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1 INTRODUCTION 1

Approximation of Markov semigroups in total
variation distance

Vlad Bally !
Clément Rey 2

Abstract

The first goal of this paper is to prove that, regularization properties of a Markov semigroup
enable to prove convergence in total variation distance for approximation schemes for the
semigroup. Moreover, using an interpolation argument we obtain estimates for the error in
distribution sense (at the level of the densities of the semigroup with respect to the Lebesgue
measure). In a second step, we build an abstract Malliavin calculus based on a splitting
procedure, which turns out to be the suited instrument in order to prove the above mentioned
regularization properties. Finally, we use these results in order to estimate the error in total
variation distance for the Ninomiya Victoir scheme (which is an approximation scheme, of
order 2, for diffusion processes).

1 Introduction

In this paper we study the total variation distance between two discrete time Markov semi-
groups and we give applications for the speed of convergence of approximation schemes. In
order to do it we use an abstract Malliavin type calculus based on a splitting procedure which
enables us to prove regularization properties of the semigroup - and it turns out that such
regularization properties are crucial in order to be able to deal with measurable test functions.
Moreover, we take a step further and we give estimates for the distance between the density
function of the Markov semigroup and the density function of the approximation scheme. At
this level we have to use an interpolation argument which has been recently obtained in [8].
Let us be more specific and describe the different steps of our approach. We consider the d
dimensional Markov chain

Z
X =X, T5), kel (1)

where 1), : RYxRY — R? is a smooth function such that ¢ (z,0) = z and Z, € RY, k € Nisa
sequence of independent random variables. The semigroup of the Markov chain X}’ is denoted
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by P and the transition probabilities are i} (z,dy) = P(X}(x) € dy|X} = x). Moreover
we consider a Markov process in continuous time (X;);>o with semigroup P, and we denote
vi(z, dy) = P(X,, € dy|X,, = x) where ), = k6 = £ with § = 2. A first standard result is the
following: let us assume that there exists h > 0, p € N such that for every f € C?(R?), k € N
and z € RY,

i f(x) —vp f(@)| = | [ F)pi(z, dy) — [Fy)vi(z, dy)| < C||fllped™ 2)
where || f||, 0 denotes the supremum norm of f and of its derivatives up to order p. Then, for
every T' > 0,

sup [| Py, f = P flloo < CIIf

te<T

Pl (3)

It means that (X}')ren is an approximation scheme of weak order h for the Markov process
(X¢)i=0- In the case of the Euler scheme for diffusion processes, this result, with h = 1, has
initially been proved in the seminal papers of Milstein [26] and of Talay and Tubaro [32] (see
also [17]). Similar results were obtained in various situations: diffusion processes with jumps
(see [31], [15]) or diffusion processes with boundary conditions (see [12], [11], [13]). See [16]
for an overview of this subject. More recently, approximation schemes of higher orders (e.g.,
h = 2), based on a cubature method, have been introduced and studied by Kusuoka [21],
Lyons [25], Ninomiya, Victoir [27], Alfonsi [1], Kohatsu-Higa and Tankov [18].

Another result concerns convergence in total variation distance: we want to obtain (3) with
| fllp,00 Teplaced by || f|lc when f is a measurable function. In the case of the Euler scheme for
diffusion processes, a first result of this type has been obtained by Bally and Talay [6], [7] using
the Malliavin calculus (see also Guyon [14]). Afterwards Konakov, Menozzi and Molchanov
[19], [20] obtained similar results using a parametrix method. Recently Kusuoka [22| obtained
estimates of the error in total variation distance for the Victoir Ninomiya scheme (which
corresponds to the case h = 2). We will obtain a similar result using our approach. Moreover,
we give estimates of the rate of convergence of the density function and its derivatives.

Regularization properties. We first remark that the crucial property which is used in
order to replace || f||p.0 by ||flloo in (3), is the regularization property of the semigroup. Let
us be more precise: let n > 0, p € N be fixed. Given the time grid ¢, = kd, we say that a
semigroup (Py)ren satisfies R, ,, if

C
By [1Pkfllpoo < ?Hf\\oo- (4)

We also introduce a dual regularization property: we consider the dual semigroup P} (i.e.
(Pgg, f) = (g, Pof) with the scalar product in L*(R?)) and we assume that

* * C
Ry B fllpa < @Hflha (5)

where || f||,.1 denotes the L' norm of f and of its derivatives up to order p. Finally, we consider
the following stronger regularization property: for every multi-index «, 8 with |a| + 5] = p,

_ i C
Rpy  [10°P0° fllo < ol e (6)
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One notices that R »m implies both R, and R;  and that a semigroup satisfying R b 1S
absolutely continuous with respect to the Lebesgue measure.

In addition to (2), we will also suppose that the following dual estimate of the error in short
time holds:

[ {g, (k= V&))< Cllgllpallfllcd™". (7)

Keeping these properties in mind, we can state the following result.

Theorem 1.1. We fix T,h > 0, p € N and we assume that the short time estimates (2) and
(7) hold (with this p and h). Moreover, we assume that (4) holds for (P, )ren and that (5)
holds for (P} )ren - Then,

VO<S<T, sup ||Pf—Prfl, <

00" 8
S Sm,l\f!l (8)
Integration by parts formulae. Once we have this abstract result, the following step is
to give sufficient conditions in order to obtain R,,, R, and R,,. We will use Malliavin type
integration by parts formulae based on the noise Zk 6 RY. In order to do it, we assume
that the law of each Zj is locally lower bounded by the Lebesgue measure: there exists some

zer € RN and r,, e, > 0 such that for every measurable set A C B, (2.x) one has
P(Zk S A) = 5*)\(14) (9)

where A is the Lebesgue measure. If this property holds then a "splitting method" can be
used in order to represent 7 as

Z;

\/ﬁ

where g, Uk, Vi are independent random variables, x; is a Bernoulli random variable and
VU, ~ @, (u)du with ¢, € C®(RY). Then we use the abstract Malliavin calculus based on
Uk, developed in [5] and [3], in order to obtain integration by parts formulae. The crucial point
is that the density ¢,, of \/nUy is smooth and we control its logarithmic derivatives. Using
this, we construct integration by parts formulae and obtain relevant estimates for the weights
which appear in these formulae. It is worth mentioning that, a variant of the Malliavin calculus
based on a similar splitting method has already been used by Nourdin and Poly [29] (see also
[28] and [23]). They use the so called I' calculus introduced by Backry, Gentil and Ledoux
[2]. Roughly speaking the difference between the approach in our paper and the one in [2] is
the following: our construction is similar to the "simple functionals" approach in Malliavin
calculus and has the derivative operator as basic object. In contrast, in the I' calculus, the
basic object is the Ornstein Uhlenbeck operator.

In order to state the main result of our paper, we introduce some additional assumptions:

= XeUr + (1 — x&) Vi,
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Vp e N, supE[|Z;]P] < o0, (10)
keN
Vr € N, sup Z Z 1020%91| 0 < 00, (11)
N 1<181<r 0<lal<r—18]
N
N, >0, VE €N, inf inf Y (0,.9(x,0),)% > \,. (12)

z€R? (=14
=1

Moreover, we introduce the following regularized version of the approximation scheme X'
1
n,o n

with G a standard normal random variable independent from X} and # > h + 1. Here X}}(z)
is the Markov chain which starts from z: X['(z) = . We denote

Pz, dy) = P(X;"(2) € dy) = p}’(x, y)dy. (14)

Theorem 1.2. Consider a Markov semigroup (P;)i=o and the approzimation Markov chain
(P ken defined in (1). We fix T)h > 0, p € N and we assume that the short time estimates
(2) and (7) hold (with this p and h). Moreover, we assume (9), (10), (11) and (12).

A. For every 0 < S < T, we have

C
sup || f — By flloe < §||f||005h~ (15)

S<tp<T

B. For every t > 0, Py(z,dy) = pi(z,y)dy with (x,y) — pi(z,y) belonging to C°(R? x RY).

C. For every R,e > 0 and every multi-index o, 3, we have

sup  sup \ajﬁyﬁptk (x,y) — 8;‘851):’9(35, y)| < C.oM=e), (16)
S<tp<T [al+|y|<R

We notice that (15) gives the total variation distance between the semigroups (P;):;>o and
(P]")ren. Once the appropriate regularization properties are obtained (using the abstract
Malliavin calculus), the proof of (15) is rather elementary. In contrast, the estimate (16) is
based on a non trivial interpolation result recently obtained in [8]. Notice, however, that the
estimate (16) is sub-optimal (because of £ > 0). We will illustrate (15) by taking X}* to be
the Ninomiya Victoir scheme of a diffusion process. This is a variant of the result already ob-
tained by Kusuoka [22| in the case where Z, has a Gaussian distribution (and so the standard
Malliavin calculus is available). Since in our paper Z has an arbitrary distribution (except
the property (9)), our result may be seen as an invariance principle as well.

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, we settle
the abstract Malliavin calculus based on the splitting method and we use it in order to prove
the regularization properties for the approximation scheme X' (in fact for the regularization
X, ’9) and we prove Theorem 1.2. Finally, in Section 4, we use the previous results in order to
give estimates of the total variation distance for the Ninomiya Victoir approximation scheme.
In the Appendix, we prove some technical estimates concerning the Sobolev norms of X}
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2 The distance between two Markov semigroups

Throughout this section the following notations will prevail. We fix T' > 0 the horizon of the
underlying processes and we denote n € N*, the number of time step between 0 and T'. Then,
we set § := 6, = % and introduce the time homogeneous time grid t, = k760 = kT /n. Notice
that, all the results from this paper remains true with non homogeneous time step but, for
sake of simplicity, we will not consider this case. First, we state some results for smooth test
functions.

2.1 Regular test functions

We consider a sequence of finite transition measures ug(z,dy), k € N from R? to R?. This
means that for each fixed z and k, ui(z, dy) is a finite measure on R? with the borelian o field
and for each bounded measurable function f : RY — R, the application

o> f () = / (e dy) (17)

is measurable. We also denote

k] == sup sup | [ f(y)p(z, dy)), (18)
2R | floo<l ' JR

and, we assume that all the sequences of measures we consider in this paper satisfies:

sup|ug| < oo. (19)
keN
Although the main application concerns the case where p(x, dy) is a probability measure, we
do not assume this here: we allow ug(z,dy) to be a signed measure of finite (but arbitrary)
total mass. This is because one may use the results from this section not only in order to
estimate the distance between two semigroups but also in order to obtain a development of
the error. To the sequence i, k € N we associate the discrete semigroup

Bof() = f(2),  Pusif(x) = meri Puf(z) = /

» Pr.f(y) ps1(z, dy).

