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Abstract

In a context of increasing interoperability, several high speed trains, such as ICE, TGV,
ETR 500, are likely to run on the same tracks, whereas they have been originally designed for
speci�c and di�erent railway networks. Due to di�erent mechanical properties and structures,
the dynamic behaviors, the aggressiveness of the vehicle onthe track and the probabilities of
exceeding security and comfort thresholds will be very di�erent from one train to an other.
These maintenance, certi�cation and comfort criteria depend on the dynamic interaction
between the vehicle and the railway track and in particularly on the contact loads between
the wheels and the rail, which are very hard to evaluate experimentally. Moreover, the track-
vehicle system being strongly non-linear, this dynamic interaction has to be analyzed not
only on a few track portions but on the whole realm of possibilities of running conditions
that the train is bound to be confronted to during its life cycle.

The idea of this paper is therefore to show to what extent thisin�uence of the track
geometry variability on the train dynamics can be analyzed from the coupling of a deter-
ministic multibody modeling of the train with a track geometry stochastic modeling, which
has been identi�ed and validated from experimental data.

Keywords:
Railway track geometry, random �elds, train dynamics, riskassessment.

1. Introduction

To face the always more demanding challenges of the railway �eld, the expected bene�ts
of simulation versus experiment are multiple, as it would allow cheaper, shorter, and more
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Figure 1: Parametrization of the track irregularities, where E the theoretical track gauge,
s is the curvilinear abscissa of the track and(ONT (s); T (s); N (s); B (s)) is the Frenet frame
(for each rail, the mean position is represented in black, whereas the real position is in grey).

practical procedures. However, if simulation has to be usedin security, maintenance and
comfort prospects, it has to be representative of the physical behavior of the track-vehicle
system. The numerical models of the train and of the wheel-rail contact have indeed to be
fully validated, and a procedure to accurately investigatethe diversity of running conditions
that the train can be confronted to during its life cycle has to be de�ned. Such running
conditions refer, in particular, to a double scale description of the track geometry. Indeed,
whereas the mean line position of the perfect track, which ischosen at the building of a new
track, is characterized by three curvilinear quantities, which are the vertical curvaturecV ,
the horizontal curvature cH , and the track superelevationcL , the description of four kinds
of track irregularities has to be added to de�ne the actual positions of the two rails, which
are the lateral and vertical alignment irregularitiesx1 and x2, the cant de�cienciesx3 and
the gauge irregularitiesx4 (see Figure 1). These four track irregularities, which are the main
source of excitation of the train dynamics, are moreover in constant evolution, which is due
to the train dynamics, to the modi�cations of the track substructure and to maintenance
operations. Numerical methods to quantify the in�uence of this track irregularity variability
on the train dynamics are therefore needed.

The general scheme for probabilistic analysis is usually divided in three steps [1, 2, 3].
First, the mechanical model and the associated input parameters and output criteria have to
be de�ned precisely. Three kinds of inputs are needed for a railway model to be de�ned: the
vehicle model, the track model, and the wheel-rail contact model. Given these three inputs,
the train response can be computed as the solution of a systemof coupled equations that are
strongly nonlinear. Once these equations have been solved,the spatial accelerations of each
mass body, as well as the internal and external loads are available. These railway outputs
can then be post-processed to de�ne safety, comfort and maintenance criteria. Hence, thanks
to the coupling of a series of breakthroughs in the modeling of complex mechanical systems
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[4, 5, 6, 7, 8, 9, 10, 11, 12, 13] with an increase of the computational resources, it is now
possible to compare the simulated dynamics of a real train ona measured track geometry and
the measured dynamics of the same train on the same track [14]. Then, much attention has to
be paid to the modeling of the input variability, as any erroron the input will be propagated
to the output. Only the uncertainty in the track irregularit ies is addressed in this work.
Finally, the variability has to be propagated through the mechanical model. Noticing that
the railway mechanical system is based on a very high number of variable input parameters,
that the train response is very sensitive, very non linear, and very fuzzy with respect to
these input parameters, it appears that the best method to propagate the track variability
to the train dynamics is the Monte Carlo (MC) method [15]. If such a MC method is used, a
method to generate independent realistic and representative track conditions is thus needed.
In this prospect, methods based on the one-sided power spectral density (PSD) functions of
the track geometry [16, 17, 18] could be introduced to statistically characterize the random
irregularities. From a time-frequency transformation based on a spectral representation
[19, 20], track irregularities can indeed be generated fromthese PSD functions, which can
be either estimated from measured track irregularities or from track safety standards such
as the ones given by the Federal Railroad Administration [21]. In that case, the railway
track irregularities are however seen as four independent Gaussian random �elds that are
assumed to be ergodic and stationary in space. These track irregularities are nevertheless
strongly dependent in practice, and due to the strong coupling of the train dynamics with the
track degradation, they are actually neither stationary nor Gaussian. More recently, taking
advantage of the recent developments in the modeling of non-Gaussian and non-stationary
vector-valued random �elds [22, 23, 24, 25, 26, 27, 28, 29, 30], an original construction of
the track irregularities distribution has been proposed in[31]. Such a modeling allows then
the generation of running conditions that are realistic from frequency and statistical points
of view, and representative of the measured track quality.

