Sound pulse broadening in stressed granular media
Vincent Langlois, Xiaoping Jia

To cite this version:

HAL Id: hal-01158619
https://hal-upec-upem.archives-ouvertes.fr/hal-01158619
Submitted on 1 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sound pulse broadening in stressed granular media

Vincent Langlois*
Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, F-77454, Marne-la-Vallée, France

Xiaoping Jin†
Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, 1 rue Jussieu 75005 Paris, France and Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France

The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along 1D disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length.

PACS numbers: 45.70.-n, 43.35.d, 81.05.Rm

I. INTRODUCTION

The structure of jammed granular media is characterized by the inhomogeneous contact networks at the mesoscopic scale [1]. Elastic waves in such media propagate in different ways according to the ratio of the wavelength λ to the grain size d. At low λ/d the propagation of waves is incoherent and strongly scattered, while at high λ/d the wave propagation is coherent and ballistic [2]. The scattered waves are the fingerprint of a specific configuration of the contact force network, which can be used to measure the interfacial dissipation on the grain scale and detect the tiny rearrangement of the contact network [3]. On the other hand, the velocity measurement of coherent waves allows one to characterize the elastic properties of granular packings on the macroscopic scale and infer the coordination number within the framework of effective medium theories [4–7]. This latter plays a central role in the granular mechanics [8–11].

Pulse wave propagation provides a convenient way for material characterization and signal transmission, thanks to the possible temporal separation of signals from parasites. In disordered granular packings, both experiments and numerical simulations have shown that coherent wave pulses, compressional or shear, decays in amplitude and broadens in width as it propagates, thus reducing significantly the resolution capacity [2, 12–16]. In general, two mechanisms may be responsible for the pulse broadening, i.e., attenuation and dispersion of velocity, which can be analyzed in the frequency domain via the dispersion relationship $k(\omega)$ between the wave number k and the angular frequency ω. Indeed, from $k(\omega) = k'(\omega) + ik''(\omega)$, the phase velocity $V(\omega) = \omega/k'$ and the attenuation $\alpha(\omega) = k''$ can be deduced, respectively. Somfai et al. [14] showed that in (1D) ordered granular media, the dispersion effect due to discrete lattice governs the shape of the coherent wavefront, and leads to a pulse broadening which scales with the source-detector distance L as $\propto L^{1/3}$. By introducing the polydispersity in the 1D chain, their numerical simulations revealed that disorder increases the pulse width. It was also shown in amorphous media that disorder could induce a dispersion of the phase velocity particularly at the high-frequency range with $\lambda \sim d$ [17]. However, at such frequency range, the coherent waves often exhibit strong attenuation dominated by strong scattering thus being responsible for the pulse broadening [18, 19]. In granular media, despite some recent numerical studies [14–16], few experimental data are actually available to highlight the interplay between pulse broadening and attenuation.

In this work, we study the propagation of compressional wave pulses through disordered granular packings under stress. A particular attention is focused on the evolution of the pulse width of the coherent sound wave as a function of propagation distance. Various granular media are investigated, including the mixture of glass and (poly)methyl-methacrylate (PMMA) beads with enhanced disorder. To understand the origin of the pulse broadening, we also perform the attenuation measurement by a spectral analysis and numerical simulations of the pulse propagation along disordered 1D elastic chains. The existing models of elastic wave scattering in random media are finally discussed to highlight the attenuation mechanism in granular media.

II. EXPERIMENTS

A. Granular samples

Acoustic measurements are performed using a pulse transmission through granular media under stress [2],
Table I. Description of the beads used for granular packings.

<table>
<thead>
<tr>
<th>material</th>
<th>glass</th>
<th>steel</th>
<th>PMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, d (mm)</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>tolerance (mm)</td>
<td>±0.01</td>
<td>±0.125</td>
<td>±0.085</td>
</tr>
<tr>
<td>sphericity</td>
<td>good</td>
<td>quite good</td>
<td>quite good</td>
</tr>
</tbody>
</table>

Figure 1. Sketch of the experimental setup.

The beads are poured by rain deposition into a rigid cell of inner diameter 30 mm. A plane-wave source (longitudinal) transducer of diameter 30 mm is placed on the top of the cell and the wave transmission is detected by a similar transducer on the bottom; both the source and the detector are in direct contact with the beads (Fig. 1). Before the ultrasonic measurements, two cycles of loading and unloading are performed to improve the reproducibility of measurements.

