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Abstract. We study the problem of the existence and regularity of a probability density
in an abstract framework based on a “balancing” with approximating absolutely contin-
uous laws. Typically, the absolutely continuous property for the approximating laws can
be proved by standard techniques from Malliavin calculus whereas for the law of interest
no Malliavin integration by parts formulas are available. Our results are strongly based
on the use of suitable Hermite polynomial series expansions and can be merged into the
theory of interpolation spaces. We then apply the results to the solution to a stochastic
differential equation with a local Hormander condition or to the solution to the stochas-
tic heat equation, in both cases under weak conditions on the coefficients relaxing the
standard Lipschitz or Holder continuity requests.
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1 Introduction

P. Malliavin has built a stochastic differential calculus which allows one to prove integra-
tion by parts formulas of type E(0,¢(F)) = E(¢(F)H,(F)) and used them in order to
study the regularity of the law of F. Here F'is a functional on the Wiener space. Roughly
speaking the strategy is the following: on takes a sequence of simple functionals F,, — F)
defines the differential operators DF), and then, if F' € DomD), defines DF = lim,, DF,,.
And this infinite dimensional differential calculus allows one to prove the integration by
parts formulas. But one may proceed in a different way: using the finite dimensional
calculus associated to simple functionals one proves E(9,¢(F,)) = E(¢(F,)Ha(F,)), use
it in order to get estimates of the Fourier transform and then pass to the limit. Of course,
if everything works well when passing to the limit, this is more or less the same. But
the interesting point is that one may use this strategy even if E(¢(F,)H,(F,)) does not
converge, so for F' ¢ DomD. In fact, consider a random variable F" and a sequence of func-
tionals F,,,n € N such that E|F — F,,| — 0 and suppose that some integration by parts
formulas hold for each F}, (does not matter how one obtains them). Then one can proceed
as follows (for simplicity we consider the one dimensional case). Let pr, () = E(e*f) be
the Fourier transform of F},. Since 9¥eif = (i¢)*e®f one may use k integration by parts
and obtains

. 1 ery 1 i€Fy
pr.(§) = (z.g)kE(aﬁe ) = WE(Q S HL(F)).
Then one writes
Pe©)] = [Pr(©) — Br ()] + ﬁ (<P Hy (F,))|
< JE|E|F - |+ ﬁE H(F)]. (11)

So if one succeeds to get a good balance between E |F' — F,,| | 0 and E |Hy(F,,)| T oo one
may obtain good estimates of |pr(§)| and this implies the regularity of the law of F.

This argument originates from [I2] and has been used in several recent papers: see [2], [3],
[4], [9] and [14]. Notice however that this method depends on the dimension: the weaker
condition which gives a density of the law of ' is [o, Px, ()P dz < oo and of course,



this depends on d. Let us give a simple but significant example (see [14]). Consider a d
dimensional diffusion process dX; = Z;VZI 0;(X,)dW{ 4 b(X,)dt. In [14] one assumes that
the coefficients o; and b are Holder continuous of order & > 0 and tries to prove that the
law of X7 is absolutely continuous. One takes § > 0 and defines X? to be equal to X, for
t<T—6and X = XT_5+Z§V:1 0 (X7_s) (W} —=W_5) for t > T —46. It is easy to see that
E ‘XT — X%} < €62+ On the other hand if oo™ > ¢ then conditionally to X7_5, X9
is a non degenerated Gaussian random variable. Using elementary integration by parts
one may prove that for every multi index « of length k, E(9,6(X2)) = E(¢(X3)H,,s) and
E|H, s < C5 %2 Using (L)

~ 1 1 C
Px2 (€) < [EJE[Xr — X3| + e Hasl < Cle g2 s
We fix ¢ and we choose § = |§|_2(k+1)/(k+1+h) in order to optimize the above relation.
Then .
Px, ()] < Tl T
Ifd=1andh > % one may choose k sufficiently large in order to get ; Jﬁﬁrk > % and

SO [pa [Pxr (&) dz < co. But for d > 2, even if h = 1, one fails to prove that the above
integral is finite. So this approach is successful just for d =1 and h > %

The aim of this paper is to obtain a more performing balance which essentially does not
depend on the dimension. The main results are Theorem 2.4] in Section 2.I] and Theorem
217 in Section Our estimates are based on a development in Hermite series (instead
of the Fourier transform) presented in Section 221 In this framework we use a powerful
result concerning the regularity of a mixture of Hermite functions - see Theorem 2.8 in
Section This result has been proved in [I1] in the one dimensional case then in [10]
for the multi dimensional case. We use a variant given in [22] Corollary 2.3.

