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Abstract

In a context of increasing interoperability, several highgeed trains, such as ICE, TGV,
ETR 500, are likely to run on the same tracks, whereas they habeen originally designed for
speci ¢ and di erent railway networks. Due to di erent mechanical properties and structures,
the dynamic behaviors, the aggressiveness of the vehicletbe track and the probabilities of
exceeding security and comfort thresholds will be very dirent from one train to an other.
These maintenance, certi cation and comfort criteria depsd on the dynamic interaction
between the vehicle and the railway track and in particulagt on the contact loads between
the wheels and the rail, which are very hard to evaluate expetrentally. Moreover, the track-
vehicle system being strongly non-linear, this dynamic ietaction has to be analyzed not
only on a few track portions but on the whole realm of possililes of running conditions
that the train is bound to be confronted to during its life cyde.

The idea of this paper is therefore to show to what extent thisn uence of the track
geometry variability on the train dynamics can be analyzedrém the coupling of a deter-
ministic multibody modeling of the train with a track geomety stochastic modeling, which
has been identi ed and validated from experimental data.

Keywords:
Railway track geometry, random elds, train dynamics, riskassessment.

1. Introduction

To face the always more demanding challenges of the railwagld, the expected bene ts
of simulation versus experiment are multiple, as it would &w cheaper, shorter, and more
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Figure 1: Parametrization of the track irregularities, whee E the theoretical track gauge,

s is the curvilinear abscissa of the track andOyr (s); T (s); N(s); B(S)) is the Frenet frame
(for each rail, the mean position is represented in black, veheas the real position is in grey).

practical procedures. However, if simulation has to be used security, maintenance and
comfort prospects, it has to be representative of the physitbehavior of the track-vehicle
system. The numerical models of the train and of the wheelitacontact have indeed to be
fully validated, and a procedure to accurately investigatéhe diversity of running conditions
that the train can be confronted to during its life cycle has @ be de ned. Such running
conditions refer, in particular, to a double scale descrifmn of the track geometry. Indeed,
whereas the mean line position of the perfect track, which @hosen at the building of a new
track, is characterized by three curvilinear quantities, Wich are the vertical curvaturecy,
the horizontal curvature ¢4, and the track superelevationc_, the description of four kinds
of track irregularities has to be added to de ne the actual psitions of the two rails, which
are the lateral and vertical alignment irregularitiesx; and x,, the cant de cienciesxs; and
the gauge irregularitiesx, (see Figurell). These four track irregularities, which aréne main
source of excitation of the train dynamics, are moreover imastant evolution, which is due
to the train dynamics, to the modi cations of the track substucture and to maintenance
operations. Numerical methods to quantify the in uence ofhiis track irregularity variability
on the train dynamics are therefore needed.

The general scheme for probabilistic analysis is usuallyviied in three steps |IJ1[|2[|3].
First, the mechanical model and the associated input parartegs and output criteria have to
be de ned precisely. Three kinds of inputs are needed for ailay model to be de ned: the
vehicle model, the track model, and the wheel-rail contact adel. Given these three inputs,
the train response can be computed as the solution of a systefncoupled equations that are
strongly nonlinear. Once these equations have been solvéltk spatial accelerations of each
mass body, as well as the internal and external loads are dadile. These railway outputs
can then be post-processed to de ne safety, comfort and ménance criteria. Hence, thanks
to the coupling of a series of breakthroughs in the modelind oomplex mechanical systems