Various granular samples are investigated in this study. Table I summarizes the main characteristics like constitutive material (glass, PMMA or steel), mean size of beads, polydispersity and sphericity. The beads with a mean diameter larger than 1 mm have a good spherical shape and a low polydispersity, while the smaller ones present sometimes a non-spherical shape (e.g., partial coalescence of two beads) and higher polydispersity. The use of polymeric beads, e.g., PMMA, allows us to evaluate the effect of dissipation mechanisms on the coherent wavefront. Indeed, by measuring the absorption time (not shown here) from the time-resolved intensity profile of scattered waves [20, 21], we infer a wave dissipation four times larger in PMMA beads than in glass beads at 300 kHz, due to the viscoelastic loss.

B. Impulse response and wave velocity measurement

To obtain the impulse response of the coherent compressional wave in granular media, we may deconvolve the signals transmitted through the media by the signal S sent by the source transducer. Fig. 2 shows an example of the measured signal and deconvolved one (first part). The source signal S (inset of Fig. 2b) is obtained by putting the source against the detector via a coupling film. The deconvolution calculation, based on FFT, is performed on the frequency range $[1 \text{kHz} - 900 \text{kHz}]$. As in [14], we characterize the impulse response of the coherent signal by the arrival times associated to three particular points: the peak A_1, the first arrival at 10% of the peak (t_0), and the first zero crossing (t_2). Complementary measurements of pulse transmission were also performed in a reference medium, i.e. water filling up the above cell (waterproof) in which the shape of received signal does not evolve significantly as the distance source-receiver increases. This observation indicates that the source transducer does generate a quasi-plane wave and the effect of edge waves are negligible in our experiments [22].

In pulse transmission experiments, the wave velocity may be determined via the time-of-flight method, making measurements at two different distances. If only one-distance measurement is conducted for the velocity calculation, the different time t_0, t_1 or t_2 leads obviously to
different values (Fig. 3). Notice however that the velocity determined with t_1 is almost independent of the source-receiver distance, contrary to the other times used. As shown in Fig. 3, this velocity determined under low stress may exhibit a slight increase with the distance source-receiver. Such discrepancy could be improved by an alternative method based on the Hilbert transform using a reference signal, for example, the source signal A_1. Nevertheless, the difference between the velocity measured via t_1 and that determined by the alternative method is no more than 5%.

The wave velocity measurement has been extensively used to study the nonlinear elasticity of stressed granular media, see, e.g., [4, 6]. Figure 4a shows that as the confining pressure is decreased, there is an increase of the time-of-flight, a decay of the pulse amplitude and a broadening of the pulse. However, by rescaling the time t/t_1 and the amplitude A/A_1 axes, we find that almost all responses collapse (Fig. 4b), indicating that the coherent wavefront are mainly governed by the time scale t/t_1 or $V_p t$. To evaluate the accuracy of this collapse, we compare the normalized width of the signal, $W = (t_1 - t_0)/t_1$ at high and low pressures (inset of Fig. 4). The normalized width at low pressure is always higher than that obtained at high pressure. This difference may arise from the heterogeneity of the contact force networks which is more important at lower confining pressure [24]. For glass bead packings, the collapse of the rescaled responses appears more effective with beads of large size, less polydisperse and more spherical whose packing structures are expected to be less disordered. These results would suggest a possible dependence of the normalized width on the amount of disorder.

C. Evolution of sound pulse width

Figure 5a shows that a pulse broadening and decay with the distance of propagation through granular media.
granular packings and accordingly the normalized width \(W \). For a given volume fraction of glass beads \(\phi_{\text{glass}} \) (= \(V_{\text{glass}}/(V_{\text{glass}} + V_{\text{PMMA}}) \)), we determined the prefactor \(C_W \) by fitting the normalized widths measured for three source-receiver distances. Figure 6 shows the evolution of prefactor \(C_W \) as a function of the glass beads volume fraction \(\phi_{\text{glass}} \). As expected, \(C_W \) versus \(\phi_{\text{glass}} \) presents a maximum. Instead, the elastic longitudinal modulus \(C_{11} \) given by \(C_{11} = \rho_m V_p^2 \) with \(\rho_m \) the packing density of the granular mixture, increases monotonically with the volume fraction of glass beads.