More generally, for r > k we define P, f by

Pk,kf(x) = f<x>> Pk,r+1f<x> - :ur—&-lpk,?“f(x)'

For f € C*°(R%) and for a multi-index a = (ay, -+ ,a4) € N? we denote |a| = a; + ... + ag
and 0, f = 0g1...05¢ f(x). We include the multi-index o = (0, ...,0) and in this case Jof = f.
We use the norms

1fllpoe = sup > |0af@) I flpa= > /Rdlaaf(x)ld%

d
2ER 0<lal<p 0<|al<p

In particular || f|lo.co = || f]loo is the usual supremum norm.
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We will consider the following hypothesis: let p € N and 0 < k < r. If f € CP(R?) then
Py, f € CP(RY) and
sup || Per flpoo < Clf[lp.co- (20)

0<ty<tr

We consider now a second sequence of finite transition measures vi(z,dy),k € N and the
corresponding semigroup () defined as above. Our aim is to estimate the distance between
Pr.f and Q. f in terms of the distance between the transition measures ug(z, dy) and vg(z, dy),
so we denote

Ay = piy — Vg

Py can be seen as a semigroup in continuous time considered on the time grid ¢;, k£ € N, while
Q) would be its approximation discrete semigroup. Let p € N, A > 0 be fixed. We introduce
a short time error approximation assumption: there exists a constant C' > 0 (depending on p
only) such that for every k € N, we have

Ea(hyp) 1Ak llso < Cllfllpocd™™ (21)

Proposition 2.1. Let p € N be fized. Suppose that py and vy satisfy (20) and (21) with
p=0. Then for every f € CP(R?),

sup [ Pnf — Qmflleo < C”f”p,ooyl' (22)
tm<T
Proof. We have
m—1
1Pt = Qunflloo < D 1 Pesim Pk 1Qif = Pri1m@rrt1Qnf oo (23)
k=0

1
= ‘|Pk+1,mAk+1Qka00'

il
o

Using (19) and (21), we obtain

HPk—&-l,mAk—‘rlefHoo < O”Ak—l—lefHoo g Cél+h‘|@kf||p,m g C(é‘l—s_hnfnp,oo-

Summing over k =0, ...,m — 1, we conclude. O

2.2 Measurable test functions (convergence in total variation dis-
tance)

The estimate (22) requires a lot of regularity for the test function f. Our aim is to show that,
if the semigroups at work have a regularization property, then we may obtain estimates of
the error for measurable test functions. In order to state this result we have to give some
hypothesis on the adjoint semigroup. Let p € N. We assume that there exists a constant
C > 1 such that for every measurable function f and any g € CP(R?)

En(hyp) {9, Def) | < Cllgllpallfllocd™". (24)
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where (g, f) = [ g(x)f(x)dx is the scalar product in L*(R%).
Our regularization hypothesns is the following. Let p € N, § > 0 and n > 0 be given. We
assume that there exists a constant C' > 1 such that

Rp,n(s) HPk,ernoo X Hf”oo for S <ty — b (25)

Snp
We also consider the "adjoint regularization hypothesis". We assume that there exists an
adjoint semigroup Py ., that is

<P]:,rg7f> = <ga Pk,rf>

for every bounded measurable function f and every function g € C°(R?). We assume that
P, satisfies (20) and moreover

Ry (S) B llen < o5 ||f||1 for S <t 1. (26)

Snp

Notice that a sufficient condition in order that R (S) holds is the following: for every multi
index a with |a| < p

[ PrrOaf oo < Snp\lfl\oo for S <ty —t. (27)
Indeed:
Haapl:,rfnl < sup | <a Pk rfag> | = Sup | <f7 Pk,r(6a9)> ’
llglleo<1 ||gHoo<1
< su P r aa [e'e] \
/11 Sup [ Per (Oag) | Sn,,l!flll

Proposition 2.2. Letp e N, n >0, h >0 and 0 < S < T/2 be fized. We suppose that (20),
(21) and (24) hold for P, and Q,,. We also suppose that P satisfies R,,,(S) (see (25)) and
Q satisfies Ry (S) (see (26)). Then,

sup || P f = Qunflloc < ||f||oo : (28)

25<tn <T Snp

Proof. Using a density argument we may assume that f € CP(R?). Moreover, by (23), it is
sufficient to prove that

| Qrt1,mDk1 P fl oo < ||f||oo51+h (29)

Snp

Since t,, > 25 we have ty > S or t,,, — ty11 = S. Suppose first that ¢, > S. Using (19) for @,
(21) and (25) for P,

1Qks1mAks1Peflloc < CllAK1Peflloo < CllPef llp.ocd™™ < CSTP| fllocd™".
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Suppose now that t,, — tpy1 = S. We take ¢.(x) = e %¢(ctx) with ¢ € C.(R?), ¢ > 0.
Then, for a fixed xg, we define @. ., (z) = ¢.(z — 0). By (20) Qrr1.mArPrf € CP(R?) so it is
continuous. Then

|QrsrmArPf (20)| = i | (be g QusrmAxPrf) |-
Using (24), (26) and then (20), we obtain
[ (Pe00s Qri1m Bt Pif) | = [{ Qi1 m®emor Akr1 Pof) | < ClQfi1 n®eszollpa [ Prflood ™"
< CS™ | o[ ]] fllocd "
and since ||@c 4, |1 = ||¢|l1 < C, the proof is completed. O

In concrete applications the following slightly more general variant of the above proposition
will be useful.

Proposition 2.3. Letpe N, >0, h >0 and 0 < S < T/2 be fized. We assume that (20),
(21) and (24) hold for P and Q with these p,n,h and S. Moreover, we assume that there
exists some kernels Py, which satisfies R,,,(S) (see(25)) and Q. which satisfies Ry (S) (see
(26)). We also assume that for every 0 < k <r, with t, —tx > S

1Qkrf — Qppflls + | Peyf — Prrflloo < CS™P6" | floc. (30)
Then,
sup [P f — Qmflloo < Csup(lpe] + [ve])S™0" || flloo- (31)
28 <t <T k<n

Remark 2.1. Notice that ﬁk,r and Gk,r are not supposed to satisfy the semigroup property
and are not directly related to p and vy.

Proof. The proof follows the same line as the one of the previous proposition. Suppose first
that ¢, > S. Then, (19) implies

1Qkm k11 P flloo < 1QumBk1Prflloo + [|QumBki1 (P — Pi) fllso
<A1 Prflloo + [[Ak+1 (P = Pr) flloo-
Since Py verifies R, ,(S), we deduce from (21) that
1Ak1Prflloc < CF Py fllpo0 < CST| fllocd™"
Using (30), it follows

Bea(Po=POS@I < | [ (B = POs@mnodp)] + | [ (Pe=Pof @ e, dy)
< (W] + [ DI (Br = Pr) flloo
< C(|vg| + |pesa ) ST fll o6
Suppose now that ¢, — tg11 = S. We write
HQk+l,mAk+lpkaoo g H@k+1,mAk+1PkaOO + ”(QkJrl,m - @kJrl,m)AkJrlPkf”oo-

In order to bound ||Qy 1 Ak+1P%f || We use the same reasoning as in the proof of the previous
proposition. And the second term is bounded using (30). ]
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2.3 Convergence of the density functions

In this section we will consider a Markov semigroup (P;);>o and we will give an approximation
result and a regularity criterion for it. The regularization property that we assume for the
approximation processes is stronger than the one considered in the previous section and,
instead of Proposition 2.2 we will use a general approximation result based on an interpolation
inequality, proved in [8]. We recall that we have fixed 7" > 0 and that, § = 6" = 1/n
and we denote t} = t), = % For k € N, we consider u}(z,dy) = p*(x,dy) = Ps(z,dy),
for all £ € N, the homogeneous sequence of finite transition measures which satisfy (20).
Moreover we introduce a sequence of transition probability measures v} (z,dy), k € N, and
the corresponding discrete semigroups P"(z,dy) defined by P!y = Id and P, = v\ P,
We recall that Py f = Py f. We assume that for f € CP(R?), we have P{'f € C*(R?) and it
verifies (20) :

sup ”Pl?,erzLoo < O fllp,o0- (32)

0Nt

kr

For h > 0 and p € N, we assume that for all n € N,

En(h,p) (1" = vi)flloo < O f lpoo- (33)

and,
Ey(hip) g, (1" = v A< Cllgllpall fllocd™". (34)

We introduce now (P} )ren, a modification of (P}*)zey in the sense that for every measurable
and bounded function f : R? — R, we have

n —n C
sup [P = Prpflloe < 50" flloc (35)

np
S<tn—ty S

We assume that (FZ);CGN satisfies the following strong regularization property. We fix ¢ € N
S,nm > 0, and we assume that for every multi-index a, 8 with |a| + |3] < ¢ and f € C4(R?)
one has

Ryn(S)  N0"P,0°flloo SCS ™| flle,  t7 —t7 = 8. (36)

Notice that if R,yq,(S) holds, then there exists 77 € CY(R? x R?) such that P, (z,dy) =
Pr(x,y)dy and, for every R > 1, t} > S and |a| + |5| < ¢, then

sup |070, P (2, y)| < CS7™. (37)
el +lyl<R

Moreover, the regularization properties R, ,(S) and Ry (S) hold when R,.,(S) is satisfied.

Theorem 2.1. A. We fix p € N, p and h,n > 0, 0 < S < T/2, and we assume that (20)
holds for P and that (32), (33), (34), (35) and (36) hold for this p, h,n and S, and for every
n € N. Then

S
sup ([P f = B/ fllee < —5
28<tp<T n

1f oo (38)
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B. Suppose that (36) holds for every p € N. Then, for everyt > 0, P,(x,dy) = p(z,y)dy with
(z,y) — pe(x,y) belonging to C°(RY x R?).
C. For every R, e > 0 and every multi-index o, § we have

C
su sup  |090Cpu (2, y) — 0°0°F (x,y)| < ——— 39
2S<t}?§T |x‘+|y1|3<R| y Pi (2, Y) Dk (T, )] R(2) (39)

with a constant C' which depends on R,S,T,c and on |a| + |5] (and may go to infinity as
e} 0).