M, B,@,ﬁ,[é,[bﬂOBBBS] with an increase of the comptitaal resources, it is now
possible to compare the simulated dynamics of a real train @ameasured track geometry and
the measured dynamics of the same train on the same tra[lZ]wen, much attention has to
be paid to the modeling of the input variability, as any erroron the input will be propagated
to the output. Only the uncertainty in the track irregularit ies is addressed in this work.
Finally, the variability has to be propagated through the mehanical model. Noticing that
the railway mechanical system is based on a very high numbervariable input parameters,
that the train response is very sensitive, very non linear,ra very fuzzy with respect to
these input parameters, it appears that the best method to pipagate the track variability
to the train dynamics is the Monte Carlo (MC) method [LTJS]. If sich a MC method is used, a
method to generate independent realistic and representedi track conditions is thus needed.
In this prospect, methods based on the one-sided power spatdensity (PSD) functions of
the track geometry HS] could be introduced to statisally characterize the random
irregularities. From a time-frequency transformation basd on a spectral representation
HE, ], track irregularities can indeed be generated frothese PSD functions, which can
be either estimated from measured track irregularities ordm track safety standards such
as the ones given by the Federal Railroad AdministratiorL_LHl In that case, the railway
track irregularities are however seen as four independentaGssian random elds that are
assumed to be ergodic and stationary in space. These trackegularities are nevertheless
strongly dependent in practice, and due to the strong couplg of the train dynamics with the
track degradation, they are actually neither stationary no Gaussian. More recently, taking
advantage of the recent developments in the modeling of n@aussian and non-stationary
vector-valued random elds QSB@@EZEZE @],SQn original construction of
the track irregularities distribution has been proposed irﬂﬁ]. Such a modeling allows then
the generation of running conditions that are realistic fron frequency and statistical points
of view, and representative of the measured track quality.

Hence, the idea of this work is to show to what extent such a cqiex modeling of the
track geometry can be coupled with a rigid-body modeling of eomplete train to analyze
the in uence of the track irregularity variability on the tr ain dynamics. To this end, Section
[2 introduces rst the railway stochastic modeling and its viidation from experimental data.
Section[3 underlines then how such a stochastic modeling dfet railway system can be
used to perform robust comparisons between trains with dirent mechanical properties and
to quantify the consequences of an increase of the train sdeen the train stability and
aggressiveness.

For con dentiality reasons, only qualitative analysis wil be presented in this work as
very few numerical values will be given.
2. Railway stochastic modeling

This section aims at presenting the numerical frame, on wiiche quanti cation of the
in uence of the track variability on the train dynamics is based. First, a description of
the railway deterministic problem is introduced. Then, therailway stochastic modeling is
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described. The relevance of both deterministic and stochasproblems is moreover evaluated
from comparisons to experimental data.

2.1. Railway deterministic modeling

2.1.1. De nition of the deterministic modeling

As presented in Sectiofll, a deterministic railway simuladn is based on the introduction
of three kinds of inputs.

The vehicle modelV. Multibody simulations are usually employed to model the @&in
dynamics. Carbodies, bogies and wheelsets are thereforedeled by rigid bodies
linked with connections represented by rheologic modelsguhpers, springs, ...). For
1 1 Npor,andtin[0;T], we denote byu;(t) the position at time t of the coordinate
associated with each degree of freedom of the rigid body mbde of the train, and
by ui(t) = OL%(t) its time derivative. For instance, for a classical one-caage TGV,
which is made of 10 coaches, 13 bogies and 52 wheelsets thatlimked by a series of
suspensions and bumpstop$®per is about two hundreds (see Figurgl2 for a simpli ed
representation of the TGV).

The track geometry, T . As described in Sectiofill, the track geometry refers to a dale
scale description. On the rst hand, the track design gatherthe horizontal curvature
cq, the vertical curvature ¢, and the cross levet, , and corresponds to the description
of a perfect track without irregularities. On the other hand four track irregularities,
X1, X2, X3 and X4, have been added to characterize the deviation of the realilkgay
track toward this perfect track. It is moreover recalled th& whereas the track design
is chosen constant, such irregularities are in constant dution.

The contact model,C, allows the computation of the contact forces between the ita
and the wheels. In the railway community, these contact foes are almost always
computed from the wheel pro le and the rail pro le thanks to the Hertz and Kalker

theories [[__QJZJES].

