C. Funfschilling, G. Perrin, and S. Kraft, Propagation of variability in railway dynamic simulations: application to virtual homologation, Vehicle System Dynamics, vol.15, issue.sup1, pp.245-261, 2012.
DOI : 10.4028/www.scientific.net/AMM.104.177

J. Ding, Z. Pan, and L. Chen, Second order adjoint sensitivity analysis of multibody systems described by differential???algebraic equations, Multibody System Dynamics, vol.149, issue.2, 2007.
DOI : 10.1007/s11044-007-9080-4

D. Hickey, K. Worden, M. Platten, and J. Wright, Higher-order spectra for identification of nonlinear modal coupling, Mechanical Systems and Signal Processing, vol.23, issue.4, 2009.
DOI : 10.1016/j.ymssp.2008.10.008

S. Iwnicki, Handbook of railway vehicle dynamics, 2000.
DOI : 10.1201/9781420004892

G. Kerschen, K. Worden, A. F. Vakakis, and J. Golinval, Past, presentand future of nonlinear system identification in structural dynamics, Mechanical Systems and Signal Processing, vol.20, issue.3, 2006.

L. Li, K. Phoon, and S. Quek, Comparison between Karhunen???Lo??ve expansion and translation-based simulation of non-Gaussian processes, Computers & Structures, vol.85, issue.5-6, pp.264-76, 2007.
DOI : 10.1016/j.compstruc.2006.10.010

DOI : 10.1006/mssp.2001.1424

A. A. Shabana, M. Tobaa, H. Sugiyama, and K. E. Zaazaa, On the Computer Formulations of the Wheel/Rail Contact Problem, Nonlinear Dynamics, vol.144, issue.4, p.40, 2005.
DOI : 10.1007/s11071-005-5200-y

R. Serban, Analytical derivatives for multibody system analysis, 2007.

W. Sextro, Dynamical contact problems with friction, 2002.
DOI : 10.1007/978-3-540-46871-4

J. Wringen, Track to Car body vibration transfer for a bogie rail vehicle, 1997.

S. Kraft, Parameter identification for a TGV model, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00731143

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 2007.

L. Fryba, Dynamics of railway bridges, 1996.
DOI : 10.1680/dorb.34716

F. Au, J. Wang, and Y. Cheung, Impact study of cable-stayed railway bridges with random rail irregularities, Engineering Structures, vol.24, issue.5, pp.529-541, 2002.
DOI : 10.1016/S0141-0296(01)00119-5

M. Majka and M. Hartnett, Dynamic response of bridges to moving trains: A study on effects of random track irregularities and bridge skewness, Computers & Structures, vol.87, issue.19-20, pp.1233-1252, 2009.
DOI : 10.1016/j.compstruc.2008.12.004

R. Fries and B. Coffey, A State-Space Approach to the Synthesis of Random Vertical and Crosslevel Rail Irregularities, Journal of Dynamic Systems, Measurement, and Control, vol.112, issue.1, pp.83-87, 1990.
DOI : 10.1115/1.2894143

H. Claus and W. Schiehlen, MODELING AND SIMULATION OF RAILWAY BOGIE STRUCTURAL VIBRATIONS, Vehicle System Dynamics, vol.23, issue.sup1, pp.538-552, 1997.
DOI : 10.1115/1.3119501

V. Garg and R. Dukkipati, Dynamics of railway vehicle systems, 1984.

S. Das, R. Ghanem, and S. Finette, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, Journal of Computational Physics, vol.228, issue.23, pp.8726-8751, 2009.
DOI : 10.1016/j.jcp.2009.08.025

R. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, rev, 2003.
DOI : 10.1007/978-1-4612-3094-6

R. Ghanem and A. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, vol.217, issue.1, pp.63-81, 2006.
DOI : 10.1016/j.jcp.2006.01.037

O. Le-maître and O. Knio, Spectral Methods for Uncertainty Quantification, 2010.
DOI : 10.1007/978-90-481-3520-2

A. Nouy and O. L. Maître, Generalized spectral decomposition for stochastic nonlinear problems, Journal of Computational Physics, vol.228, issue.1, pp.202-235, 2009.
DOI : 10.1016/j.jcp.2008.09.010

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations, SIAM Journal on Scientific Computing, vol.34, issue.6, pp.2917-2945, 2012.
DOI : 10.1137/11084950X

URL : https://hal.archives-ouvertes.fr/hal-00770006

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Karhunen???Lo??ve expansion revisited for vector-valued random fields: Scaling, errors and optimal basis., Journal of Computational Physics, vol.242, pp.607-622, 2013.
DOI : 10.1016/j.jcp.2013.02.036

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, A Posteriori Error and Optimal Reduced Basis for Stochastic Processes Defined by a Finite Set of Realizations, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1
DOI : 10.1137/130905095

URL : https://hal.archives-ouvertes.fr/hal-01097139

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.33-36, pp.2150-2164, 2010.
DOI : 10.1016/j.cma.2010.03.013

URL : https://hal.archives-ouvertes.fr/hal-00684324

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Track irregularities stochastic modeling, Track irregularities stochastic modeling, pp.123-130, 2013.
DOI : 10.1016/j.probengmech.2013.08.006

URL : https://hal.archives-ouvertes.fr/hal-00850645

H. Hertz, Ueber die beruhrung fester elasticher körper, Journal für reine und angewandte Mathematik, vol.92, 1882.

J. Kalker, Three-Dimensional elastic bodies in rolling contact, 1990.

J. Evans, Rail vehicle dynamic simulation using vampire, Vehicle System Dynamics Supplement, pp.31-119, 1999.

O. Evans, Vampire User guide, 2006.