Remark 2.2. The inequality (38) is essentially a consequence of Proposition 2.3. However,
we may not use directly this result, because we do not assume that the semigroup (P,)=0 has
the regularization property (25). This is pleasant, because we have to check the regqularization
property on the approximation scheme (P}')ren only.

Remark 2.3. The estimate (39) is sub-optimal because of ¢ > 0. One may wonder if opti-
mal estimates (with n" instead of n"'=2)) may be obtained - as it was the case in the paper
of Bally and Talay [6] concerning the Euler scheme. Notice that, in the above paper, spe-
cific properties related to the dynamics of the diffusion process which gives the semigoup are
used, and in particular properties of the tangent flow. For example, if Xi(x) denotes the
diffusion process starting from xz then we have E[f'(Xi(z))] = O.E[f(X:(2))(0.X:(x))7Y] —
E[f(X(x))0.(0. X (x))™1)]. Such properties are crucial in the above paper - but are difficult
to express in terms of general semigroups.

Proof. Let m = (n, ¢ € N*. Using (33), (34), we obtain [[(Pry; — Pl i) flle <
Cl fllpon™ " and (g, (Pfyiq — Pl D < Cllgllpall fllson™""t. Then Proposition 2.3
implies that: V25 <t < T, [|Pf — PP flloo < CS™™n"| f]|e. So the sequence (P"),cy is

Cauchy and then converges with rate C'S™™n~"||f|l». It remains to identify the limit. By
Proposition 2.1, this limit is (P, f)0 for f € C}, so we conclude.

Let us prove B. We are going to use a result from [8]. First, we introduce some notations. Let
d, be the distance defined by

dy(p,v) = sup {| [ fdu— [fdv|| - || fllpee < 1}.
For ¢, | € N, 7 >1and f € C?(R? x R?), we denote
fllaer = > (SO + '+ [y)]0af (@, )| dody) "

0<|al<q

We have the following result which is Theorem 2.11 from [§|.

Theorem 2.2. Let q,p,l,m € N and r > 1 be given and let r* be the conjugate of r. Consider
some measures p(dx, dy) and p,(dz, dy) = g,(z,y)dzdy with g, € CIH?™(R? x R?). Suppose
that for some o > (¢ + p +d/r*)/m, we have

dP(:uu /'L'fl)“gn”g—&-Qm,Zm,r < ¢ Vn e N. (40)
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Then p(dx,dy) = g(x,y)dzdy with g € W (R?Y) and
lg = gnllwerqrey < C(dy/* (s in) + dy= IV 1, g, (41)

In particular, if (40) is satisfied for all m € N* and any o > (q+p+d/r*)/m, then for every
e > 0 we have

19 = gnllwargay < Cdy (1, ). (42)

with a constant C'" which depends on € and may go to infinity as € | 0.

We come back to our framework. We fix R > 0, 25 < ¢t < T and choose k(n,t) € N such that
thn.y) = t- Let us consider a function ¢ € C°(R? x RY) such that 1p,xp,(7,y) < Pr(z,y) <

184, xBri: (z,y) and denote
n,R —n
gk(n,t) (IE, y) = ®R(x7 y)pk(n,t) (ﬂf, y)

We use the result above for the sequence g, := gZ(’it), n € N and p(dz,dy) := Pi(z,dy)dz.
In our specific case (35) and (38) give dy(g, g,) < Cn~" and the hypothesis (36) ensures that
sup,, ||gnllg+2m.2mr < 00 so (40) holds for every o € R, and r > 1. Using Sobolev’s embedding
theorem, for u < g — d/r we have

Hg o gnH“’OO < C“g - gnHWq,r(Rd) < Cn_h(l_e)

and we conclude. O

3 A class of Markov chains

3.1 Integration by parts using a splitting method

In this section we consider a sequence of independent random variables Z;, = (Z},--- , Z}) €
RN, k € {1,--- ,n} and we denote Z = (Zi, ..., Z,). The number n is fixed throughout this
section (so there is no asymptotic procedure going on; but morally n is large because we are
interested in estimating the error as n — o0). Our aim is to settle an integration by parts
formula based on the law of Z. The basic assumption is the following: there exists z,; € RY
and e,,r, > 0 such that for every Borel set A C RY and every k € {1,--- ,n}

L. (e4,74) P(Zy € A) 2 e NAN B, (24k)) (43)
where ) is the Lebesgue measure on RY. We also define

M,(Z) == 1V supE[| Z,[?] (44)

k<n

and assume that M,(Z) < oo for every p > 1.
It is easy to check that (43) holds if and only if there exists some non negative measures fi
with total mass p(RY) < 1 and a lower semi-continuous function ¢ > 0 such that P(Z,, €
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dz) = p(dz) + ¢(2 — 2. )dz. Notice that the random variables Z;,--- , Z,, are not assumed
to be identically distributed. However, the fact that r, > 0 and &, > 0 are the same for all
k represents a mild substitute of this property. In order to construct ¢ we have to introduce
the following function: For a > 0, set ¢, : RY — R defined by

CL2

a? — (|z] = a)?

Then ¢, € C*(RY), 0 < ¢, < 1 and we have the following crucial property: for every
p,k € N there exists a universal constant C,, such that for every x € RY, ¢ € N and
i1, i € {1,---, N}, we have

(pa(z) = ]1|z\<a + exp <1 - )]la<\z|<2a- (45)

017 C
%(Z)|m(1n ©a) ()P < =22, (46)

aP4

with the convention In ¢, (z) = 0 for |z| > 2a. As an immediate consequence of (43), for every
non negative function f : RY — R,

B2 > [ nnl 2= 2 )R (47)
By a change of variable
B (Z=Z0) 2 2. [ 0™ (Vi = SE) ez (15)
We denote
My = €, /]RN Or.2(2)dz = €, /RN Or./2(2 = zip)dz (49)
and
an(Z) - nN/2¢r*/2(\/ﬁz) (50)

and we notice that [ ¢,(z)dz =m.et.
We consider a sequence of independent random variables x, € {0,1}, U, Vi € RV, k €
{1,--- ,n} with laws given by

Plxpx = 1)=m,,  Pluw=0)=1-—m, (51)
P(U, € dz)= ; bz — Z*—\/%)dz,
PV, € dz)= ﬁ([@(%zk € dz) — enip(z — i;g)dz).

Notice that (48) guarantees that P(Vj € dz) > 0. Then a direct computation shows that

P(xxUr + (1 — xx) Vi € d2) = P(%Zk € dz). (52)

This is the splitting procedure for \/LEZ;C. Now on we will work with this representation of the
law of \/LﬁZk. So, we always take

1
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Remark 3.1. The above splitting procedure has already been widely used in the litterature: in
[30] and [24], it is used in order to prove convergence to equilibrium of Markov processes. In
[9], [10] and [33], it is used to study the Central Limit Theorem. Last but not least, in [29)],

Zx k

the above splitting method (with 1p, (.. ) instead of ¢n(z — \/ﬁ)) is used in a framework which
18 similar to the one in this paper.

In the following we denote x = (x1, ", Xn), U = (U1,-++,U,) and V = (V,--- | V},) and we
consider the following class of random variables:

S={F = f(x,U, V) : f is measurable and v — f(x,u,v) € C;°(R" x RY),Vyx,v}. (53)

For a multi index a = (g, -+, ) with o; = (kj,4;), k; € {1,--- ,n}, i € {1,--- N}, we
denote |a| = ¢ the length of o and
o4

i1 X iq
aukl M aukq

agf(X7U7/U> = f(X’u7 v)'

We construct now a differential calculus based on the laws of the random variables Uy, k =
1,---,n which mimics the Malliavin calculus, following the ideas from [5], [3] and [4]. In order
to be self contained we shortly present the results that we need. For F' = f(x,U,V) € S we
define the Malliavin derivatives

o Lor 1 of
— X maul ~ M ol

We denote by (o,0) the usual scalar product on RY x R”. The Malliavin covariance matrix

D(k,Z)F (X:Uav)v k:]_,,n, i=1--,N. (54)

for a multi dimensional functional F' = (F!,--.  F'?) is defined as
. n N
o =(DF',DF7y =3 " D4nF' x DypF?, i, j=1,---d. (55)
k=1 r=1

The higher order derivatives are defined by iterating D:
D,F =D, ---D,,F. (56)

Now we define the Ornstein Uhlenbeck operator L : § — &. We denote

Ty = In 6, (Up — f;%) €S (57)

and we notice that

1 Zx
Dyl = %Xkﬁuzlnqﬁn(Uk— ﬁ)

= Xkazi(ln@r*/z)(\/ﬁ((]k—\/’ﬁ))-

Finally, we define

n N n N
—LF =YY DuyDunF +> > DunF x Dyl (58)

k=1 i=1 k=1 i=1
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Remark 3.2. The basic random variables in our calculus are Zy, k =1,--- ,n so we precise
the way in which the differential operators act on them. Since xpZr = /nxxUy it follows that

D(m,j)Z]i = Xk5m,k5i,j> (59)

L7 = —x0a(ngn ) (ViU = 2). (60)

In our framework, the duality formula in Malliavin calculus reads as follows: for each F,G € §

E[FLG] = E[(DF, DG)] = E[GLF]. (61)

This follows immediately using the independence structure and standard integration by parts
on RY: indeed, if f,g € C}(RY) and k € {1,--- ,n}, then

N

ZE[au};f<Uk)au};g(Uk)]

=1

Ex

N
- X | 2t @gatw)o,tu— £y

_ Ex = 82 O 8“}c¢n(u_z*T:) Zxk d
B _m*; RNf(u)( uig(u)jL %g(U) ¢n(u_z\;£) )¢n(u_\/ﬁ> U

N
_ , | | .
= —E[f(U}) ;aig(Uk) + 04 g(Un) s 0 6 (U — ﬁ)]'
It follows that

n N
Z Z E[D i) F X Doy G)

k=1 i=1
1 n N
- EZZE[M@U;@J[(X, U V) x 0%9()(, U, V)
k=1 i=1
_ _]E[f( UV)i il(?? ( UV)—i—ia' ( UV)L('?vl qﬁ(U—ﬁ)
= X, U, Xk n u}cg X, U, \/ﬁ uzg X, U, \/ﬁ ul no,(Ug \/ﬁ

k=1 =1
n N
= -E [f (GUV) Y xk ) Doy Dy G + D(k,i)GD(m)Fk]
k=1 i=1
= E[FLG],

which is exactly (61). We have the following standard chain rule: for ¢ € C'(R?) and F € §¢