As an application of Theorem 2.4 we are able to improve the above mentioned result
of [T14] in the following way. For an open domain D C R? we denote by Ci,e(D) the
class of functions f : D — R for which there exists C,h > 0 such that |f(z) — f(y)| <
Clln |z —y||™" for every z,y € D. We fix yo € R and r > 0 and we suppose that the
coefficients of the SDE presented above verify o; € Ciog(B;(v0)),7 = 1,..., N (the drift
coefficient b is just measurable with linear growth). We also assume that oo*(yo) > 0.
Finally we consider an open domain I' € R? and we denote by 7 the exit time from I'. Our
result (see Theorem [T says that for yo € I which verifies the above hypothesis the law
of Xr,, is absolutely continuous with respect to the Lebesgue measure in a neighborhood
of yo. And this is true for any dimension d and every h > 0. Notice that even if the
coefficients are smooth one cannot use directly the Malliavin calculus because, due to the
stopping time 7, X7, is not differentiable in Malliavin sense. In [7] it is given a variant of
Malliavin calculus which permits to handle SDE’s with boundary conditions - but there
the coefficients are smooth (while here they are just in Clog(B,(y0))). Finally in Section 5
we prove a similar absolute continuity result for solutions of the stochastic heat equation.
We mention also that recently Debussche and Romito [§] introduced an alternative ap-
proach, based on Besov space techniques, which enables one to prove the above result for
Holder continuous coefficients. This technique has already been used by Fournier [13] in
order to study the regularity of the 3-dimensional Boltzman equation.
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After having done the work concerning probability measures we realized that this fits in
the more general theory of interpolation spaces and extends to distributions (we thank
to D. Elworthy who remarked this). In this framework our criterion ensures that a given
distribution (in particular a probability measure) belongs to a certain interpolation space
between a distribution space and a weighted Sobolev space. And the work done in the
paper consists in proving that such an interpolation space is in between two Sobolev
spaces. This gives the regularity result. There already exist a certain number of results
concerning interpolation between negative Sobolev spaces and Sobolev spaces. But our
result does not seem to fit in this framework. The reason is that when working with
Sobolev spaces one employs L” norms while the distribution space that we consider is
defined in terms of L® norms. And the case of L norms appears as a limit case in
interpolation theory and is more delicate to treat (see Triebel [27] or Bennet and Sharepley
[6]).

The paper is organized as follows. In Section 2.1] we state the main result which is a
criterion of regularity for general finite measures. We prove it in Section 222 and in
Section we give an alternative regularity criterion using integration by parts formulas.
In Section B] we discuss the link with interpolation spaces. In Section Hl we give two
examples. The first one concerns diffusion processes with coefficients in Cj,(D) under
an ellipticity assumption (the example presented above). It turns out that in this case
one does not need to use integration by parts: the analysis relies on the explicit Gaussian
density. The second example concerns diffusions with more regular coefficients which
verify a local Hormander condition. In this case the integration by parts formula from
Malliavin calculus is used. Finally, in Section [l we prove a regularity result for the
stochastic heat equation introduced by Walsh [2§]. This considerably improves a previous
result of Bally and Pardoux [5]. In the Appendix we discuss and prove some properties
related to interpolation spaces.

