T. B. Anderson and R. Jackson, Fluid Mechanical Description of Fluidized Beds. Equations of Motion, Industrial & Engineering Chemistry Fundamentals, vol.6, issue.4, pp.527-539, 1967.
DOI : 10.1021/i160024a007

C. Andreini, G. Ancey, and . Epely-chauvin, Granular suspension avalanches. II. Plastic regime, Physics of Fluids, vol.25, issue.3, p.33302, 2013.
DOI : 10.1063/1.4793720

B. Andreotti, Y. Forterre, and O. Pouliquen, Les milieux granulaires, Physique Savoirs Actuels. EDP Sciences, 2011.

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, vol.none, issue.01, pp.197-207, 1967.
DOI : 10.1017/S0022112067001375

M. D. Bolton, The strength and dilatancy of sands, G??otechnique, vol.36, issue.1, pp.65-78, 1986.
DOI : 10.1680/geot.1986.36.1.65

F. Bouchut and S. Boyaval, Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids, European Journal of Mechanics - B/Fluids, vol.55, pp.116-131, 2016.
DOI : 10.1016/j.euromechflu.2015.09.003

URL : https://hal.archives-ouvertes.fr/hal-00833468

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography, Communications in Mathematical Sciences, vol.2, issue.3, pp.359-389, 2004.
DOI : 10.4310/CMS.2004.v2.n3.a2

F. Bouchut, A. Mangeney-castelnau, B. Perthame, and J. Vilotte, A new model of Saint Venant and Savage???Hutter type for gravity driven shallow water flows, Comptes Rendus Mathematique, vol.336, issue.6, pp.531-536, 2003.
DOI : 10.1016/S1631-073X(03)00117-1

F. Bouchut, E. D. Fernández-nieto, A. Mangeney, and G. Narbona-reina, A two-phase shallow debris flow model with energy balance, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.1, pp.101-140, 2015.
DOI : 10.1051/m2an/2014026

URL : https://hal.archives-ouvertes.fr/hal-00860871

H. Brenner, Bi-velocity hydrodynamics. Multicomponent fluids, International Journal of Engineering Science, vol.47, issue.9, pp.902-929, 2009.
DOI : 10.1016/j.ijengsci.2009.05.002

H. Brenner, Diffuse volume transport in fluids, Physica A: Statistical Mechanics and its Applications, vol.389, issue.19, pp.4026-4045, 2010.
DOI : 10.1016/j.physa.2010.06.010

C. Cassar, M. Nicolas, and O. Pouliquen, Submarine granular flows down inclined planes, Physics of Fluids, vol.17, issue.10, p.103301, 2005.
DOI : 10.1063/1.2069864

F. Da-cruz, S. Emam, M. Prochnow, J. Roux, and F. Chevoir, Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Physical Review E, vol.72, issue.2, p.21309, 2005.
DOI : 10.1103/PhysRevE.72.021309

E. D. Fernández-nieto, F. Bouchut, D. Bresch, M. J. Castro-díàz, and A. Mangeney, A new Savage???Hutter type model for submarine avalanches and generated tsunami, Journal of Computational Physics, vol.227, issue.16, pp.7720-7754, 2008.
DOI : 10.1016/j.jcp.2008.04.039

Y. Forterre and O. Pouliquen, Flows of Dense Granular Media, Annual Review of Fluid Mechanics, vol.40, issue.1, pp.1-24, 2008.
DOI : 10.1146/annurev.fluid.40.111406.102142

URL : https://hal.archives-ouvertes.fr/hal-01432132

G. Midi, On dense granular flows, The European Physical Journal E, vol.4, issue.4, pp.341-365, 2004.
DOI : 10.1140/epje/i2003-10153-0

URL : https://hal.archives-ouvertes.fr/hal-00000959

D. L. George, R. M. Iverson, . Url, and . Doi, A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure on debris-flow hazards mitigation: mechanics, prediction and assessment, 5th international conference, pp.415-424, 2011.

D. L. George and R. M. Iverson, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc. A, p.20130820, 2014.
DOI : 10.1126/science.290.5491.513

J. M. Gray and A. N. Edwards, A depth-averaged -rheology for shallow granular free-surface flows, Journal of Fluid Mechanics, vol.112, pp.503-534, 2014.
DOI : 10.1007/BF01175958

R. M. Iverson, The physics of debris flows, Reviews of Geophysics, vol.237, issue.2, pp.245-296, 1997.
DOI : 10.1029/97RG00426

R. M. Iverson, Landslide triggering by rain infiltration, Water Resources Research, vol.31, issue.7, pp.1897-1910, 2000.
DOI : 10.1029/2000WR900090

R. M. Iverson, Regulation of landslide motion by dilatancy and pore pressure feedback, Journal of Geophysical Research, vol.10, issue.12, p.2015, 2005.
DOI : 10.1029/2004JF000268

R. M. Iverson, Elements of an improved model of debris-flow motion. Powders and Grains, Proceedings, vol.1145, pp.9-16, 2009.