D¢(F) = Z 0;¢(F)DFY. (62)



3 A CLASS OF MARKOV CHAINS 15

Moreover, one may prove, using (62) and the duality relation (or direct computation), that

LO(F) =Y 0;¢(F)LF' + Y 0,0;¢(F) (DF', DFV) . (63)

ij=1
In particular for ;G € S,
L(FG) = FLG + GLF + 2(DF, DG) . (64)
We are now able to give the Malliavin integration by parts formula:

Theorem 3.1. Let F € 8% and G € S be such that E[(det or)7F] < co for every p > 1. We
denote yp = ap'. Then for every ¢ € C°(RY) and everyi=1,--- ,d

E[0:0(F)G] = E[p(F)Hi(F,G)] (65)
with
—H(F,G) = GypLF + (D(Gyp), DF) (66)
and
Hi(F,G) ==Y Gy LF’ + D(Gy')DF?. (67)
Moreover, for every multi index o = (041_, s ay) € {1, d
El0.¢(F)G] = E[p(F)Ho(F, G)] (68)

with Ho (F, G) defined by the recurrence relation Hq, ... a,,)(F, G) = Hq,,(F, Hay oo am-) (F, G)).
Proof. Using the chain rule D¢(F') = V¢(F)DF we have

(DG(F), DF) = V6(F) (DF, DF) = Vo(F)ar.
It follows that V¢(F) = v (DG(F), DF) . Then, using (64) and the duality formula (61),

EIGYO(F)] = E[Ghr (DO(F), DEF)| = JEIGYr(LO(F)F) - 6(F)LF ~ FLO(F))

= %E[gb(F)(FL(Gw) — GyrLF — L(GypF))].

We use once again (64) in order to obtain H(F,G) in (66). O

We give now estimates of the weights H,, (F, G) which appear in the above integration by parts
formulas. We will work with the norms:

FI3,.= Y [DaFI,  |F} =[FP+|F[3,, (69)
1<]a|l<m
and
1Flimp = [1Flml], = ENFE, 1 (70)

1Fllmp = [1Fllp + [[1Fm]] -
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Proposition 3.1. For each m,q € N, there ezists a universal constant C' > 1 (depending on
d,m,q only) such that for every multi index o with || < q and every F € 8¢ and G € S on
has

|Ha(F.G)|m < C(LV (det o) ™)1 D (14 PRGN 4 [LF )Gl (T1)

The proof is long but straightforward so we skip it. The reader may find the detailed proof
in [5] and in [3], Proposition 3.3.
We finish this section with an estimate of ||LZL||,,

Lemma 3.1. A. For everyk=1,--- mandi=1,---, N, we have
E[LZ]] = 0. (72)
B. For every q € N and p > 2 there exists a constant C' depending on q, p only

Cmi/p

*

ILZllgp < (147 (73)
Proof. A. Using the duality relation we have E[1 x LZ}] = E[(D1,DZ;)] = 0. In order to
prove B we recall (see (60)) that

L7, = i) (VU — 1),

Let Ag, be the set of the multi-index o« = (o, - -+ , ) such that o; = (k,i;). Notice that
for a multi-index « of length ¢, such that o ¢ Ay ,, we have D,LZ} = 0. Suppose now that
a € Ay, and let @ = (iq,- -+, i,). It follows

DoLZ;, = —x3020.:(In,, o) (\/ﬁ(

Using (46), we obtain

Y=

i _ Sl = * :
12zl = =% | R o) (Vi = 20) (e 2 (Vi = ) du

Exllxelly -
— p/ ‘82 321(111gpr*/g)(v)‘pgor*/g(v)dv
T 7y /2<|0|<ry
Ct1,pM
r*(qul)
and then
C«mi/P -
||LZk||qp C'sup sup || Dq LZka (I+7r7).
I<q a€lg, *
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3.1.1 Localizaton

In the following, we will not work under P, but under a localized probability measure defined
as follows. We fix M < n and we consider the set

M = {7 D> ), (14

Using Hoeffding’s inequality and the fact that E[yx] = m., it can be checked that
P(AS) < Cexp(=CMm3) (75)

We consider also the localization function ,,1/4 5, defined in (45), and we construct the random
variable

0= @M,n = ]lAM X H90n1/4/2(Zk>’ (76)
k=1

Since Zj has finite moments of any order, the following inequality can be shown: for every
q € N there exists C' such that

_ M. Z
P(Ou., = 0) < P(AS,) + ZIP’(|Zk| > nt/*) < Cexp(—CMm?) + ‘“;—;M (77)
k=1
We define the probability measure
1
dPg = —=0OdP. (78)

E[©]

Corollary 3.1. Let F € 8% and G € S be such that Ee[(det or)™P] < co for everyp > 1. We
denote yp = 0. Then, for every ¢ € C°(R?) and everyi=1,--- ,d

Eo[0:6(F)G] = Eo[¢(F)H (F, G)] (79)
with
—H®(F,G) = GypLF + (D(Gyp, DF) + Gyp (DIn©, DF) (80)
and .
HP(F,G) == Gy LF' + D(Gy)DF’ + Gy (DIn®©, DFV) . (81)
J=1
And for every multi index o = (g, - -+ ,apy) € {1, ,d}™,
Ee [aa¢(F)G] =Eeo [¢(F)HS(F7 G)L (82)

with HO(F, G) defined by the recurrence relation H(a1 (FG) = o (F, H& S oFG)).

Moreover there exists an universal constant C' such that for every multz index a wzth lal =q
Eo[|Hy (F,G)] < C x Cyo(F.G) (83)
with
Coo(F,G) =Eg[(1V (det gp)t)2ralatmti))1/2
X (L B PR BLE, (YRG! (84)

m+q—1
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Proof. Using (66) with G replaced by GO we obtain E[0;¢(F)GO] = E[¢(F)H] with
H = —-O0GyrLF — (D(0Gvr), DF) = OH,(F,G) — Gyr (DO, DF) .

It follows that

1 1
Fi Pl (F)GO] = g Blo(F)(OHA(F, G) — Gar (DO, DF)

= Eol¢(F)(Hi(F.G) — Gyp (DIn©, DF))].

Eo[0ip(F)G] =

So (79) is proved and (82) follows by recurrence. Notice that by (46) we have

Then (83) follows from (71). O

3.2 Markov chains

Throughout this section, n € N will still be fixed and will be the number of time step between
0 and 7" and also the number of increments that we consider in our abstract Malliavin calculus.
We consider two sequences of independent random variables Z;, € RV, k, € R, k € N and we
assume that Zj verifies (43). We also assume that Z; has finite moments of any order and we
recall that

M,(Z) =1V supE[|Z;|?].

k<n
We construct the R? valued Markov chain
X7 = (kg X7, T;), keN (85)
where
Y €CPR xR xRY;RY) and ¢(k,z,0) = . (86)
We denote

Wl = D> D> 1107070l (87)

0<lal<r 1<|B|<r—]al

and, for C,r > 1 we denote

Ny (C,r) = (1+ [$]]100) exp(CllY 1T 5 00)- (83)

Since || > 1 in the above definition, we have at least one derivative with respect to z. All
our estimates will be done in terms of [|1)||1,0c SO we may assume without loss of generality
that

E[Z;] = 0, keN,i=1,---, N. (89)

Indeed, if this is not true, we denote by my = (E[Z}],--- ,E[Z)]) and we work with Z), =
Zi, — my, instead of Zy and with ¢(x, 2) = (K, x, 2 + my) instead of 1. Since V1) = V.1 all

the results remain true.
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Remark 3.3. The reason to consider the random variables Ky, is the following. In the Victoir
Ninomiya scheme, at each time step k, one throws a coin Ky € {1, —1} and employs different
form of the function 1 according to the fact that ki is equal to 1 or to —1.

In order to simplify the notation we denote

Uiz, 2) = (K, T, 2).

Our aim is to give sufficient conditions under which the above Markov chain has the regular-
ization property (36). In order to do it, we consider the following new representation of Xj.
Let us introduce some notations. We denote

Using a Taylor development of order one, we write

N
Xppr = Xk—i‘ZaZiwk(XgaO)Hliﬂ

i=1

N 1
1 . .
+ 5 E HiHHgH/ (1—A)@Ziazjwk(Xg,/\HkH)d)\.
0

ij=1

We denote

1
7 n 7,7 n Zk

and then, we write

m—1 N m-—1
X =12+ E aka+1—|—§ E E O Hy o Hiy (91)
i=1 k=0 i,j=1 k=0

Moreover we denote by X/ (x) the Markov chain which starts from x (i.e. X{'(z) = x) and we
denote by 0°X the derivative with respect to the starting point . We will use the results
from the previous section for X . In order to do it we have to estimate the Sobolev norms of
X0

Theorem 3.2. For every q,q € N with q > ¢, and p > 2 there exists some constants
C > 1, 1l € N (depending on ry, €., my, q,p and the moments of Z, but not on n) such that

sup  sup (09X (2)|lgp < CL+ Y11 g12.00) exP(CllY]IT 5.00), (92)
tm <T' 0< || <q—¢’
sup. ILX 7 g < COL A+ 19117 gran0) exp(ClION1T 5 0)- (93)

The proof is long and technical so we postpone it to the Appendix.
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3.2.1 The Malliavin covariance matrix

We turn now to the covariance matrix. We will work under the probability Pg defined in
(78). We recall that M < n are given and we have denoted Ay = {4 SM Xk > %=}, The
localization random variable © = ©,;,, is defined in (76) and we have proved in (77) that, for
every q € N,

M. A
P(Oun = 0) < Cexp(—CMm?) + 4(q+—;)().
n
We also have
M
1 my M
{O#0 c{=> x> | <n* k=1, n} (94)
k=1
Using the computational rules for k& € {0,--- ,m — 1} and m < n, we obtain
m—1
D1y Xp = Ini+ > JDgs1n X' (95)
I=k+1
with
1 7
L = \/_X,m al, + ZH,gHb J 4 Z Hi, H ¢ and (96)
Jj=1 7,q=1
i:5rd ! 1)\(1 N).. 8. 0. (X )\Zk“)d)\
& = = - ziVz; Uz y N —
k \/ﬁxk‘f'l 0 02 J q k k \/ﬁ

and the d x N dimensional matrices J;, defined by

=2+ Y6 ), (97)

J,q=1

with
lem(j) = Xk—i—lej%laxpazﬂvblr(Xlna )7

JPT(G ) = XeeHi o Hi, / N) 8y, 0., 02 0} (X' Ay )dA.