Hence, the idea of this work is to show to what extent such a complex modeling of the
track geometry can be coupled with a rigid-body modeling of acomplete train to analyze
the in�uence of the track irregularity variability on the tr ain dynamics. To this end, Section
2 introduces �rst the railway stochastic modeling and its validation from experimental data.
Section 3 underlines then how such a stochastic modeling of the railway system can be
used to perform robust comparisons between trains with di�erent mechanical properties and
to quantify the consequences of an increase of the train speed on the train stability and
aggressiveness.

For con�dentiality reasons, only qualitative analysis will be presented in this work as
very few numerical values will be given.

2. Railway stochastic modeling

This section aims at presenting the numerical frame, on which the quanti�cation of the
in�uence of the track variability on the train dynamics is based. First, a description of
the railway deterministic problem is introduced. Then, therailway stochastic modeling is
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described. The relevance of both deterministic and stochastic problems is moreover evaluated
from comparisons to experimental data.

2.1. Railway deterministic modeling

2.1.1. De�nition of the deterministic modeling
As presented in Section 1, a deterministic railway simulation is based on the introduction

of three kinds of inputs.

� The vehicle modelV. Multibody simulations are usually employed to model the train
dynamics. Carbodies, bogies and wheelsets are therefore modeled by rigid bodies
linked with connections represented by rheologic models (dampers, springs, ...). For
1 � i � NDoF , and t in [0; T], we denote byui (t) the position at time t of the coordinate
associated with each degree of freedom of the rigid body modeling of the train, and
by _ui (t) = du i

dt (t) its time derivative. For instance, for a classical one-carriage TGV,
which is made of 10 coaches, 13 bogies and 52 wheelsets that are linked by a series of
suspensions and bumpstops,NDoF is about two hundreds (see Figure 2 for a simpli�ed
representation of the TGV).

� The track geometry,T . As described in Section 1, the track geometry refers to a double
scale description. On the �rst hand, the track design gathers the horizontal curvature
cH , the vertical curvature cV and the cross levelcL , and corresponds to the description
of a perfect track without irregularities. On the other hand, four track irregularities,
x1, x2, x3 and x4, have been added to characterize the deviation of the real railway
track toward this perfect track. It is moreover recalled that whereas the track design
is chosen constant, such irregularities are in constant evolution.

� The contact model,C, allows the computation of the contact forces between the rails
and the wheels. In the railway community, these contact forces are almost always
computed from the wheel pro�le and the rail pro�le thanks to the Hertz and Kalker
theories [32, 33].

Introducing the vector of the generalized coordinates, at time t,

U (t) = ( u1(t); u2(t); : : : ; _u1(t); _u2(t); : : :) ; (1)

the train dynamics can therefore be determined by solving the Euler-Lagrange equation,
which is written as:

d
dt

�
@Ec
@_ui

�
�

@Ec
@ui

= L i (U ; T ; C); 1 � i � NDoF ; (2)

with Ec the total kinetic energy of the train, andL i (U ; T ; C) the general load that is applied
to the degree of freedomi, which depends on the track geometryT , on the wheel-rail contact
C and on the generalized coordinatedU . Eq. (2) can be rewritten in a matricial form as:
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Figure 2: Simpli�ed description of a multibody model of a TGV.