D. Attenuation measurement by FFT

To identify the origin of the pulse broadening, we investigate the wave attenuation and velocity dispersion in frequency domain. By a FFT analysis of coherent wavefronts measured at different source-receiver distances, it is possible to determine the wave attenuation \(\alpha \) and velocity dispersion as a function of frequency \(\omega \). As detailed elsewhere [25]), the dispersion of the phase velocity is quite small in the range of frequency used here. Figures 7a and b show respectively the spectra associated with the pulses detected at different distances \(L \) (Fig. 5a) and the attenuation \(\alpha \) deduced from the ratio of spectra. For guidance, different scaling of attenuation on frequency \(\omega, \omega^2 \) and \(\omega^4 \) are recalled. We discuss later in Section III C the possible mechanisms of wave attenuation.

III. SIMULATION AND MODELING

Despite the lack of theoretical models accurately describing the sound propagation and scattering in granular media, we seek to explain our main experimental observations by the simplified numerical simulations and the general models of elastic wave scattering in random media.

A. Pulse broadening versus dispersion relationship

We here consider two distinct mechanisms leading to the pulse broadening, i.e., wave attenuation \(\alpha(\omega) \equiv k''(\omega) \) and velocity dispersion \(V(\omega) \equiv \omega/k'(\omega) \) where \(k(\omega) = k'(\omega) + ik''(\omega) \) is the complex wave number. To this end, we investigate the propagation of a plane wave
and \(\omega_1 = \left(\frac{2V^3}{R^2} \right)^{1/3} \). The first term \(e^{i\omega t_3} \) can be Fourier transformed using the translation property, and the second one \(e^{i \frac{1}{2} \omega (\frac{x}{L})^3} \) corresponds to the Fourier transform of the Airy function \(Ai(-x) \) scaled by the pulsation \(\omega_1 \). As shown in [14], the resultant temporal signal can be written as, \(a(x,t) = \omega_1 A\omega_1 (t_1 - t) = \omega_1 A\omega_1(t_1(t_1 - t)/t_1) \). With the rescaled time axis \((t_1 - t)/t_1\), the normalized width of the signal is then given by \(W \sim (\omega_1 t_1)^{-1} = \left(\frac{R^2}{2\pi} \right)^{1/3} \propto x^{-2/3} \) namely,

\[
W \propto L^{-2/3}
\]

which implies a pulse broadening \((t_1 - t_0) \sim W t_1 \sim L^{1/3} \), as previously found [14].

We secondly examine a pulse propagation in a 1D random medium where the phase velocity \(V = \omega/k' \) is constant, dispersionless. However, there is an attenuation given by \(\alpha = k''(\omega) = \left[\sigma_k L_{\omega}^{n-1} \right] (\frac{\omega}{\omega_0})^n \) with \(n \) an integer; the underlying physics (and the parameters in the bracket) of such system is detailed in §III C below. The Fourier transform of the temporal signal is then \(\tilde{a}(\omega) = e^{ik'x}e^{-k''x} = e^{i\omega_1 t_1}e^{-\frac{\omega_1 x}{t_1}} \) with \(t_1 = \frac{t}{t_1} \) and \(\omega_1 = \left(\frac{\omega R}{4\pi^2 L} \right)^{1/n} \). By considering the properties of the Fourier transform, the temporal signal is \(a(x,t) = \omega_1 s(\omega_1 (t_1 - t)) \) where the function \(s \) is the inverse Fourier transform of \(e^{-\omega_1 t_1} \). With the rescaled time axis \((t_1 - t)/t_1\), the normalized width of the signal is then \(W \sim (\omega_1 t_1)^{-1} = (\omega_1 t_1)^{-1} \sim \frac{1}{L_{\omega}} \). In 1D randomly layered media, one has \(n = 2 \) (see details below in section IIIC) leading to \(\alpha \sim \omega^2 \) and \(W \) at \((x = L) \)

\[
W \propto L^{-1/2}
\]

B. Simulations in 1D chains of elastic lattices

The use of normalized variables allows us to compare our experimental results to numerical simulations. As shown in Fig. 5c, the numerical results obtained in disordered 2D granular media [14] compare quite well with our experimental results. Moreover, the velocity dispersion in 1D ordered chains leads to a power law scaling of \(W \) on distance as \((L/d)^{-2/3} \) (Eq. 3) as found in [14]. However, the normalized widths obtained in disordered packing scales with distance as \((L/d)^{-1/2} \) (similar to Eq. 4) and have also values larger than those one deduced from ordered packings.