We first aim to express D414 X,, using the variance of constants method. We consider the
tangent flow Y, = V, X (z) which is the d x d dimensional matrix solution of

Yo =1+ JY, (98)

where [ is the identity matrix. The explicit solution of the above equation is given by
Y, = [le,(I + Ji). If each of the matrices I + Jy, k = 1,---,m, is invertible then, Y,
is also invertible. On the set {© # 0}, we have |Hy| = [n7Y2Z,| < n7'* so that ||Ji]|ec =
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SUD; j<g 1707 loe < 2|[1]11.8.00n 4. Tt follows that, if |[1]|1.3.00m /4 < 1, then the lower eigen-
value of I + J;, is larger then 1 3, 80 we have the invertibility property. We denote by Y;, the
inverse of Y,, and it is easy to check that Y, solves the equation:

H

=1 — }A/} I+ J)7'. (99)

=0

The following representation of the Malliavin derivative, known as the "variance of constants
method", is given by R
D1, X0 = Yo Y1 In s (100)

We will use the following estimate.

Lemma 3.2. Let p > 1. There exists some constants C1 > 1, Cy > 2, and C3 > 1 which
depends on Ms(Z) and ||¢||13.00, Such that the following holds. Suppose that M and n are
sufficiently large in order to have

2091300 . Ms(Z) 2 1
a4 exp(—C1Mms) < o (101)
Then R
Eg[sup [[Ynl[’] + Ee[sup [|YVi|["] < Cs, (102)
tm<T tm<T
with

[Yonl| = sup [¥,7].

i,j<d

Proof. Step 1. We notice that on the set {© # 0} we have H, = H, = Hilg 7, 1<n1/4y-
Consequently J; = J; := Jl]l{|zl+1|<nl/4} and }A/} =Y, where Y, is the solution of the equation

m— 1
=1-Y Y, (I+7J) .
1=0
It follows that
. 1 _
Ee[sup [[Yin|?] € === [Sup 1Y 1 ||P] < CE[sup [|Y p|”]
< E[O] <

, the last inequality is a consequence of (77). Indeed

My(Z) L

EO] >1-P(O©=0)>1- Cexp(—CMm?) — o e
2

The last inequality is true under the hypothesis (101). So, our task is now to estimate
Elsup,,, <7 [V |I*]-
Step 2. Let

-E :U<Xi7Ui7‘/i7i: 17 7l}
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We have

C .
—p,r, .
B[, () | Al < %WHLZOOEHZ;H\]1{\Zl+1|>n1/4} | Fi

< C||¢H1,2,ooM3(Z)'
n

C .
< EH@DHI,ZOOEHZﬁ-l‘?’]

Moreover, using the Holder inequality, we obtain

CMA}/Q(Z)WHL:S,%‘

[E[T7" (G 0) | Fil] < ;

Since Y is F; measurable, we obtain

CMAD) W00

n

IELY 2y | < (Yl (103)

Step 3. Using the above estimate we write
— — 1= — — — —,C
[E[Y (1 + )~ 0 | Bl < EY (1 + T~ = DTy | Al + ||Yl||5~

We write (I 4+ .J;)"' — I = —Jy(I +J;)~" and we notice that, [|( + J;)~'|| < 2 (because the
lower eigenvalue of (I + J;) is larger than 1 — Cy" > 1). It follows that ||Y,((1 + J;)™' —
DJi|| < 2|Yill||7:)|> and consequently

IEY (2 + T~ = D) | A< 2AYIlE[L]* | F)-

The same reasoning as above shows that E[||J;||* | 7] < £Ms(Z)|[¢]|2 5 so, finally, we obtain

CMs(2)|¥ I}
n

IELY (I + T~ e | Fll < |V (104)

Step 4. We are now ready to start our proof. We write

m—1
Vo =06,-> 6 (105)
1=0
with
0y = (Yi(L+ i) )™
We denote

and we write

Y, = M,+ A, with
m—1 m—1
My = _Zgl’ Ayl =0i5— A;j
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By (104) we have ||n9k|| C||Y|| and using the triangle inequality, we deduce that

C,mfl .
sup [ A4xl| < 1+ = ST IFl.
=0

tk' <tm

So that,

m 1

[SUP | APIVP <1+ — Z 1Yl

te<tm

We notice that that

16311 < N160k]] + 1621 < — 5 1Yall (1 2] + 1),

1/2

and then,

CM"(Z)

[A[=ES by

Moreover, M,, is a martingale so, using Burkholder’s inequality (see (144)), we have

E[ sup [|My[|” Nl Z 16:15)"7>.

Pt 1=0
We conclude that
— 1 —
El sup 1Y, |1P11/P < CMl/p el 1/2
[tkSEnH kH ] P n ;
Now, we are going to use the Gronwall’s lemma. We put Q; = ||Y7]|%, so that, |[Y[|2 = [|Q:[l,/2-

It follows that

Q

E[sup QY*]"/P < O + ( —Zu@lu pr2)'?,
1=0

te<tm n

which gives,

Cm—l
I sup Qllpe < €+ — D 1@l < Z ||SukaHp/2

te <tm 1=0 tr <ty

Then, by Gronwall’s lemma,

|| sup Qk||p/2

tk\ m

where C' depends on [|¢)||130 and the moments of Z. The estimate of Eg[||Y;,||?] is similar

but simpler, so we leave it out.
]

We have the following estimate for the covariance matrix of X7 :
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Proposition 3.2. Suppose that there exists A\, > 0 such that

N
inf inf inf Y (8..4(k,z,0),6)* > A, (106)

KER zeR4 [£|=1 4
=1

Assume also that M and n are sufficiently large in order that (101) holds and that

n'/? > ||w||1300 (107)

Let oxy, be the Malliavin covariance matriz of X7}, defined in (55). There exists a universal

constant C' such that o
s T (108)

E@[(detgx&)_p]l/p g C)\ m. M

with Cs defined in (102).

Proof. By (100), oxp = YaoVyy, with 6 = S0 (Veleo1) x (Yily—1)* so that detoxy =
(det Yas)? det &. It follows that

Eo[(det oxp ) 7] < Eg[(det Yas) *]"/*Eo[(det &) ~#]"/2.

Since (det Yy, ) ! = det Yy, we use (102) and we obtain Ee[(det Ya)~*]/2 < (5. We estimate
now the lower eigenvalue of o given by

M N M N
X = inf ZZ<(?;€I,€_LZ) (Yeli1s) g§> — inf ZZ< (Toorili1) Vi€, Yk§>. (109)

1
I€l= k=1 i=1

b
Il
—
~
I
-

Recall that, I, is given in (96):

1]‘1)

[ \/—XkJrl &k’ + Z k—‘rlblj \/_Z k+1 k+1

Then, for n € R? and k € {0,--- , M — 1} we have

Z [kz[kz = Z Ik2777
=1 =1
inZXk-i-l (ar,m)

; 2V & ;
——ZXk+1< k+1 k’]ﬂ?> —7 Z Xk+1 <Hk+1H,Z+1 ”,77>2.

1,7=1 ,7,q=1

WV

Since we are on the set {© # 0} we have supyeqr. -1y [Hi| < n~4 We also have |b7| +
|67 < 2||9]|13,00, for all k € {0, - — 1}, so that

| <Hi+1bi’jﬂl> ’ + ’ <HIZ+1HIZ+1 Z](1777> ‘ X 1/4H¢H1300|77|
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Moreover by our hypothesis (106)

N
Z (aj, )" = (0 0(X},0),m)* > Afnl”.
1=1

2V 2912 5

Using (107), we have ’\7 — T 2 %, and we obtain

N N+2
* Xk+1 >\>)< 2 Hw”li’)oo 1
g (Tealia) mm) = =G = =)l 2 XAl
We come back to (109) and we take n = ?k*f. Since on the set {© # 0} we have - SM Xk >

%m*, it follows that

N > 2 nf Vel > £V
A 4n|§|anka welP > 4nZXklé‘an |l
A M e M
i mln inf [|[Y;€|? > 22= su Y |) 2
i L IFEE > SR s )

Since we have (101), (102) follows and we conclude that

8n
Eo[sup |[¥i| )" < C

Eo[\PVP < _bsn
o\l A My < A M

3.2.2 The regularization property

We still fix n and we consider the Markov chain X}, M € N, defined in (85). We also recall
that ©y,, is defined in (76) and we introduce

1
E[Onn)

Notice that PE’", M € N, is not a semigroup, but this is not necessary. We will not be able
to prove the regularization property for Py, but for PJS’".

Py f(x) := Eey,, [f (X3(x))] = E®umnf(Xy(2))], MeN. (110)

Proposition 3.3. A.Assume that (106) holds true. There exists some constants Cy > 1, Cy >

2 such that the following holds: suppose that n and M are sufficiently large in order to have
(101) :

+ Cy exp(—C1Mm?) <

2[[9 13,00 L Ms(Z) 1
nl/4 n Cy’
and (107).Then for every g € N and multi indezx o, f with |a| + |8] < g, there exists | € N*
and C which depends on my,r, and M;(Z) such that

Cn
On <
10a Py Oaf lloo < Cw,zllflloo( o

Cpa = COA+ Yl g4a00) xD(ClIDIIT 5 0)-

) with (111)



3 A CLASS OF MARKOV CHAINS 26

In particular, Py (z,dy) = pS" (x,y)dy with (z,y) — po(x,y), a function that belongs to
C>®(R? x RY).
B. For every | € N there exists C > 1 such that

My11)(2)

1P30f = P Fllso < [1flloo(C exp(=CMm3) + —7

). (112)

Remark 3.4. Recall that t); = % Then (111) means that the strong regularization property

Ry, withn =1, holds for PE’".
Proof. We fix M and n, and we denote © = O,,.
A. We have
O,n 1 n n
0o Py 0pf () = E[@] > Eold, f(X3(2))Q4 (X7, (113)
1BI<I<q

where @, (X)) is a universal polynomial of 92X (z),0 < |p| < |e|. Using the integration by
parts formula (79) and the estimate (83) we obtain
[Eo [0y f (X3 (2))Qy (Xps (2))]] [Eof (X5 () HY (X5 (), Qy (Xiy ()] (114)

1l Eel| 2 (X7, (2), @ (X ()]
||f||oo X A1 X A2 X Ag

NN

with
A = 1VEg|[((detoxy (r)) )"
Ay = 1+ E[ X5 (2)lia) " + Bl LXF, ()]
Az = E[|Q,(Xfy (@)l
Using the results from Theorem 3.2, we obtain
Ay x Ay < O+ 911 g1a00) XP(CIIP1IT 5.00)-

We use now (108) and we obtain

—2q11/2 Cin \*
Al = E@[(det O-XJTLLI(@) ] < C o.M .

