Pi following the normal direction, are plotted on Figs. 12, 13 and 14.
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Figure 11: FE mesh of the structure. Point P1 (black), point P2 (yellow) and point P3

(red).
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Figure 12: Frequency response in velocity for point P1.

6.2.2. Stochastic model of positioning uncertainties and stochastic response

Concerning the applied force, the fluctuations of the position around the
nominal value are modelled by a random vector for which the probability
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Figure 13: Frequency response in velocity for point P2.
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Figure 14: Frequency response in velocity for point P3.

distribution is uniform on a disc of diameter 0.015 m and the random an-
gles of orientation following the three directions are independent uniform
random variables on the support [−0.21; 0.21] rad. Concerning the observed
response, the fluctuations of the position around the nominal value are mod-
elled by a random vector for which the probability distribution is uniform
on a disc of diameter 0.01 m and the random angles of orientation follow-
ing the three directions are independent uniform random variables on the
support [−0.21; 0.21] rad. For points P1, P2 and P3, the random frequency
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responses are calculated using the Monte Carlo simulation method with 1000
realizations. Several cases of randomness are analysed. For Case 1, only the
positions are random while the rotations are kept zero. The corresponding
random frequency responses are plotted on Figs. 15, 16 and 17. For point
P1, the convergence of the L2-norm of the mean value with respect to the
number of Monte Carlo simulations is plotted on Fig. 18. It can be seen
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Figure 15: Case 1: Random frequency response in velocity for point P1: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).
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Figure 16: Case 1: Random frequency response in velocity for point P2: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).
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Figure 17: Case 1: Random frequency response in velocity for point P3: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).
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Figure 18: Convergence of the mean value with respect to the number of Monte Carlo
simulations.

that the fluctuations of the response increase with frequency since the spa-
tial wavelengths decrease with frequency. Concerning point P3 located on
a flexible plate, the fluctuations become very large since small-size spatial
wavelength modes are involved. For Case 2, the positions are determinis-
tic while the rotations are random. The corresponding random frequency
responses are plotted on Figs. 19, 20 and 21. It can be seen on these fig-
ures that, compared to the previous case, the fluctuations of the response
are more homogeneous with respect to frequency. Indeed, the randomness of
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Figure 19: Case 2: Random frequency response in velocity for point P1: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).
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Figure 20: Case 2: Random frequency response in velocity for point P2: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).

the rotation yields randomness on the response independently of the spatial
wavelength. For Case 3, the positions and the rotations are both random.
The corresponding random frequency responses are plotted on Figs. 22, 23
and 24. For this case, the two sources of randomness are cumulated yielding
large increasing fluctuations in band B.
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Figure 21: Case 2: Random frequency response in velocity for point P3: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).
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Figure 22: Case 3: Random frequency response in velocity for point P1: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).

6.2.3. Identification of the Young’s moduli

The Young’s modulus e1 of the flexible plates and the Young’s modu-
lus e2 of the rigid frame are now supposed to be unknown and have to be
identified using experimental frequency responses and the random frequency
responses calculated using the stochastic computational model at 20 fre-
quencies regularly spaced in the interval B. For each point Pi, i ∈ {1, 2, 3},
the output vector z is made up of the the concatenation of the functions
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Figure 23: Case 3: Random frequency response in velocity for point P2: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).
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Figure 24: Case 3: Random frequency response in velocity for point P3: Mean value (thick
line) and confidence region with probability level 0.95 (thin lines).

ω 7→ log10(ω |Usens,Pi(ω)|) calculated at the 20 frequencies of analysis. There-
fore nz = 20. Let E1 be the random Young’s modulus of the flexible
plates, let E2 be the random Young’s modulus of the rigid frame and let
be e = (e1, e2) and E = (E1, E2). The prior probability distribution are
uniform distributions on the intervals [2.05× 1012, 2.15× 1012] Pa for E1 and
[1.65 × 1012, 1.75 × 1012] Pa for E2. The identification is performed using
only one observation point that has to be chosen beyond P1, P2 and P3. To
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make the choice, the KL divergence is estimated for each point. The KL
divergence KL(pEpost, p

E
prior) is estimated using the Monte Carlo simulation

method with nsim,h = 800 realizations. For each realization, the likelihood is
estimated using nsim,p = 800 realizations of the random position/orientation.
For point P1 the KL divergence is 2.48, for point P2 the KL divergence is 1.63
and for point P3 the KL divergence is 2.17. As a conclusion, the most infor-
mative observation point is P1. This result confirms the low sensitivity of the
frequency response at P1 with respect to position/orientation uncertainties
(see Fig. 22). One of the realization of the frequency response calculated
in Section 6.2.3 is chosen as the experimental response. This experimental
response is plotted on Fig. 25. For point P1, the posterior distribution of
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Figure 25: Experimental response (thick dashed line) and response of the nominal model
(thin solid line).

random variable E is plotted on Fig. 26. The marginal posterior distribu-
tion of random variables E1 and E2 are plotted on Fig. 27. The estimated
mean values are 1.7×1012 Pa for E1 and 2.1×1012 Pa for E2. The estimated
coefficients of variation are 1.4 × 10−3 for E1 and 1.1 × 10−3 for E2. It can
then be concluded that the choice of P1 yields a robust estimation for the
two Young’s moduli. The posterior distributions have also been calculated
for point P3 and are plotted on Figs. 28 and 29. The corresponding esti-
mated mean values are 1.7 × 1012 Pa for E1 and 2.1 × 1012 Pa for E2. The
corresponding estimated coefficients of variation are 2.6 × 10−3 for E1 and
2.1×10−3 for E2. It can be concluded from Figs. 28 and 29, that as expected,
the choice of P3 yields a poor estimation for the Young’s modulus of the flex-
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Figure 26: Observation at point P1. Left figure: Posterior distribution e 7→ pEpost(e |
zexp). Right figure: function e 7→ log10(pEpost(e | zexp)).
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Figure 27: Observation at point P1. Left figure: Marginal posterior distribution pEpost

1
(e1 |

zexp). Right figure: Marginal posterior distribution pEpost

2
(e2 | zexp).

ible plates. This result is due to the small size of the spatial wavelength of
the elastic modes that contributes to the response at point P3 located on a
flexible plate.
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Figure 28: Observation at point P3. Left figure: Posterior distribution e 7→ pEpost(e |
zexp). Right figure: function e 7→ log10(pEpost(e | zexp)).
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Figure 29: Observation at point P3. Left figure: Marginal posterior distribution pEpost

1
(e1 |

zexp). Right figure: Marginal posterior distribution pEpost

2
(e2 | zexp).

7. Conclusions

We have presented a probabilistic method to take into account uncer-
tainties related to the position and orientation of the sensors and actuators.
This methodology allows (1) to analyse the propagation of these uncertainties
into the dynamical response of the structure, (2) to take into account these
uncertainties in the updating of the computational model using a Bayesian
method and (3) to find the optimal placement for the sensors and actua-

31



tors. This methodology is little intrusive with respect to the commercial
softwares and is well adapted to parallel computing. The sensitivity of the
dynamical response to sensor/actuator position uncertainties is larger for
locations where elastic modes with small-size spatial wavelength have large
contributions yielding inaccuracy for updated values of the parameters of the
computational model. The methodology we have proposed allows to detect
automatically such undesirable locations for the sensors and actuators.

Acknowledgements

This research work has been carried out in the context of the FUI 2012-
2015 SICODYN Project (pour des SImulations crédibles via la COrrélation
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