In order to evaluate the effect of scattering attenuation on the pulse broadening, we perform the simulation in a 1D disordered mass-spring chain in the presence of the correlation length similar to random media by Fouque et al. [19]. More specifically, we consider a 1D chain of mass-spring consisted of sub-chains of length \(L_i \) and...
stiffness D_i which is uniform inside each sub-chain (Fig 8a). Assuming an exponential distribution of the sub-chain length L_i, we then obtain a mean length of the sub-chains equal to L_0. If the inverse of stiffness is given by $D^{-1} = D^{-1}(1 + \nu_D)$ with D^{-1} the mean value and ν_D the fluctuation uniformly distributed in the range $[-\nu_{\text{max}}, \nu_{\text{max}}]$, we may readily verify $\langle \nu_D \rangle = 0$ and the variance $\langle \nu_D^2 \rangle = \sigma_D^2 = (\nu_{\text{max}})^2/3$. To determine the correlation length associated with such a disordered chain, we compute the correlation function of the stiffness fluctuation $\langle \nu_D(x)\nu_D(x+\Delta x) \rangle$ via ensemble average between two points separated by a distance Δx. Fig 8c shows the normalized correlation function (by σ_D^2) versus Δx, calculated for the different L_0. If we defined the correlation length L_c corresponding to a decrease of the normalized correlation to about 0.4 ($\approx e^{-1}$), we deduce a correlation length $L_c \approx L_0$ from Fig 8c.

Simulations of the pulse propagation are performed by solving the eigenproblem of the linear spring system at given initial conditions. The equation of motion of the N beads is given by (Fig 8b):

$$m\ddot{u}_j = D_{j+1}(u_{j+1} - u_j) + D_j(u_{j-1} - u_j)$$

This equation can be expressed in a matrix form $\mathbf{m}\ddot{\mathbf{u}} = \mathbf{D}\mathbf{u}$ where \mathbf{u} is the displacement vector of each bead (only the translational motion is considered here), m is the constant mass of beads and \mathbf{D} is a $N \times N$ matrix (for simplicity m and \mathbf{D} are here set to 1). Eigenfrequencies ω_n of this linear system are the square roots of the eigenvalues of the matrix \mathbf{D}/m. The oscillations of beads are given by the superposition of the eigenmodes: $\mathbf{u}(t) = \sum_n A_n u_n \cos(\omega_n t)$ where u_n are the eigenvectors of the matrix \mathbf{D}/m and the amplitudes A_n are determined by the initial conditions. To prevent the wave reflections at the edges, the source and the detector are placed in the middle of the chain. Assuming at $t = 0$ the particle displacement u located at the source is equal to one, the propagation of the pulse for various source-detector distances L is then computed with the displacement $u(t)$, averaged over 100,000 configurations.

Figure 9a shows the evolution of the coherent wavefront where the shape of the wavefront evolves during the propagation and tends to a Gaussian-like pulse at long distance. The normalized width of the pulse is plotted in Fig. 9b as a function of the source-detector distance for the case $\sigma_D = 0.29$. The variance σ_D slightly makes increase the normalized width and the variation of the mean or correlation length further enhances the effect on W. Figure 9c depicts the pulsed wave attenuation observed in frequency domain. It scales as ω^2 and increases with the mean length of sub-chains L_0.

C. Models of elastic wave scattering and dissipation

Finally, we compare our experimental and numerical results with the theoretical models of elastic wave propagation in random or granular media. In these scattering media, the models seek to relate the attenuation of coherent waves to the statistical properties of random media such as the elastic modulus K and the density ρ [18, 19, 27], for instance introducing a characteristic length L_c of the fluctuation $\nu_K = \Delta K^{-1}/K^{-1}$ (see below).

Consider 1D random layers with the similar statistical properties as those investigated above in 1D disordered chains and free of dispersion and dissipation. Assuming $L_c \ll \lambda \ll L$ and a high level of disorder corresponding to a variance $\langle \nu_K^2 \rangle = \sigma_K^2 \sim 1$, Fouque et al. [19] show that the waveform of a coherent pulse tends to a Gaussian signal at long distance of propagation (Fig. 9a); it propagates at an effective velocity $\bar{V} = \sqrt{K/\rho}$:

$$a(L, t) = \frac{1}{\sqrt{2\pi w_L}} e^{-\frac{(t-L\bar{V})^2}{2w_L^2}}$$

where $w_L = (\gamma L/2\bar{V}^2)^{1/2}$ governs the pulse width and $\gamma = \int_0^\infty \langle \nu_K(x) \nu_K(x) \rangle dx = \sigma_K^2 L_c$ is determined by the product of the variance σ_K^2 and the correlation length L_c.