So we have proved that

0P 0N < € (g ) (0 Il XP(Cl0 )
B. We have
1 1
Piufe) — P < PRSI - g + g ECER - ©)]
Elll-0© PO =0
< 2l gt < 2l gy =

By (77) we have, for every [ € N, P(© = 0) < Cexp(—CMm?) + My (Z)n". O
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We give now an alternative way to regularize the semigroup P} (by convolution). We consider
a d dimensional standard normal random variable G which is independent from Z;,k € N,
and for € > 0, we introduce

1
XV(z) = G+ X} (@), (115)
We denote by pi"(x,y) the density of the law of X" (x) and we define
n 1 n
P f(x) = E[f(5G6 + Xi(2)]. (116)
Corollary 3.2. Under the hypothesis of the previous proposition we have:

A. For every multi index «,  with |a| + |8] < q, and every ¢ € N*, there exists C,l > 1 such
that

n

My (Z)
0,n 9/2 . 2 4(¢'+1)

10 P15 oo < 1O (Cua(smgp)! + 1 (exp(~CMm) + =HCEEED) - (117)
with Cy, given in (111).
B. For every ¢' € N*, there exists C,1 > 1, such that

n n 1 Cn M4 /41 (Z)

1P (@) = P F @)oo < 25 Cotllfllooy iz + 2 lloo(C exp(=CMm?) + —LE2220),
(118)

Proof. We fix M and n, and we denote © = Oy;,.
A. As in (113), we write

DaPr"0sf (1) = Y El(0,/)(n'C + X}y (2))Q (X (2))],
1BI<lvI<q
where (), (X)) is a universal polynomial of 92X (z),0 < |p| < |a]. We decompose
E[(0,f)(n™°G + X}y (2))Q (X} ()] = T + J

with

I = E[BJEe[d, f(n™"G + Xj(2))Qy(Xj; ()],

J = E[0,f(n""G + X} (2))Qy (X (2))(1 - ©)].
The reasoning from the previous proof shows that

Cn

I'< C¢,Z||f||oo(m)q'

And since G follows the standard normal law, standard integration by parts give

Myg-1)(Z
7] < Ol £ B[ — 6] < Cnl?72| f o (exp(~CMm2) + M+ (Z)

n4
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the last inequality being a consequence of (77).
B. Let ¢’ € N*. Using (77) and (111), there exists C,[ > 1 such that

P f(x) — P f()] < E[O][Eolf(X () — F(X () +n~'G)]| + 2| fl|E[1 — ©]
<ty / IE[0, (X3 () + A G)G]|dA + 2] f | E[1 — ©]

Cn

+ M4(ql+1) (Z)
Aem M '

nd

4 2|| 1|0 (C exp(—CMm?) ).

]

< n7Cullfll

3.3 Approximation result

In this section we give the approximation result for a Markov semigroup (F;);>o. For T' > 0 and
n € N, we denote &, = £, t, = kT4, and pj(x,dy) = Prs,(z,dy) for all k € N. We consider
now an approximation scheme based on the Markov chain introduced in the previous section.
So we consider two sequences of independent random variables Z,, € RV, x;, € R, k € N. We

assume that 7, .-, Z, verifies (43) and have finite moments of any order: for every p > 1,
M,(Z) =1V supE[|Z;|F] < 0. (119)
k<n

Moreover, we take ¢ € C®(R x R? x RY;R?) such that (s, 7,0) = z and we construct
Xpo (@) = e X7 (), Z2) with Xj(z) = 2. We denote v, (v,dy) = P(X,, € dy |
X} = x) and we construct the discrete semigroup P, = v}, P['. We recall that the notation

1%]]1,.00 is introduced in (87) and we assume that, for every r € N,

“le,r,oo < 0. (120)

We also assume that there exists A, > 0 such that

N
inf inf inf Y (9.9 (k,x,0),6)° > \,. (121)

RER peRd |¢|=1 4
=1

Now we are able to prove our main result.

Theorem 3.3. A. Consider a Markov semigrop P;, t > 0, and the approrimation Markov
chains P,k € N, defined above. We fit 0 < S < T/2, p € N and h > 0, and we assume
that (20) holds for P and that (32), (33), (34), (119), (120) and (121) hold for this p and h,
and for every n € N. There ezists I,n. € N and C which depends on ||1||1pt+3.00, M, T« and
M,(Z) such that, for n > n,, we hace

. C 1
sup [Pt = Pl flloo < 51 flloor (122)

25<t, <T

B. Moreover, for everyt > 0, Py(x,dy) = p(x,y)dy with (z,y) — pi(x,y) belonging to C>=(R%x
R?).
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C. We recall the Pk@’" is defined in (110) and verifies Pk@’n(m,dy) = pke’”(:p,y)dy. For every
R,e > 0 and every multi-index o, f we have

C

sup  sup |0207py, (z,y) — 0200py " (z,y)| <
25<t,<T |z|+|y|<R

with a constant C' which depends on R, S,e and on |a|+ |5| (and may go to infinity as € | 0).
D. Let 0 > h+1. We recall the P,f’n is defined in (116) and verifies Pke’"(:v, dy) = pZ’”(:v, y)dy.
For every R,e > 0 and every multi-index o, 5 we have

C

nhl-e¢)

sup  sup  |9200py, (x,y) — 02O py" (2, y)| < (124)

25<t,<T |a|+|y|<R

Proof. A-B. We use Proposition 2.3: we have proved in Proposition 3.3 that Pk6 " verifies
the regularization properties. The proof of (122) and (123) is an immediate consequence of
Theorem 2.1. C. In order prove (124) one employs Corollary 3.2 instead of Proposition 3.3. [

Remark 3.5. The simulation of an approzimation scheme given by P®™ may be cumbersome,
so the estimate obtained in (123) is not very useful. This is why we propose the reqularized
scheme X,f’n which is easier to simulate.

4 The Ninomiya Victoir scheme

We illustrate this theorem when X™ is the Ninomiya Victoir scheme for a diffusion process.
This is a variant of the result already obtained by Kusuoka [22] in the case where Z; has
a Gaussian distribution (and so the standard Malliavin calculus is available). Since in our
paper Z; has an arbitrary distribution (except the property (43)) our result may be seen as
an invariance principle as well. We consider the d dimensional diffusion process

N
dX; =Y Vi(Xy) o dW] + Vo(X,)dt (125)

i=1

with Vo, V; € C°(R%GRY), ¢ = 1,--- ;N and W = (W', -.. ,W?¥) a Brownian motion and
odW; denotes the Stratonovich integral with respect to W*. The infinitesimal operator of this
Markov process is

N
1
A:%+§ZV,3 (126)

k=1

with the notation V f(z) = (V(z),Vf(x)). Let us define exp(V)(x) := ®y(z,1) where ®y
solves the deterministic equation

Oy (z,t) =2+ [} V(®y(z,s))ds. (127)
By a change of variables one obtains ®.y (z,t) = @y (x,et) so we have

exp(eV)(z) := Doy (z, 1) = Py (z,e).
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We also notice that the semigroup of the above Markov process is given by PY f(z) =
f(®y(x,t)) and has the infinitesimal operator Ay f(x) = V f(z). In particular the relation
PY Ay = Ay PY reads

VI(@v(z, 1) = AvP/ f = P/ Avf = (V(2), V. (f(Pv(,1)).

Using m times Dynkin’s formula PY f(z) = f(z) + [, PY Ay f(x)ds we obtain

f(®y(x,1)) )+ Z 'V” /Ot(t — 8)"V™ L PY f(z)ds. (128)

We present now the Ninomiya Victoir scheme. We consider a sequence px, £ € N of inde-
pendent Bernoulli random variables and we define 1, : RY x R¥*! — R? in the following
way

Uz, w) = exp(w’Vy) o exp(w'Vi) o - o exp(w™ Viy) o exp(w®Vp)(z), if pr =1, (129)
Y (z,w) = exp(w’Vy) o exp(w™ Viy) o - o exp(w'Vi) o exp(w’Vp)(x), if pp = —1.  (130)
Here w = (w®, w',- -+, w"). with w) = T/2n, wi, = VTZ./\/n, for i = 1,--- ,N. Moreover

Zi, i =1,---,d, k € N are independent random variables which verify (43) and moreover
satisfy the following moment conditions:

E[Z] =E[(Z)]=0, E[(Z)]=1  E[(Z)]=6 (131)

In the original paper of Ninomiya Victoir, the random variables Z! are standard normal
distributed, and then verify (43). The new point here is that we do not require that Z follows
this particular law anymore but only the weaker assumptions (43) and (131). We also denote
ty, = Tk/n. One step of our scheme is given by

Xit = Un(XE, wee).- (132)
We have the first following result.

Theorem 4.1. Suppose that V; € C°(R%;RY), ¢ = 0,--- ,N. There exists some universal
constants C,q > 1 such that for every f € CS(R?) one has

sup [E[f(Xy,)) = E[f(XP)]] < CCG<N+1>( VI .00 (133)

te<T
with Cy(V) = sup;_g.x || Vill5,0-

Remark 4.1. A slightly more precise estimate has already been proved by Alfonsi [1] : he
obtained (133) with || f||6,0o instead of || f|len,co- Since in the following Theorem we will replace
it by || f|lco, the estimate in (133) is sufficient for us (and the proof is simpler).