2 Criterion for the regularity of a probability law

2.1 Notation and main results

We work on R? and we denote by M the set of the finite signed measures on R? with
the Borel o algebra. Moreover M,C M is the set of the measures which are absolutely
continuous with respect to the Lebesgue measure. For p € M, we denote by p, the
density of 1 with respect to the Lebesgue measure. And for a measure u € M we denote
by L7 the space of the measurable functlons f:R* = R such that [|f|’du < oo. For

fe L1 we denote fyu the measure (fu)(A) = [, fdu. For a bounded function ¢ : R? — R
we denote 1% ¢ the measure deﬁned by f fd,u*qb [ Fxodu= [ [ op(x—y)f(y)dydu(z).
Then p1% ¢ € M, and pu(z) = [ o — y)du(y).

We denote by o = (al,...,ozd) € Nt a multl index and we put |a| = Y27, ;. Here

N = {0,1,2,...} are the non negative integers and we put N, = N\ {0}. For a multi
index a with |a| = & we denote J,, the corresponding derivative that is 9g...09¢ with the
convention that 9y f = f if a; = 0. In particular if «v is the null multi index then 0, f = f.
We denote by || fIl, = ([ |f(x)[" dz)'/?,p > 1 and || f]|, = sup,ega |f(2)|. Then LP = {f -



| f[l, < oo} are the standard LP spaces with respect to the Lebesgue measure.

In the following we will work in Orlicz spaces so we briefly recall the notation and the
results we will use (we refer to [I6]). A function e : R — R, is a Young function if it is
symmetric, strictly convex, non negative and e(0) = 0. In the following we will consider
a Young function which has the two supplementary properties:

i) there exists A > 0 such that e(2s) < Ae(s), (2.1)

e(s)

i1) s — —— is non decreasing.
s

The property ) is known as the Ay condition or doubling condition (see [16]). Through
the whole paper we work with Young functions which satisfy (Z1]). We denote by £ the
space of these functions.

For e € £ and f : R — R, we define the norm

£l =inf{c>0: /e(%f(x))dm <1} (2.2)

This is the so called Luxembourg norm which is equivalent to the Orlicz norm (see [16]
p 227 Th 7.5.4). It is convenient for us to work with this norm (instead of the Orlicz
norm). The space L¢ = {f : || f[|,) < oo} is the Orlicz space with respect to the Lebesgue
measure. Notice that if we take e,(z) = [z[",p > 1, then | f|.  is the usual L” norm
and the corresponding Orlicz space is the standard LP space. Another example is given
at the end of this section.

Remark 2.1 Let u;(x) = (1 + |z|)7". As a consequence of (Z1)) ii), for every | > d one
has
[all, < (e(D) [Jully) v 1 < o0

Indeed (Z1) i) implies that for t <1 one has e(t) < e(1)t. For ¢ > (e(1) [Jwl,) V1 one
has 1u(z) < w(z) <1 so that

1 e(l e(1

/e(—ul(x))dx < el) /ul(a:)d:c = el) wl, < 1.
c c c

One defines the conjugate of e by e,(s) = inf{st — e(t) : t € R} and this is also a Young

function so the corresponding Luxembourg norm || f|[,,) is given by ([2.2) with e replaced

by e,. Then we have the following Holder inequality

/ Fo(@)dz| <211l 9l - (2.3)

See [16] p 215 Th 7.2.1 (the factor 2 does not appear in Th 7.2.1 but there in the right
hand side of the inequality one has the Orlicz norm of g. Using the equivalence between
the Orlicz and the Luxembourg norm we replace the Orlicz norm by 2 [|g||._,)-

If e satisfies the Ay condition (that is (Z]) i) above) then L€ is reflexive (see [16] p 234 Th
7.7.1). In particular, in this case, any bounded subset of L¢ is weakly relative compact.
We also define e7!(a) = sup{c: e(c) < a} and

1 R

1
¢e(r) = 6_1(%) and ﬁe(R> = 6_1(R) = R(be(E) (24>




Remark 2.2 The function ¢. is the “fundamental function” of L° equipped with the Lux-
embourg norm (see [6] Lemma 8.17 pg 276). In particular +¢.(r) is decreasing (see [6]
Corollary 5.2 pg 67). It follows that 3. is increasing. For the sake of completeness we
give here the argument. Indeed, if a > 1 then e(ax) > ae(x) so that ax > e '(ae(w)).
Taking y = e(x) we obtain ae™*(y) > e *(ay) which gives