Introducing the vector of the generalized coordinates, aime t,

U (t) = (ua(t); ua(t); ooosus(t); ux(t)s:o) s (1)

the train dynamics can therefore be determined by solving éhEuler-Lagrange equation,
which is written as:

d @ @& :

-~ = == LU T;0; 1 1 Npe; 2

dt @_ll @U ( ) DoF ( )
with E. the total kinetic energy of the train, andL;(U ; T ; C) the general load that is applied
to the degree of freedom, which depends on the track geometry , on the wheel-rail contact

C and on the generalized coordinatetd . Eq. (@) can be rewritten in a matricial form as:
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Figure 2: Simpli ed description of a multibody model of a TGV,

[A(U)IUL = F(U;T;0; (3)
with [A] and F two strongly nonlinear operators. This system is usually deed with an
explicit time scheme. In the following, the commercial bldebox software, Vampire (see

,@] for further details about this software), is used. e chosen time step of this explicit
scheme was identi ed according to a convergence analysisdais generally taken equal to
10 4 second. The generalized coordinates vectbr is then post-treated to de ne the nal
comfort and safety criteria associated with the railway syem. In this work, ve represen-
tative outputs are chosen to characterize the train dynamsg; which can be classi ed in two
categories.

1. First, the maximal values of the vertical and lateral acderations in the train coaches,
Zmax and Ymax, are controlled to guarantee the comfort of the passengers.

2. Secondly, the safety and maintenance criteria of the trke/ehicle system are based
on the analysis of the wheel-rail contact forces. In this pspect, the following three
criteria are generally introduced to characterize the vebie dynamics on a given track
geometry of total length S®t:

a shifting criterion:
(Y- + Y)max = max max fYY(s)+ YY" (s)g ; (4)
wheelset w 0 s Stot
a derailment criterion:
(Y=Qma: = e, max, 1Y(9=Qu(9)9 Q
a wear criterion:
X ( Z Stot )
(T )= Ty(s) ¢(s)ds (6)

wheel g
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where:

0 s S jsthe curvilinear abscissa of the track;

Y andY,"” are the left and right lateral forces of the same wheelset, such that
the higher (Y- + Y;)max, the more chance for a shifting of the track;

Yy and Qq are the lateral and vertical components of the wheel-rail atact force
at wheel g, such that the higher (Y=0Qmax IS, the more on the ange a wheel of
the train can be;

Ty and 4 are respectively the creep force and the slip at whegl such that the
higher (T ), the higher the contact wear for one run of the complete train

Finally, given a model of the wheel-rail contactC, the deterministic railway problem
corresponding to the dynamics of a vehiclg on a track geometryT can be expressed as:

V;T;0 7 c=g(V;T;0; €= (Zma:Yma: (Y + Y)ma; (Y=Qma: (T )5 (7)

where it is reminded thatg is a complex and nonlinear operator. These nonlinearitiesea
mostly due to the train suspensions (especially the airspigs between the bogies and the
coaches), to a series of bumpstops in the train descriptiome@ to the wheel-rail contact
forces. Moreover, due to the train dynamics, to the track iggularities and to the specic
wheel and rail pro les, the contact positions between eachheel of the train and the rails
keep changing. The wornest the track geometry is, the moresgontinuous these changes are
likely to be. For instance, the diversity of these contact psitions and contact forces can be
seen in Figurd¥, which is based on the run of a train on a measdrtrack geometry around
a curve, whose design is shown in Figuré 3.

2.1.2. Domain of validity for the deterministic problem

As a rst comment on the validity of the deterministic railway modeling, it is important
to point out that all European railway reference standards rad reference maintenance guides
only consider the low-frequency contenti  f., of the train dynamic quantities of interest
(either simulated or measured). As presented in the formeregtion, the software Vampire is
used to solve the railway deterministic problem. The train bing constituted of rigid bodies,
the simulated high-frequency response of the train cannotebphysical. As an illustration,
Figure 3 compares the measured and simulated frequency peoies of a bogie of a TGV.
As shown in Figure[®, although the transverse and vertical aelerations of the bogie are
low-pass ltered at the reference cut-frequencl = f, it can be seen that the low-frequency
response is well reproduced both in the time and frequency rdains by the deterministic
model. As a consequence, in agreement with the work achievied[lﬂ], it is assumed that
the proposed railway deterministic model is valid on the fiuency band0 f  f.. In the
following, each output of the train dynamics (whether meased or simulated) will thus be
low-pass lItered at frequencyf . before being analyzed.
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Figure 3: Evolution of the horizontal curvaturecy ( km 1), the vertical curvature oy
( km 1) and of the cross levet, ( m 1) with respect to the track curvilinear abscissa s.