[A(U )] _U = F (U ; T ; C); (3)

with [A] and F two strongly nonlinear operators. This system is usually solved with an
explicit time scheme. In the following, the commercial black-box software, Vampire (see
[34, 35] for further details about this software), is used. The chosen time step of this explicit
scheme was identi�ed according to a convergence analysis and is generally taken equal to
10� 4 second. The generalized coordinates vectorU is then post-treated to de�ne the �nal
comfort and safety criteria associated with the railway system. In this work, �ve represen-
tative outputs are chosen to characterize the train dynamics, which can be classi�ed in two
categories.

1. First, the maximal values of the vertical and lateral accelerations in the train coaches,
•zmax and •ymax , are controlled to guarantee the comfort of the passengers.

2. Secondly, the safety and maintenance criteria of the track-vehicle system are based
on the analysis of the wheel-rail contact forces. In this prospect, the following three
criteria are generally introduced to characterize the vehicle dynamics on a given track
geometry of total lengthStot :

� a shifting criterion:

(Y` + Yr )max = max
wheelset w

�
max

0� s� Stot
f Y w

` (s) + Y w
r (s)g

�
; (4)

� a derailment criterion:

(Y=Q)max = max
wheel q

�
max

0� s� Stot
f Yq(s)=Qq(s)g

�
; (5)

� a wear criterion:

(T 
 ) =
X

wheel q

( Z Stot

0
Tq(s)
 q(s)ds

)

; (6)
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where:

� 0 � s � Stot is the curvilinear abscissa of the track;

� Y w
` and Y w

r are the left and right lateral forces of the same wheelsetw, such that
the higher (Y` + Yr )max , the more chance for a shifting of the track;

� Yq and Qq are the lateral and vertical components of the wheel-rail contact force
at wheel q, such that the higher (Y=Q)max is, the more on the �ange a wheel of
the train can be;

� Tq and 
 q are respectively the creep force and the slip at wheelq, such that the
higher (T 
 ), the higher the contact wear for one run of the complete train.

Finally, given a model of the wheel-rail contactC, the deterministic railway problem
corresponding to the dynamics of a vehicleV on a track geometryT can be expressed as:

(V; T ; C) 7! c = g (V; T ; C) ; c = (•zmax ; •ymax ; (Y` + Yr )max ; (Y=Q)max ; (T 
 )) ; (7)

where it is reminded that g is a complex and nonlinear operator. These nonlinearities are
mostly due to the train suspensions (especially the airsprings between the bogies and the
coaches), to a series of bumpstops in the train description and to the wheel-rail contact
forces. Moreover, due to the train dynamics, to the track irregularities and to the speci�c
wheel and rail pro�les, the contact positions between each wheel of the train and the rails
keep changing. The wornest the track geometry is, the more discontinuous these changes are
likely to be. For instance, the diversity of these contact positions and contact forces can be
seen in Figure 4, which is based on the run of a train on a measured track geometry around
a curve, whose design is shown in Figure 3.

2.1.2. Domain of validity for the deterministic problem
As a �rst comment on the validity of the deterministic railway modeling, it is important

to point out that all European railway reference standards and reference maintenance guides
only consider the low-frequency content,f � f c, of the train dynamic quantities of interest
(either simulated or measured). As presented in the former Section, the software Vampire is
used to solve the railway deterministic problem. The train being constituted of rigid bodies,
the simulated high-frequency response of the train cannot be physical. As an illustration,
Figure 5 compares the measured and simulated frequency properties of a bogie of a TGV.
As shown in Figure 6, although the transverse and vertical accelerations of the bogie are
low-pass �ltered at the reference cut-frequencyf = f c, it can be seen that the low-frequency
response is well reproduced both in the time and frequency domains by the deterministic
model. As a consequence, in agreement with the work achievedin [14], it is assumed that
the proposed railway deterministic model is valid on the frequency band0 � f � f c. In the
following, each output of the train dynamics (whether measured or simulated) will thus be
low-pass �ltered at frequencyf c before being analyzed.
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Figure 3: Evolution of the horizontal curvature cH (� km� 1), the vertical curvature cV

(� km� 1) and of the cross levelcL (� m� 1) with respect to the track curvilinear abscissa s.

2.2. Railway stochastic problem

2.2.1. De�nition of the stochastic problem
As presented in Section 1, only the track geometry variability is analyzed in this work.