_ ay
felay) = — ) S — ol Be(y)-

We introduce now the norms

1l = D, N0aflle and [Ifle= > 10afly- (2.5)

0<|o|<k 0<Jal<k
We denote

Whe = {f I f o <00} and W= (£ [l < o0},

For a multi index v we denote x7 = Hle x}" and for two multi indexes «, v we denote

f+.o the function f, ,(x) = 270, f(x). Then we consider the norm

Wlhew= 5 3 Ifaly,  and W= {f I fll o <o) (26)

0<|v[<l 0< || <K

We stress that in || - || () the first index k is related to the order of the derivatives
which are involved while the second index [ is connected to the power of the polynomial
multiplying the function and its derivatives up to order k.

We consider the following distances between two measures pu, v € M. For k € N

e, v) = sup{' [ odn~ [ oav

10 € CF(RY), 0]l < 1} (2.7)

Notice that dj is the total variation distance and d; is the bounded variation distance. The
Wasserstein distance (which is more popular) is dy (p, v) = sup{} [ pdp— [ gbdu‘ NS
CHRY), |Vl < 1} so di(p,v) < dw(p,v). It follows that all the results proved with
respect to d; will be a fortiori true for dy,. The distances dj, with k > 2 are less often used.
We mention however that people working in approximation theory (for diffusion process
for example - see [26] or [20]) use such distances in an implicit way: indeed, they study
the speed of convergence of certain schemes but they are able to obtain their estimates
for test functions f € C* with k sufficiently large - so dj, comes on.

Let ¢,k € N and m € N,. For y € M and for a sequence u,, € M,,n € N we define

o0 . . [e.9] 1
n=0

n=0

Moreover we define
Pakme(ft) = 0 T e (1, (fn)n) (2.9)



with the infimum taken over all the sequences u,, € M,,n € N. We define
Sqtme = {1 € Mt pgem.e(p) < oo} (2.10)

It is easy to check that pg i m. is @ norm on S; k-
The main result in this section is the following.

Theorem 2.3 Let g,k € Nym € N, and let e € €.
i) Take g = 0. Then
SO,k,m,e C Le

in the sense that if p € So km,e then p is absolutely continuous and the density p, belongs
to L. Moreover there exists a universal constant C such that

Le S CpO,k,m,e (M) .

||pu
it) Take ¢ > 1. Then

Sqyme C WT° and HpuHWq,e < Cpgkme(t); 1€ Sqrmie

The proof of this theorem is given at the end of Section 2.2
It may be cumbersome to check that 1 € Spjm,e 50 we give a sufficient condition which
seems to be more clear and easier to verify. We define

M ge(R) ={pn e M, : Hpﬂ’|2m+q72m7(e) < R}.
For a > 1 we denote
L,(R) = R(In R)*
and we consider the following hypothesis.
Hypothesis H,(k,m,e). Forq, ke N, meN, and e € & there exists a > 1 such that

k+q d

La(R)1+ o fe(La(R)2m)
R

di(p, mqe(R)) < 0.

mR—)oo
We define
B,(k,m,e) ={pe M : H,(k,m,e) holds for u}.
For a,y > 0 we denote by &, the class of the Young functions e € £ such that

Be(R) Pe(R)

limp , ——F———— Re(n R = mR—woRa < 0. (2.11)

(In i)
The examples we have in mind fit in this class.
Our criterion is the following.

0<

Theorem 2.4 i) Let g,k € N, m € N, and e € £. Then
By(k,m,e) C Sgpme C WT°.

i) Suppose that e € &, ., with 0 < a < z’g+k+q and v > 0. Then

Wwathime o B (k,m,e) C Sypme C W,

the first inclusion holding for m > d/2.