Under an ellipticity condition we are able to give an estimate of the total variation distance
between a diffusion process of the form (125) and its Ninomiya Victoir scheme.
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Theorem 4.2. Suppose that V; € C°(R%;RY), i =0,--- , N, and moreover
N
Y (Vi@),&*>A >0 VreR (134)
i=1

Then for every 0 < S < T/2 and every bounded and measurable function f : R? — R

sup_[E[7(X,,)] ~ B[SO < o g 17 (135)

25<t, <T

Remark 4.2. This estimate has already been proved by Kusoucka [22] (with a different ap-
proach). He considers a much more general non degeneracy assumptions (of Hormander type)
and uses Malliavin calculus in order to prove his result. Here the noise Z; is no more Gaus-
sitan so the standard Malliavin calculus does not work anymore, but, since we have the property
(43), we may use the abstract integration by parts formula introduced in the first section.

Proof of Theorem /4.1. In order to simplify the notation, we fix T" = 1 without loss of gener-
ality. We denote

Zi
NGO
= flep(V)(@)  i=Oandi=N+1

Tif(z) = flexp(

V;)(l‘)) izlv"'vN

Notice that, with the notation introduced in the beginning of this section, T} f(z) = P f(x)
with U; = n™'/2Z'V;, i =1,--- , N. so that, using (128) with ¢ = 1 and V = U; we obtain

) = 100) + 3 V) + o a0 (136)
with )
Ronsf (@) == [ (1= 9V P ) s (137

and we recall that PYi f(z) = f (exp(s—\/Zr;Vi)). For i = 0 or N+1, we have a similar development

with Uy = Un41 = 5= Vp. Our aim is to give a development of order 3 (with respect to T') for
E[TOT 1o TInp1f(z)] (see (138) bellow). We replace each T; with the development of order
= 5 given above and calculate the products. All the terms containing - =%, T = 3 go in the
remamder Moreover one notices that E[(Z%)"] = 0 for odd r so a lot of terms cancel. Finally
E[(Z%)?] =1 and E[(Z%)*] = 6 and this permits to achieve the computation and to obtain:

E[TyT, - Tif(2)] (138)
= fla)+ L Vf@) + 5 ZW D+ 5T @) + 5 SV @
Z VAV S( Z(%Wf(x) V2V () + %R (@),

1<J =1
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The remainder R is a sum of terms of the following form:

C

a3 Loao T Tnrana f(2) (139)

with a = (Oéo,'-- 704N+1) < {1? 76}N+27 ’Oé‘ =op+ -+ aN+1 and for all i € {Oa 7N+1}7
Ty = VF

7 )

_ /0 (1— s)PVSPVif(a))ds & =6.

k=1, .5, (140)

It is easy to check that for every g € C**?(R%), one has

I T5kgllpc0 < CCL(VIGllk4p.00

for some constants C',q > 1. So

1R flloo < CC iy (V) Fllsrsy - (141)

We turn now to the diffusion process X;. We have the development

t3

B[ (X, ()] = f(@) + 1Af (@) + 5P A% () +

Rif(z).
with t
Rf(x) =t /0 PA ()1~ 2 Yds. (142)

We take t = § and we compute Af and A?f. Then we make the difference between (142) and
(138). All the terms cancel except for the remainders so we obtain

VE € {0, n—1}, E[f(Xis(2)] - E[f (Xi) | Xy = Xi = 2] = 53%33,}”(%) — Rf(x)).

We clearly have ||R f|loc < C X C&(V)]|fll6.00- This together with (141) proves that the hy-
pothesis (21) is verified. So (133) is a consequence of Proposition 2.1 with p = 6(N + 1) and
constant C' x C{ (V). O

Proof of Theorem 4.2. This will be a consequence of Theorem 3.3 as soon as we check that
the ellipticity assumption (106) holds true. We fix k and we look at ¢ (z, w) defined in (130).
We supose that pr = 1 (the proof for pr = —1 is similar). We denote w = (wy,--- ,wy} and
Ty = k and we consider the process x;(w),0 < t < T2 solution of the following equation:
1 t
r(w) = x4+ — [ Vo(zs(w))ds, To <t < Ty,

2n To
t

r(w) = wp(w) +wk/ Vi(zs(w))ds, T, <t < Ty, k=1,---,N,

1 t
nw) = onv )ty [ Veln(w)ds,  Twe << T
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Then, ¥p(x,w) = 27,,,(w) and consequently for » € {1,---, N}, we have 0, Vy(z,w) =
Ow, Ty ., (w). Moreover 0y, x:(w) = 0 for t < T, and

N+1 Tiv1Vt

O, (W) = O, 27, , (W) + Z wi/ VVi(xs(w))0y, zs(w)ds,

i=r+1 Tivt

for t > T,,1, in particular for t = Ty,1. For T, <t < T,41, Oy, x¢(w) solves the equation

D1 (W) — / Vilan(w)ds 1, | OVl ()9, ().

It follows that .
Do 71(10) o= / Vi (2,(0))ds = Vi(ar (0))(t — T,).

Notice that 1,1 — T, = 1. Then, we have

8wr$TN+1 (w) |w:0: aw7‘xT’r‘+l (w) |w:0: ‘/;'(:L‘Tl (0))
and then, by (134),

N

Z<awrxTN+1 (0)7 £>2 > )\*‘€|2

r=1
Notice that

‘Vzwk(x7 O) - awrmTr-!—l (0)‘ = ’8WT$TT+2 (0) - aw'rmTr-!—l (O)‘
C

< EC2(V>-
So, for n sufficiently large, we obtain

N

S (01,0 (0).6)7 > TIel

r=1

5 Sobolev Norms

We consider a separable Hilbert space U, we denote |a|y the norm of U and, for a random
variable F' € U, we denote ||F||y, = (E[|F[};)]/?. Moreover we consider a martingale M,, €
U, n € N and we recall Burkholder’s inequality in this framework: for each p > 2 there exists
a constant b, > 1 such that

Vn €N, [|Mallup < BEIY 1My — My [)??]7. (143)
k=1
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As an immediate consequence

IMallvp < bp(Y | Mi — My F,) 2. (144)

k=1

Indeed

IMallZ, < BEIO 1My — M [5)P21P7 = 020> 1My — My |32

=1 k=1
n n

< Y MMy = My [Fllpe = 0> 1My, — My_al[7,,
=1 k=1

We consider the scheme defined in the previous sections (see (91)) :

N
X = X + Z Hj 0, (X7) + Z H\ HY b (XT Hip) (145)

i=1 z]l

with Hy, = n~Y2Z, and

1
ai(r) = 0,9 (ky, 7,0), byl (x,2) = /0 (1= X)0.,0.,9 (K, v, Az)d.

We also denote

N N
. ) 1 ) . i
Ay = Hpa Vet (Xi) + 5 > i Bl Vabi! (X, Hi).

i=1 ij=1

Notice that Xj, ai, b’ € R? and Ay, is a d x d dimensional matrix.

Our aim is to obtain estimates of the Sobolev norms of Xj. Before doing it, we give some
abstract estimates. As before, U is a separable Hilbert space. We say that, a U valued
random variable F' belongs to S(U) if for every h € U we have (h, F') € S (see (53)) and we
define DF by (h, DF') = D (h, F') . Then, we define the norms (see (69) and (70))

Flim =Y IDaFll WElNvms = [|IFlumll, = EIFI)-

0<|a|<m

The Hilbert space U being given, we denote V = U? (recall that X} € R so, in this case,
U =R and V = R?%). We consider now some processes (a)xen, (ﬁk)keN, (Fk)keN with o =
(af, o) e VN B = (BL,---,By) € VN, Fk € V. We assume that o = oi(Zy,--- , Z)
and (h, ozk> € COO(RkN) for every h € V,i=1,--- , N (we recall that Z, € RY). So a;, € S(V).
The same is assumed on 3; and I';. We look at a process Y, € V = U¢, k € N which satisfies
the equation

—_

m—1

3

N N
Yo=Yy + Z AYi+ > S Hiop + YN LHL B+ T (146)

i=1 k=0 =1 0

B
Il
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Notice that we do not discuss about existence and uniqueness of the solution of such an
equation. We just suppose that, the process Y at hand satisfies this equation (which naturally
appears in our calculus). Our aim is to estimate the Sobolev norms of Y,,. Let ¢ € N and
p = 2. We denote

Cq,p(a,ﬁ, F) = sup SUP (1 + ||O‘m||qu + HBI “qu + ||Fm+1||qu) (147)

os<m<n—14i=1,-

Proposition 5.1. For every ¢ € N and p > 2 there ewists some constants C > 1, [ € N
(depending on q and p) such that

11

sup || Youllvgp < C(M(Z) +

(L ) M (Z)NYCM(Z). g4 2)Cpale, B.T). (148)
m<n *

with Ny(C,1) and M,(Z) defined in (88) and (44).

Proof. Step 1. Let ¢ =0, so that ||Y,|lviep = [|[Yimllv,p We will check that

1/p

sup [|Yiullv,y < C(M,/"(Z) +

m<n Ty

)Copla, B,T) exp(CMal (Z) 0] 5.00).  (149)

We study the terms which appear in the right hand side of (146). Notice that 3} is o(Z1, -+ , Zj)
measurable and E[LH}, ] = 0 (see (72)). It follows that, M,, =Y ;- 'LH] .17} 1s a martingale
and consequently, by (144)

| Mollvy < 0,(Y_ ILHBEIT,)M2

Since LH} and f3; are independent, using (73) we obtain

ILH BV = ILHLGIB Y, < —5—— (187,
We conclude that
C’ 1~ Cmy/” :
sup || Mollvy < —(= 3 I18il,)"* < ——— sup_[1Billv.
m<n T'x n 0 Ts  k<n—1
Since Hj_, is independent of af and E[H]] = 0, it follows that M,, = >3 Hj, o is a

martingale. We have ||H} |, < nil/QMl/p(Z) so the same reasoning as above proves that the
previous inequality holds for M,, (with my/Pr=1 replaced by M,/ (Z) and || 8 |lv, replaced by

lakllvip).
We use the same reasoning for M, = > 7 HiV,ai(X;))Y: € V and we obtain

1Minllvp < by iy Vaah (X)Yel[F,) ' < OMYP(Z) 912,00 - D IYelli,) 2.
k=1

k=1
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Finally, using the triangle inequality

m— m—1
1Y Hy HY Vb (X, Hea)Yallvy <Y 1 Hi HL Vb (X7 Hien) Yellvp

k=0

m—1
1
1
< CMQ,,/p(Z)WHLa,ooE > 1Yellva

We gather all the terms and we obtain

1
Yillve < Yol + CMyP(Z2)[190]]1.5,00

SEps

Z 1Yall,) "2
k=0

) sup (llegllvp + [1Billvip) + 1T llvip

* k<n—1

1/p

+o(Mr(z)+ -

Using Gronwall’s lemma we obtain (149).
Step 2. Let

H={h:{lL,-- n}x{l-- N} > R:|hj=> Y h(ki) < co}.

k=1 =1

so that DX € H¢. We prove that

sup | DX || g,y < C(M/(Z) +

m<n *

For h € H we denote

N
DyF = (DF, h) ZthzD,ﬂ
k=1 i=1
Since .
Dr]Hk - 67",14:5] iXk>

we use (145) to obtain
N
DyXP, = DpXpP+ AcDpXp + 7 > xeh(k + 1, 1)ay,(X7)
i=1

\/— Zth k+ 1,40 Hpy 0y (X} Hiy)

1<J

\/— ZXkJrlHkJrlHk-i-l <V bz (Xlgv Hiy1), h(k + 1, O)> :

1<

/p
My
JMYP(Z)]14]| 15,00 exp(CME []25.0).