R. M. Iverson and D. L. George, Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster, G??otechnique, vol.66, issue.3, pp.175-187, 2016.
DOI : 10.1680/jgeot.15.LM.004

R. M. Iverson and D. L. George, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proc. R. Soc. A, p.20130819, 2014.
DOI : 10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2

R. M. Iverson, M. Logan, R. G. Lahusen, and M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, Journal of Geophysical Research, vol.45, issue.F3, p.3005, 2010.
DOI : 10.1029/2009JF001514

R. Jackson, Some Mathematical and Physical Aspects of Continuum Models for the Motion of Granular Materials, Theory of Dispersed Multiphase Flow, pp.291-337, 1983.
DOI : 10.1016/B978-0-12-493120-6.50018-0

R. Jackson, The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics, 2000.

J. Kowalski and J. N. Mcelwaine, Shallow two-component gravity-driven flows with vertical variation, Journal of Fluid Mechanics, vol.11, pp.434-462, 2013.
DOI : 10.1103/PhysRevLett.107.188301

C. H. Lee, C. J. Huang, and Y. M. Chiew, A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column, Physics of Fluids, vol.27, issue.11, p.113303, 2015.
DOI : 10.1063/1.4935626

D. Lhuillier, Migration of rigid particles in non-Brownian viscous suspensions, Physics of Fluids, vol.21, issue.2, p.23302, 2009.
DOI : 10.1063/1.3079672

J. K. Mitchell, Fundamentals of soil behaviours, 1993.

S. Montserrat, A. Tamburrino, O. Roche, and Y. Niño, Pore fluid pressure diffusion in defluidizing granular columns, Journal of Geophysical Research: Earth Surface, vol.42, issue.2, p.2034, 2012.
DOI : 10.1111/j.1365-2478.1994.tb00236.x

URL : https://hal.archives-ouvertes.fr/hal-00720261

T. Morales-de and L. , A Saint Venant model for gravity driven shallow water flows with variable density and compressibility effects, Mathematical and Computer Modelling, vol.47, issue.3-4, pp.436-444, 2008.
DOI : 10.1016/j.mcm.2007.04.016

J. F. Morris and F. Boulay, Curvilinear flows of noncolloidal suspensions: The role of normal stresses, Journal of Rheology, vol.43, issue.5, pp.1213-1237, 1999.
DOI : 10.1122/1.551021

P. R. Nott, E. Guazzelli, and O. Pouliquen, The suspension balance model revisited, Physics of Fluids, vol.23, issue.4, p.43304, 2011.
DOI : 10.1063/1.3570921

URL : https://hal.archives-ouvertes.fr/hal-01432494

M. Pailha and O. Pouliquen, A two-phase flow description of the initiation of underwater granular avalanches, Journal of Fluid Mechanics, vol.33, pp.115-135, 2009.
DOI : 10.1017/S0022112008002401

M. Pailha, M. Nicolas, and O. Pouliquen, Initiation of underwater granular avalanches: Influence of the initial volume fraction, Physics of Fluids, vol.20, issue.11, p.111701, 2008.
DOI : 10.1063/1.3013896.1

M. Pelanti, F. Bouchut, and A. Mangeney, A Roe-type scheme for two-phase shallow granular flows over variable topography, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.5, pp.851-885, 2008.
DOI : 10.1051/m2an:2008029

URL : https://hal.archives-ouvertes.fr/hal-01342261

Y. Penel, S. Dellacherie, and B. Després, Coupling strategies for compressible-low Mach number flows, Mathematical Models and Methods in Applied Sciences, vol.25, issue.06, pp.1045-1089, 2015.
DOI : 10.1142/S021820251550027X

URL : https://hal.archives-ouvertes.fr/hal-00922770

E. B. Pitman and L. Le, A two-fluid model for avalanche and debris flows, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.363, issue.1832, pp.1573-1601, 2005.
DOI : 10.1098/rsta.2005.1596

O. Reynolds, On the dilatancy of media composed of rigid particles in contact, Phil. Mag. Ser, vol.5, issue.20, pp.469-481

J. F. Richardson and W. N. Zaki, Sedimentation and fluidization: part I, Trans. Inst. Chem. Eng, vol.32, pp.35-53, 1954.

L. Rondon, O. Pouliquen, and P. Aussillous, Granular collapse in a fluid: Role of the initial volume fraction, Physics of Fluids, vol.23, issue.7, p.73301, 2011.
DOI : 10.1063/1.3594200.1

URL : https://hal.archives-ouvertes.fr/hal-01431988

S. Roux and F. Radjai, Texture-dependent rigid plastic behaviour, Physics of Dry Granular Media, pp.229-236, 1998.

S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, vol.196, issue.-1, pp.177-215, 1989.
DOI : 10.1007/BF01180101

D. G. Schaeffer and R. Iverson, Steady and Intermittent Slipping in a Model of Landslide Motion Regulated by Pore-Pressure Feedback, SIAM Journal on Applied Mathematics, vol.69, issue.3, pp.768-786, 2008.
DOI : 10.1137/07070704X

A. N. Schofield and C. P. Wroth, Critical State Soil Mechanics, 1968.

I. Vardoulakis, Dynamic stability analysis of undrained simple shear on water-saturated granular soils, International Journal for Numerical and Analytical Methods in Geomechanics, vol.9, issue.2, pp.177-190, 1986.
DOI : 10.1002/nag.1610100206

D. M. Wood, Soil behavior and critical state soil mechanics, 1990.