Proof. i) The proof of B,(k,m,e) C Sy i m.e is given in Lemma 6.6l and Sy, . C W€ is
Theorem 23]
ii) The inclusion Wet12m¢ C B, (k,m, e) is proved in Corollary B3 O

Remark 2.5 The above criterion involves a lot of parameters and it is not easy to un-
derstand at a first glance which is the significance of each of them. So we try to give
a first interpretation on their meaning. QOur aim is to prove that the measure p has a
certain regqularity and we want to do this by approximating it by some regular measures
v € My, 4.(R). The first parameter which we fix is q. It represents the order of regularity
that we hope to obtain. If ¢ = 0 this means that we want to prove that p is just absolutely
continuous with respect to the Lebesque measure and the density is in some Orlicz space
defined by e. For example if e(t) = |t|" this is the LP space. If ¢ > 1 then our aim is to
obtain more reqularity, namely to prove that the density is in the Sobolev space of order q.
The second parameter is k. It characterizes the distance in which we estimate the approz-
imation error. Once q, e,k are chosen it remains m. The choice of m is different. For
the other parameters the choice comes from our decision to treat a problem or another:
they are involved in the definition of the problem we treat. On the contrary, m is a free
parameter which we choose for technical reasons: for example in some concrete situations
it is suitable to chose m wvery large - such that % < ¢ for some € > 0 for example. In the
following it will become clear that m represents the number of integration by parts that we
use.

The hypothesis H,(k, m,e) seems difficult to check because of the function f, which is
involved there in. So we give two significant examples.

Example 1. Let p > 1 and e,(t) = |t|". The corresponding Orlicz space is the standard
LP space. And we have B.,(t) = |t|l/p* with p. the conjugate of p. So e, € &E/p. 0. Our
hypothesis is:

q+k+d/px +k+d/px

Hy(k,myey): Ja>1 st limp R 20 (In R 20y (1, My 40(R)) < 0.

In this hypothesis the dimension d is still present. But its contribution is very small when
p is close to one. Then Theorem [2.4] reads as follows. If p satisfies Hy(k,m,e,) then
wu(dr) = f(x)dz with f € W2™P. Moreover, if p, > ggfgg and f € WITLP then the
measure p(dr) = f(x)dx satisfies Hy(k,m,e,).

Example 2. Set ejoq(t) = (14+]t]) In(1+4¢]). It is easy to check that e is a Young function
which satisfies the property As. The corresponding Orlicz space is the so called LlogL space
of Zigmund, i.e the spaces of the functions f such that [|f(z)|In"|f(x)|dz < oo (see
[6]). Let us check that ey € En1. We denote e,(t) = atln(at) and we notice that for t
large we have eq(t) < elog(t) < ea(t) (in particular L= is the space of the functions which
have finite entropy) Then e;'(t) < elf)é(t) < e (t) so that

t t

t < /Belog(t) < 62—1(t)'

t) one obtains

—_
—~
~—

er

S

Using the change of variable R = e,

=y

. . eq(t)
lim ————— = lim ————~
R—o0 €] (R) InR t—=ootln ea(t)
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This proves that

. e
1 S h—mt—>oo n

Our hypothesis is:

Hy(k,m, eig) : 3a> 1 s.t. Timpa R (In R) 50 dy (1, My g, (R)) < 0.
(2.12)
So the dimension d does mo more appear. Then Theorem reads as follows. If p
satisfies Hy(k,m, e1og) then p(dz) = p(x)dx with p € W€, And if p € Wath2meios then
the measure p(dx) = p(x)dx satisfies Hy(k, m, ejoq).

Remark 2.6 One may consider a further step and take €jog10g(t) = (1 + [¢]) In(1 4+ In(1+
[t])). In this case B, (t) < Inlnt but there will be no significant improvement: we obtain

(In R)a(1+%f) Inln R instead of (In R)“(1+%€)+1.

Remark 2.7 Having in mind these examples we conclude that one may ask for two dif-
ferent questions. a) One may just want to prove that p is absolutely continuous with
respect to the Lebesgue measure. b) One wants to obtain estimates of the density in some
given norm (associated to some Young function e - for example in LP). If the question
is just a) then one has to go directly to Example 2 and to use the Young function eoq.
Because the hypothesis (Z12) is the minimal one (in our approach at least).

2.2 Hermite expansions and density estimates

We begin with a re-view of some basic properties of Hermite polynomials and functions.
The Hermite polynomials on R are defined by

H,(t) = (—1)"et2%6_t2, n=0,1,..

