A. Alfonsi, High order discretization schemes for the CIR process: Application to affine term structure and Heston models, Mathematics of Computation, vol.79, issue.269, pp.209-237, 2010.
DOI : 10.1090/S0025-5718-09-02252-2

URL : https://hal.archives-ouvertes.fr/hal-00143723

D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2014.
DOI : 10.1007/978-3-319-00227-9

URL : https://hal.archives-ouvertes.fr/hal-00929960

V. Bally and L. Caramellino, On the distances between probability density functions, Electronic Journal of Probability, vol.19, issue.0, 2013.
DOI : 10.1214/EJP.v19-3175

V. Bally and L. Caramellino, Asymptotic development for the CLT in total variation distance. ArXiv e-prints, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104866

V. Bally and E. Clément, Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields, pp.613-657, 2011.
DOI : 10.1007/s00440-010-0310-y

URL : https://hal.archives-ouvertes.fr/hal-00431632

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Related Fields, pp.43-60, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074427

V. Bally and D. Talay, The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density, Monte Carlo Methods and Applications, vol.2, issue.2, pp.93-128, 1996.
DOI : 10.1515/mcma.1996.2.2.93

URL : https://hal.archives-ouvertes.fr/inria-00074016

V. Bally and L. Caramellino, Convergence and regularity of probability laws by using an interpolation method. arXiv preprint, 2014.

G. Sergey, G. P. Bobkov, F. Chistyakov, and . Götze, Berry?Esseen bounds in the entropic central limit theorem. Probab. Theory Related Fields, pp.3-4435, 2014.

G. Sergey, G. P. Bobkov, F. Chistyakov, and . Götze, Fisher information and the central limit theorem. Probab. Theory Related Fields, pp.1-59, 2014.

M. Bossy, E. Gobet, and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions, J. Appl. Probab, vol.41, issue.3, pp.877-889, 2004.

E. Gobet, Weak approximation of killed diffusion using Euler schemes. Stochastic Process, Appl, vol.87, issue.2, pp.167-197, 2000.

E. Gobet and S. Menozzi, Stopped diffusion processes: boundary corrections and overshoot. Stochastic Process, Appl, vol.120, issue.2, pp.130-162, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00446315

J. Guyon, Euler scheme and tempered distributions, Stochastic Processes and their Applications, vol.116, issue.6, pp.877-904, 2006.
DOI : 10.1016/j.spa.2005.11.011

J. Jacod, T. G. Kurtz, S. Méléard, and P. Protter, The approximate Euler method for L??vy driven stochastic differential equations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, issue.3, pp.523-558, 2005.
DOI : 10.1016/j.anihpb.2004.01.007

B. Jourdain and A. Kohatsu-higa, A Review of Recent Results on Approximation of Solutions of Stochastic Differential Equations, volume 65 of Progress in Probability, 2011.

P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Applications of Mathematics, vol.23, 1992.

A. Kohatsu-higa and P. Tankov, Jump-adapted discretization schemes for Lévy-driven SDEs. Stochastic Process, Appl, vol.120, issue.11, pp.2258-2285, 2010.

V. Konakov and S. Menozzi, Weak Error for Stable Driven Stochastic Differential Equations: Expansion??of??the??Densities, Journal of Theoretical Probability, vol.8, issue.4, pp.454-478, 2011.
DOI : 10.1007/s10959-010-0291-x

V. Konakov, S. Menozzi, and S. Molchanov, Explicit parametrix and local limit theorems for some degenerate diffusion processes, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.46, issue.4, pp.908-923, 2010.
DOI : 10.1214/09-AIHP207

URL : https://hal.archives-ouvertes.fr/hal-00256588

S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, In Advances in mathematical economics. Adv. Math. Econ, vol.6, issue.6, pp.69-83, 2004.
DOI : 10.1007/978-4-431-68450-3_4

S. Kusuoka, Gaussian K-scheme: justification for KLNV method, Adv. Math. Econ, vol.17, issue.17, pp.71-120, 2013.
DOI : 10.1007/978-4-431-54324-4_3

M. Ledoux, I. Nourdin, and G. Peccati, Stein's method, logarithmic Sobolev and transport inequalities ArXiv e-prints, 2014.

E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stochastic Process, Appl, vol.118, issue.8, pp.1301-1321, 2008.

T. Lyons and N. Victoir, Cubature on Wiener space, Stochastic analysis with applications to mathematical finance, pp.169-198, 2004.
DOI : 10.1098/rspa.2003.1239

G. N. Milstein, Weak approximation of solutions of systems of stochastic differential equations, Numerical Integration of Stochastic Differential Equations, volume 313 of Mathematics and Its Applications, pp.101-134, 1995.
DOI : 10.1007/978-94-015-8455-5_4

S. Ninomiya and N. Victoir, Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing, Applied Mathematical Finance, vol.29, issue.2, pp.107-121, 2008.
DOI : 10.1016/0020-7225(65)90045-5

I. Nourdin, G. Peccati, and Y. Swan, Entropy and the fourth moment phenomenon, Journal of Functional Analysis, vol.266, issue.5, pp.3170-3207, 2014.
DOI : 10.1016/j.jfa.2013.09.017

URL : https://hal.archives-ouvertes.fr/hal-00807589

I. Nourdin and G. Poly, An invariance principle under the total variation distance. 15 pages, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873311

E. Nummelin, A splitting technique for Harris recurrent Markov chains, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.29, issue.2, pp.309-318, 1978.
DOI : 10.1007/BF00534764

P. Protter and D. Talay, The Euler scheme for L??vy driven stochastic differential equations, The Annals of Probability, vol.25, issue.1, pp.393-423, 1997.
DOI : 10.1214/aop/1024404293

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal, Appl, vol.8, issue.4, pp.483-509, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075490

A. Yu, Za? ?tsev Approximation of convolutions of probability distributions by infinitely divisible laws under weakened moment constraints, Zap. Nauchn. Sem. S.-Peterburg