G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, A Posteriori Error and Optimal Reduced Basis for Stochastic Processes Defined by a Finite Set of Realizations, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.745-762, 2014.
DOI : 10.1137/130905095

URL : https://hal.archives-ouvertes.fr/hal-01097139

M. Loève, Probability Theory, 1977.

R. Ghanem and P. D. Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal of Applied Mechanics, vol.57, issue.1, pp.197-202, 1990.
DOI : 10.1115/1.2888303

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations, SIAM Journal on Scientific Computing, vol.34, issue.6, pp.2917-2945, 2012.
DOI : 10.1137/11084950X

URL : https://hal.archives-ouvertes.fr/hal-00770006

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.33-36, pp.2150-2164, 2010.
DOI : 10.1016/j.cma.2010.03.013

URL : https://hal.archives-ouvertes.fr/hal-00684324

O. Le-maître and O. Knio, Spectral Methods for Uncertainty Quantification, 2010.
DOI : 10.1007/978-90-481-3520-2

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Track irregularities stochastic modeling , Probabilistic Engineering Mechanics, pp.123-130, 2013.