They are orthogonal with respect to e dt. We denote the L? normalized Hermite func-

tions by
ha(t) = (2'nIy/m) "2 H,, (t)e ™/

and we have
/ B () o (1) dt = (2"n)/7) ™1 / H, () Hyp(t)e ™ dt = 6, .
R R
The Hermite functions form an orthonormal basis in L*(R). For a multi index a =

(ai,...,aq) € N? we define the d-dimensional Hermite function

d
Ho(@) = [[ hai(z:). o= (21,.... 7).

1=1

The d-dimensional Hermite functions form an orthonormal basis in L*(R?). This corre-
sponds to the chaos decomposition in dimension d (but the notation we gave above is

9



slightly different from the one used in probability; see [21], [24] and [I8], where Hermite
polynomials are used. One may come back by a renormalization). The Hermite functions
are the eigenvectors of the Hermite operator D = —A+|xz|* (with A the Laplace operator)
and one has

DH, = 2la|+d)H, with |o|=a;+ ...+ aq. (2.13)
We denote W,, = span{H,, : |a| = n} and we have L?(R?) = ¢ ,W,,.
For a function ® : R? x R — R and a function f : R? — R we use the notation

© 1) = [ o) f)dy
R
We denote by J, the orthogonal projection on W,, and we have

Jov(x) = Hyxv(x) with Ha(z,y) =Y Halx (2.14)

|al=n

Moreover, we consider a function a : R, — R whose support is included in [}, 4] and we

define

47
qntl_q

o) = Y e M) = Y a(Hey), wyeRY

4n
j=4”71+1

the last equality being a consequence of the support property of the function a.
The following estimate is a crucial point in our approach. It has been proved in [11], [10]
and then in [22]. We refer to Corollary 2.3, inequality (2.17), in [22].

Theorem 2.8 Leta: R, — R, be a non negative C* function with the support included
in [3,4]. We denote ||al|, = Zizo supyg |a®(t)| . For every multi-index o and every k € N
there ezists a constant Cy (depending on k,«,d) such that for every n € N and every
z,y € RY

2n(\a|+d)

1420z —y))*

' o (2.15)

—;ny\<@mm

Following the ideas in [22] we consider a function a : Ry — Ry of class Cp° with the
support included in [1,4] and such that a(t) + a(4t) =1 for ¢ € [}, 1]. We may construct
a in the following way: we take a function a : [0,1] — Ry with a(t) = 0 for t < 1 and
a(1) = 1. We may choose a such that a)(3) = a(1—) = 0 for every [ € N. Then we
define a(t) =1 —a(%) for t € [1,4] and a(t) = 0 for ¢ > 4. This is the function we will use
in the following. Notice that « has the property:

Z“(j?) =1 vt>1. (2.16)
n=0

In order to check the above equality we fix n; such that 4™~! <t < 4™ and we notice that

a(£) =0if n ¢ {ny—1,n}. So 3 ja() = a(4s) +a(s) = 1 with s =t/4™ € [1,1]. In
the following we fix a function a and the constants in our estimates will depend on ||all,
for some fixed [. Using this function we obtain the following representation formula:

10



Proposition 2.9 For every f € L?(R?)

F=) _Hixf
n=0
the series being convergent in L*(RY).

Proof. We fix N and we denote

N 4N 4N+L .
S%:Z%?L*f7 SN:ZHJ*f and Ra = Z (H f) (4N+1>
n=1 j=1 j=4N+1

Let j < 4'N+1. For n > N + 2 one has a(£) = 0. So using (2.10) we obtain SV a(L) =
Sovial) —algd) = 1 —a(g357)- And for j < 4" one has a(gr) = 0. It follows that

n=1
N oo N 4N+1 . 4N+t N j
SO NCUEEED 9 ML LATED UANIMICS
n=1 j=0 n=1 ;=0 n=1
4N+1 4N+1 i
= Y HMixf— > (Myx Palgi) = Sy — By
J=0 j=4N+1

One has Sy — f in L? and ||RY |, < |lal Z] 4N+1 |#H; * f|l, — 0 so the proof is
completed. [

We will need the following lemma concerning properties of the Luxembourg norms.