Figure 8. (a) Random 1D chain (see text). (b) The interaction between the nearest neighboring beads. (c) Autocorrelation function of the fluctuation ν_D of the inverse stiffness D^{-1} versus separate distance Δx for different mean lengths L_0.

\[p(L_i) = (1/L_0) e^{-L_i/L_0} \]
Eq. 7 implies that the normalized width $W \sim w_L/(L/V)$ scales with propagation distance L as $(\sigma_D^2 L_c/L)^{1/2}$, and that the attenuation of the pulse is given by $\alpha = \gamma \left(\frac{\omega}{2V} \right)^2$.

Figure 10 depicts numerical results from simulations in disordered chains, regarding the normalized width W for various source-detector distances L/d as a function of a combined parameter $(\sigma_D^2 L_c/L)^{1/2}$. More specifically, at a given distance L, we determine W by varying the variance σ_D or/and the correlation length L_c. The stack data show that for high disorder W scales as $(\sigma_D^2 L_c/L)^{1/2}$ as predicted above, while for the weak level of disorder, i.e. $\sigma_D^2 \left(\frac{L}{d} \right) \lesssim \left(\frac{L}{d} \right)^{-1/3}$, W tends to the constant values as those determined in ordered 1D elastic chains (represented by the horizontal solid lines). In terms of the dispersion relationship for the high level of disorder, the attenuation is given by $\alpha = \sigma_D^2 L_c k^2/4 \sim \omega^2$, consistent with the results shown in Fig. 9c.

In 3D random media without dispersion and dissipation [18, 27], the attenuation may be expressed in the limit case $k^2 \gamma L \ll 1$, by

$$\alpha \sim \sigma_D^2 L_c^{n-1} k^n \sim \omega^n \quad (8)$$

where $n = 2$ corresponds to the large scale fluctuation ($L_c \gg \lambda$) with a strongly anisotropic scattering, identical to the above result obtained in 1D random media (see also Fig. 9c), and $n = 4$ corresponds to the small scale fluctuation ($L_c \ll \lambda$) with an isotropic Rayleigh-like scattering [27].

Regarding the experimental data of attenuation shown in Fig. 7 and in [28], these two mechanisms of scattering invoked here corresponding to $\alpha \sim \omega^2$ and $\alpha \sim \omega^4$, respectively, may explain qualitatively the measurements at the high-frequency range (note that the former appears more significant in the present work), due to the heterogeneous and anisotropically structured contact force networks. However, at the low-frequency range, we experimentally observe a different behavior of attenuation $\alpha \sim \omega^4$. As mentioned before, the viscoelastic dissipation related to the particle material seems to be negligible here. Nevertheless, the wave dissipation around the bead contacts via thermoelastic relaxation might be a mechanism responsible for such kind of attenuation, as proposed by Wang and Santamarina [26], where the characteristic time is comparable with $\sim 1/\omega$.

IV. CONCLUSION

We have studied the pulse broadening of coherent sound waves propagating in granular media. The evolution of the pulse width of the coherent compressional
wave is analyzed in terms of the dispersion relationship, including wave attenuation and velocity dispersion. The pulse broadening measured in various disordered bead packings reveals both a different scaling law on distance of propagation L and larger values, compared to analytical and numerical results only invoking the dispersion effect as that found in ordered elastic lattices. The numerical simulations carried out in 1D disordered elastic systems composed of sub-chains show that the pulse broadening may be caused by scattering attenuation. More specifically, the normalized pulse width W by the wave propagation time scales with distance as $\propto L^{-1/2}$ instead $\propto L^{-2/3}$ due to the dispersion, and significantly depends on the product of the inverse stiffness variance σ_D^2 and the correlation length L_c. Our experimental and numerical results are consistent with theoretical models of elastic wave scattering in 1D and 3D random continuous media, suggesting a dominant attenuation mechanism $\alpha \sim \omega^2$ possibly due to an anisotropic-like scattering. Further works are still necessary to highlight the underlying physics of attenuation at the low-frequency range.

For future studies, the effects of disorder via mass or spring fluctuations found by numerical simulation in 1D chains need to be investigated in 2D or 3D disordered elastic networks. In these cases, the additional topological disorder appears and the absence of a reference medium prevents actually the analytical model of sound propagation [5]. Numerical simulation may help to better understand the elastic wave propagating in granular media.