The wheel and rail pro�les of high speed trains and lines being checked and maintained very
regularly, only perfect wheel and rail pro�les will be considered in the following, such that
the contact properties,C, are chosen to be constant. It is moreover supposed that the track
irregularities can be separated from the track design. Hence, in the following, the track
design is also supposed to be constant, while the four track irregularities can vary. As a
consequence, vectorc, which is de�ned by Eq. (7), becomes a random vector that is denoted
by C = ( C1; C2; C3; C4; C5). It is reminded that by de�nition of vector c, C1 and C2 refer to
the vertical and lateral maximal accelerations in the traincoaches,C3 is the maximal value
of the sum of the transverse loads of the wheelsets,C4 is the maximal value of theY=Qratio,
and C5 is the cumulated wear along the track. At last, given a �xed description of the track
design, (cH ; cV ; cL ), and a normalized model of train,V, for which mechanical parameters
are also �xed and have been accurately identi�ed, the railway stochastic problem can be
witten:

X 7! C = G (X j cH ; cV ; cL ; V; C) ; (8)

whereX = ( X 1; X 2; X 3; X 4) is a non-Gaussian and non-stationary four-dimensional random
�eld, which gathers the evolutions with respect to the curvilinear abscissa of the considered
track design of the four track irregularities that were introduced in Section 1. In this work,
the distribution of X is moreover supposed to be identi�ed according to the developments
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achieved in [31], from the measurement of the track geometryof a whole railway network.
Hence, coupled with any track design, we admit that such a construction for X allows the
generation of independent running conditions that are realistic and representative of the
available measured track irregularities.

2.2.2. Validation of the stochastic problem
Two validations for the track geometry stochastic modeling, based on the train dynamics,

are proposed in this section. In a �rst step, it is shown that the track generator coupled
with the Vampire software allows the simulation of train accelerations that are similar to
accelerations that have been recorded on a real high speed train on a real track. In a second
step, another type of validation is proposed to evaluate therelevance of the track stochastic
modeling for the analysis of the wheel-rail forces, as theseforces can hardly be measured.

Relevance of the track stochastic modeling for the analysisof the train accelerations.
Since 2007, the measurement train IRIS-320 keeps monitoring the track geometry of the

French high speed lines. The rigid body modeling of this train has therefore been achieved,
simulations have then been performed at constant speedSon � = 500 variable running condi-
tions of total length Stot . For each simulation, the track design is therefore chosen to be con-
stant and to correspond once again to the one given by Figure 3, whereas the track irregular-
ities, which correspond to a particular realization,X (� n ), of X , are supposed to be di�erent
from one simulation to another. Hence, for alls in [0; Stot ], we respectively de�nebCsim

z (� n ; s)
and bCsim

y (� n ; s) as the vertical and lateral maximal values, at positions, of the accelera-
tions in all the coaches of the train that is excited by the track irregularity X (� n ). Given

these two sets of train responses,
n

bCsim
z (� n ); 1 � n � �

o
and

n
bCsim

y (� n ); 1 � n � �
o

, let

fD z
i (s); s 2 [0; Stot ]; 1 � i � 10g and fD y

i (s); s 2 [0; Stot ]; 1 � i � 10g be the decile func-
tions, such that at each positions, i=10 of the values of bCsim

z (� n ; s) and bCsim
y (� n ; s) are

in Dz
i (s) and Dy

i (s) respectively. These decile functions, whose representations are shown
in Figure 7, allow us to evaluate the in�uence of the track irregularity variability on such
maxima.

The IRIS-320 train is moreover equipped with accelerometers that record the vertical
and transverse accelerations at three coaches,

n
•y(1)

C ; •y(2)
C ; •y(3)

C ; •z(1)
C ; •z(2)

C ; •z(3)
C

o
:

In order to evaluate the relevance of the former results for the maximal accelerations in the
train coaches, we de�nebCexp

z and bCexp
y , such that for any value of the curvilinear abscissa of

the track, s, we get:

bCexp
z (s) = max

i 2f 1;2;3g

�
�
� •z(i )

C (s)
�
�
� ; (9)

bCexp
y (s) = max

i 2f 1;2;3g

�
�
� •y(i )

C (s)
�
�
� : (10)
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