Lemma 2.10 Let p > 0 be a measurable function. Then for every measurable function f

o+ Flley < llolly 17Ny - (2.17)
Proof. Let c =m||f| ) with m = ||pl[, = [ p(z — y)dy. Since e is convex we obtain
[eGos s = [e( [P0 iy
< [ae [P0 gy
= [ert [P by = [ o sy

and this means that o+ 1, < ¢ = lll, |

11



Lemma 2.11 Let p,,(z) = (1 +2"|z|) P with p > d and e € €. There exists a constant
C, depending on p and d such that
1

||pn7p||(e) <

T (2.18)

In particular, for p = d+ 1 there exists a constant C' depending on d and on the doubling
constant of e such that (with ¢. defined in (2.4))

C —nd nd 1
||pn,d+l||(e) S W - 02 5@(2 ) = CQS@(W) (219)

Proof. Let ¢ > 0. We pass in polar coordinates first and we use the change of variable
s = 2"r then and we obtain

1 B o 1
/]Rd e(cpmp(z))dz = Ad/o r e(c X (1+2nr)p)dr
o 1
= 2_”dAd/ s e( )ds
0

(1+ s)p
where A, is the surface of the unit sphere in RY. Using the property Z.I) ii) we upper
bound the above term by

1 [ee]
2_"de(—)Ad/ s x
0

C

X

Q=

1
. —nd [~
(1+S)pds—0p2 e(c).

In order to prove that ||py,||., < ¢ we have to check that Jga €(2pnp(2))dz < 1. In view
of the above inequalities it suffices that e(2) < 2"¢/C), that is ¢ > 1/e71(2"/C,). O

Proposition 2.12 Let o be a multi indez.

i) There exists a universal constant C' (depending on a,d and e) such that
a) N0 * flly < Cllallgey x 27" (I £y, (2.20)
b) oMy * fllo < Cllallgy ¥ 2" 5, (2"7) 11l e

ii) Let m € N,. There exists a universal constant C' (depending on o, m,d and e) such
that

“ C lall;
||Hn * aafH(e) < Wd—i_l ||f||2m+\a|,2m,(e) (221)
iii) Let k € N. There exists a universal constant C' (depending on a, k,d and e) such that
1H5 % 0a(f = )l o) < C llallgey x 270D B2 di (11, 11y) (2.22)

i) For f,g € Wk we define

k,ex
Cp € W

¢l

die, (fif, ftg) = sup{ ‘ / Gdpy — / Pdpg (e S 1}

Let k € N. There exists a universal constant C' (depending on a, k,d and e) such that
#1550 (f = Do) < Cllallgyy x 270y e, (py, 1) (2:23)
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Remark 2.13 Let us try to explain the gain with respect to the standard projection on
the basis of Hermate functions. We have to compare H?: with Han because HE is a mizture
of projections between 4"~ and 4™, Suppose that we work in LP so ey(z) = |z|". In this
case Be(t) = C x t'/7 (with p, the conjugate of p) so the inequality (Z23), with k = 1,
reads .

1H % 0a(f = @)l < C2HHId (g, ) (2.24)

In some notes (which are not reported here) we were able to prove that
[Har % 0a(f = 9l < €202y (g, prg). (2.25)

If we take p = 2 in ([2.24) we obtain exactly (2.23) so there is no gain. But we could not
obtain the estimates in (2.23) for any p, but only for p = 2. Here we are able to take any
p > 1 so p. may be taken arbitrary large - and this destroys the dimension d.