2.2. Railway stochastic problem

2.2.1. De nition of the stochastic problem

As presented in Sectioll, only the track geometry variabiji is analyzed in this work.
The wheel and rail pro les of high speed trains and lines bejnchecked and maintained very
regularly, only perfect wheel and rail pro les will be consiered in the following, such that
the contact properties,C, are chosen to be constant. It is moreover supposed that theatk
irregularities can be separated from the track design. Heagcin the following, the track
design is also supposed to be constant, while the four tradkegularities can vary. As a
consequence, vectar, which is de ned by Eq. (@), becomes a random vector that is deted
by C = (Cy; Cy; Cs; Cy; Cs). It is reminded that by de nition of vector ¢, C; and C, refer to
the vertical and lateral maximal accelerations in the traincoachesCs; is the maximal value
of the sum of the transverse loads of the wheelse, is the maximal value of theY =Qratio,
and Cs is the cumulated wear along the track. At last, given a xed dscription of the track
design, (cq;0v;c ), and a normalized model of train,V, for which mechanical parameters
are also xed and have been accurately identi ed, the railwa stochastic problem can be
witten:

X 7 C=GX jeqsove;V;0; (8)

whereX = (Xq;X5; X3;X4) is a non-Gaussian and non-stationary four-dimensional rdom
eld, which gathers the evolutions with respect to the curdinear abscissa of the considered
track design of the four track irregularities that were intoduced in Sectiori 1. In this work,
the distribution of X is moreover supposed to be identi ed according to the dev@iments
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achieved in Ell], from the measurement of the track geometof a whole railway network.
Hence, coupled with any track design, we admit that such a cetruction for X allows the
generation of independent running conditions that are retic and representative of the
available measured track irregularities.

2.2.2. Validation of the stochastic problem

Two validations for the track geometry stochastic modelingoased on the train dynamics,
are proposed in this section. In a rst step, it is shown that he track generator coupled
with the Vampire software allows the simulation of train acelerations that are similar to
accelerations that have been recorded on a real high speedirron a real track. In a second
step, another type of validation is proposed to evaluate theelevance of the track stochastic
modeling for the analysis of the wheel-rail forces, as thek®ces can hardly be measured.

Relevance of the track stochastic modeling for the analysithe train accelerations.

Since 2007, the measurement train IRIS-320 keeps monitagithe track geometry of the
French high speed lines. The rigid body modeling of this traihas therefore been achieved,
simulations have then been performed at constant spe&®n = 500 variable running condi-
tions of total length S*. For each simulation, the track design is therefore chosea be con-
stant and to correspond once again to the one given by FigureBhereas the track irregular-
ities, which correspond to a particular realizationX ( ), of X , are supposed to be di erent
from one simulation to another. Hence, for ak in [0; S*'], we respectively de ne@zs"“( n:S)
and @;‘m( n;S) as the vertical and lateral maximal values, at positiors, of the accelera-
tions in all the coaches of the trgin that is excited by the trak,irregularity X ( ). Given

these two sets of train responses,®™( ): 1 n and &™( ,); 1 n , let
fDZ(s); s2[0;SY]; 1 i 10gandfD(s); s2[0;S®]; 1 i 10y be the decile func-
tions, such that at each positions, i=10 of the values of@zs"“( n;S) and @jim( n;S) are
in D?(s) and D/(s) respectively. These decile functions, whose representats are shown

in Figure [2, allow us to evaluate the in uence of the track iregularity variability on such
maxima.

The IRIS-320 train is moreover equipped with accelerometeithat record the vertical
and transverse accelerations at three coaches,
: 1).,3..,03).,1).,02 (3)0
Yo Yo i Yo i B L E
In order to evaluate the relevance of the former results fohe maximal accelerations in the

train coaches, we de neb®® and @§Xp, such that for any value of the curvilinear abscissa of
the track, s, we get:

8707 e, ) ©
&°(s) = max y&(s) : (10)
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