36

(150)
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Iterating this formula over k£ we obtain

m—1 N m-—1
n n 2
DpX" = A Dp X + NG Z > Xearh(k+1,8)ah(X})

k=0 1:1 k=0

+ 7 Z Z Vit HL (A 1000 (X7, Hwn) + Hiy > 026 (XF, Hya)h(k +1,0))

j=1 k=0 =1

m—1

- ADy X7+ (h, ')
k=0

with I';,,(k,7) = 0 for £ > m and, for k <m

N
. Xk i n j 1.5,7 n j N n
Pm(kvl) = ﬁ(ak(kal) + § :Hljcbkj(kath) + § : Hlchllcazlbﬁc](kath))
Jj=1 1<5,ISN

One has

n

n N
. 1
Colir =)D Dk, ) < NH@DH?,&OOE > (1+1Z%)

k=m i=1 k=1
so, using (149) (with V = H? oy, = B, = 0), we obtain

1/p
n T
sup [| DX [, < COMy(Z) + =) sup [Pl 11ty exp(C My [0 .00)

1/p

< Cr(z)+ —)M,P(Z Ml .00 exP(CMa [ 5.00)-

*

Step 3. We estimate the derivatives of Y,,, solution of (146). We have

N m-—1 N m-—1
DY, = ADY,, + > > Hi @i+ Y > LHi B+ T
=1 k=0 i=1 k=0
with
a, = V.,V.a.(X,)DXY, + Dal,
B, = DB,
and
m—1 1 N m-—1
T, — Vaay(XP)YiDHyyy + 5 > ) D(H{ L HY Vaby (X, Hi))Yi
k=0 i,j=1 k=0
N m-—1 N m-—1
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Notice that DY, is a process with values in H x V. We will prove that

Cop(@BT) = sup sup (1411 v + Bullmxvp + Tonllirev) (151)
m<n =1,
77L1/2p
1/2 * — 1/2
< COL(Z) + = —(1+1,) My (Z)Cryler, B,T)

(14 [0]|2 4 o) exp(CMLP |12 5 00)

Once (151) is proved, the whole proof is concluded. Indeed, using (151) and the result from
the first step (that is (148) with ¢ = 0 and Y, replaced by DY}, ), we obtain (148) with ¢ = 1.
And using recursively the same reasoning we obtain (148) for every ¢ € N.

We estimate each of the terms which appear in the right hand side of (151). To begin we write

IV Vot (XP)DXYilltxvpy < N0ls00 IDXEYill vy = ||¢||1,3,ooH|DX?|Hde|Yk|VHp
< 3,00 1 DXE | rxra,op | Yl vizp

1/2
m*/p

N\

(M) (2) + )2M,*(Z)Copp(cr, B,T)

2p
*

1
< [[9]]2 5 0 exp(CMUP (]2 5 01

the last inequality being a consequence of (149) and (150). It follows that

1/2p
i i
[l xvp < C(Myl?(Z) + ——

P

VM (Z)Co (0, B, DI 5 e exp(CML [0 5.0)

+[1Dag ]l mxvip.

*

And . '
1Bl rrxvip = |1 DB rxvp-
We conclude that

sup([[ @l + [Billvp) < Crpler, B.T)

m<n

1/2p
T«
+ O(M)*(Z) + ——) My (Z)Coapa, B, D)[]3 5 00 exp(CMYP|[]2 5 )

2p
*

We analyse now T',,,. We treat first I, := >p' Bi DLH], . Since 8D, ;LH},,, = 0if p # k+1,
we obtain

—

m—

N
Enliey <3 D [Dirr g LHLPIBLIY

j=1 k=0



5 SOBOLEV NORMS 39

so that, using (73), and the independency of LHj,1 and (3, we have

N m-—1
Wnlvlly = (1B lls < 0 S 1Dssa s LHE PG| )2
j=1 k=0
N m-—1 N m-—1 ‘ ‘ )
= Q0 2 1Dwng LH 1B )Y = Q0 Y 1Dk s LHL 188 v]],)2
Jj=1 k=0 j=1 k=0
COm 1/10

< (147" suwp [[1Bilv]], =

T <m—1

Cm*/p i
(1+ 771 sup || B llv.
Tx k<m

Since D H} has properties which are similar to the ones of DLH}, the same reasoning as above
gives

m—1
1> abDH] llaxvy < C sup lajllvy
k=0 k<m—1
and we have
m—1 m—1 N
1D Vaai(XYeDH ey < 00 000 D D IValo Dar s Hi )
k=0 k=0 j=1
N n—1
< EH?/JH%,Q,OOZ Yilt-
k=0
Using (149), we obtain
m—1 C n—1
1Y Vaah(XP)YiDHL vy < ponl PR > IWallv
k=0

1/p

- )CO,;D(O‘? Ba F)

2
x[[9]]1,2,00 xp(C M3 P (Z) 9013 5.00)-

< C(MYP(Z) +

We write now

3
L

D(H£+1Hli+1vwb;$j(Xka Hiy)Ye=1+J

iy
=)

with

,_.

m—

I = Z H1i+1Dng+1 +HIZ+1DHIi+1>V:Bb2j<XIZLvHk+1)Yka

_.o

J = Hi  H],  DV.b (X}, His1)Y.

3 ?r

il
o
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We have .
1= i ,
H arxv < [ Wlls00— > (Zial + 121D Yaly
k=0
so that
1 1 mi/p 1 2/p 2
11 xvp < CMP(Z)(MYP(Z)+ ——(147.7))Cople, B, D)[[$l13.00 exp(C Moy (Z) [[9]11,5,00)-

And using the estimates of DX}, we obtain in a similar way the same inequality for ||| zxv. So
a similar estimate holds for 31" D(H} H], Vb j(X}))Ys. We put all these terms together
and we obtain (151).

[

Theorem 5.1. For everyq,q € N, ¢’ < q, and p > 2 there exists some constants C > 1, | € N
(depending on r., €., m.,q,p and the moments of Z but not on n) such that

sup  sup 07X ()l < CLAH 111 g12.00) exp(ClY 1T 5 00), (152)

m<n 0<|al<q—q
sup || LX[lop < C(L+ [0 ga,00) exp(Cll9]17 5 00)- (153)

m<n
Proof. . We estimate first ||.X"||,,. We have already checked that

m—1
DX} =Y ADX} +T,

k=0

with

N N
(ah(Xp )+ > HI (Xp g Hy) + > HLH0.0 (X7, Hy)).

j=1 J,l=1

. Xk
Lk, i) = Ligcmy——=

(k1) = Lik<m) Jn
So, in view of (148), the only thing to prove is that |, [l¢—1,, < C(1+[|¥]} 142.00) exP(CY]]3 0)-
We have already done this for the first order derivatives (that is ¢ = 1). For higher order
derivatives the proof follows the same line (one employs a reccurrence argument).

We look now to V, X" (x) which solves the equation
m—1
Vo X (x) =T+ ) AV, X[ (x).
k=1
This equation si of type (146) so the upper bound of ||V, X" (z)||,, follows from (149). For
higher order derivatives the reasoning is the same.

Let us now deal with LX) . Notice that <DH,£, DH,2> = 0 for ¢ # j. Then, using the compu-
tational rules (see (63)) we obtain

N N N
LX} = AeLXy + Z Hj o, + Z LH; 13, + Z o

i=1 i=1 ij=1
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with
d
ap = Z O, O, (K1, Xi) ((DXP)", (DXP)Y . Bi = ap(X})
and

2, 1 7 %,] n 1 7 ,J n
v = §LHk+1Hljc+1b P (K, Xiy Hiy1) + ELHk—i-lHlijrlb I (Ko, Xis Hey1)

d
1 . . i N
5 i B (D 002,62 (m1, X) (DX (DX +Zazrb (K, X7, Hypr) LH

l,r=1

N
et i n Xk+1 i n
n - gaibkj(fik,XkaHkH)) + ]li:j_n by (ke X7, Hiy1)
—i—X::rl (HliJrlazjb;;j(l’ik; Xy, Hyy1) + ng+1azib2j(’fk7 Xy Hyt))
We have

lollar < Clelgrsocll Xilgrap < COA A+ g1s.00) exp(ClIWIIE 5 00)

and a similar estimate holds for || 5} ||4.-

Moreover, we have I';, = Zﬁ\;zl ka;; ’y,i’j so we have to analyse each of the terms in vi’j . We
look first at

]‘LH£+1H,i+1blj(/€k, Xy, HkJrl)”q,p HLHIi—leIZ+1”q 2pri7j<’€k’ Xy, HkH)Hq 2p

<
< ||LHk+1||q 4p||HIJc+1||q 4p||77/)||1 q+2, OO(HXk ||q 2p + ||Hj||q 2]))

C
< 19115, g42.00) exp(CIEIT 5 00)-

The other terms in y,i’j verify similar estimates. So we obtain

N m-—1

Poallap < D D 110 law < CO A8 ga.00) exD(CIEIT 5 00).

i,j=1 k=0

We conclude that
Cop(a, B,T) < C(L+ |91l g4 4.00) exP(Cl10[|7 5,00

and we are done.
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