Proof. i) Using ([2.15)
|0y * f ()] < €270 la| /Pn,dﬂ(ﬂf —y) [f ()l dy. (2.26)

Since e is symmetric e(|z|) = e(z) so that [|f||.) = [l[/]ll) . Moreover, if 0 < f(z) < g(z)
then | f[|.) < llgll() - Using these properties and ([2.26) and (Z1T7) we obtain

105 * flly = NP5 * flll ey < O [lall gy llpnara * £l
< 2"l llpmarally 111y -
Using (219) with e(z) = |z| we obtain || p,411]|, < C/2™. So we conclude that
10aHs * flley < Cllallgpr 2711 £l ey
so a) is proved. Again by (2.26)
0,7 % £(@)] < Clall iy 200 [ prasa(a = ) £l dy

< Calls, 220 [lpnenl ) 1]

(ex)”

the second inequality being a consequence of the Holder inequality. Using ([ZI9), b) is

proved as well.
ii) We define the functions a,,(t) = a(¢)t™™. Since a(t) = 0 for t < ; and for ¢t > 4 we
have [|am ||, < Cmallal| g, - Moreover DH; v = (25 + d)H; * v so we obtain

1

Hj*UIQj

(D — d)Hj * V.

We denote Lo = (D — d)"0, and we notice that Lina = >2\51<2m 2o p|<2mt|af cpAP 0,
where cg ., are universal constants. It follows that there exists some universal constant C'
such that

[Lm.aflle) < C N llamt1ag.2m, (e - (2.27)
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We take now v € L and we write

(0. e (D)) = (HGev,00) = D al) (Hy w0, 807)

e 4n(24)m
1 - j
= 2_m qnm £ m(4_n) <H] * 0, Lm,a.f)
7=1
1 1
= X am (Hym s v, Lip o f) -

Using the decomposition form Proposition we write Ly, of = Z;io HG % Ly f. For
7 < n—1and for j > n+ 1 we have <’H?Lm * v, H *Lm,af> = 0. So using Holder’s
inequality

1 n+1
(0. o @uh)] < o D [(HR # 0. My Lo )|
j=n—1
1 jn—i—l
< gnm Z HH?LM *UH(e*) HH; * Lm,afH(e) :
j=n—1

Using the point i) a) with o the void index we obtain [[Hi™ * v|, ) < C |lam|l44, 10|,y <
C X O llall gy ] (es)" Moreover, we have H’H? * Lm@fH(e) < COlalf 444 ||Lm,af]|(e) <
Cllall gy 1 F 112410, 2m,(e) - the last inequality being a consequence of ([2.27). We obtain

Clla

2
||d+1 ||'U
m

o Hex (0u )] < — 1

.f||2m+|o¢\,2m,(e)

€x

and, since L¢ is reflexive, (221)) is proved.
iii) We write

[0, 1y * (Oa(f =) = [(Hyxv,0a(f — 9))| = [{OaHy * v, f = g))]

= ‘/%’Hfb * vdpy — /8(17-[‘; * vdfig

We use (2.20) b) and we obtain

‘/&{HZ s vdpip — /8a7-[fL x vdpg| < [|0aHy * V|l o0 di(pif, 11g)

< 1HR * 0l 00 diligs 11g) < C llall gy 270D B(27) 0]

which implies (2.22).

(ex) di(pig, 11g)
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iv) We use (220) a) and we obtain

IN

||006ng * 'UHk,(e*) dk,e* (,Uf, :ug)

< M5 * UHk—l—\a\,(e*) die. (g, 1g)
< Cllafl gy, gniktlel [v] (ex) e (115, 1hg)-

‘/ OuHy * vy — /807-[2 * vdfig

N

So [|HR * (0a(f = 9))lle) < c2rFlald, . (s, pg) and iv) is proved. O

We are now ready to give the “balance”. For p € M and p,(z) = f.(z)dz,n € N we
recall that

n n, 1
Tqume 122 :un n 22 (q+k 2 d dk(:u lun + Z 92nm an||2m+q 2m,(e) *

n=0
We also set
_ o . o 1
T kme (s (Bn)n) = Z 2 (q+k)dk,e(ﬂa fin) + Z 92nm an||2m+q,2m,(e) :
n=0 n=0

Proposition 2.14 Let g,k € N,m € N, and e € £. There exists a universal constant C
(depending on q,k,m,d and e) such that for every f, f, € C*"*4(R%), n € N

a) [ fllg ey < CTgpeme(tts (ttn)n), (2.28)
0) [ fllge) < Cghme(tts (n)n)-

Here p(z) = f(x)dx and p,(z) = fo.(z)dz
Proof Let a with |a| < ¢. Using Proposition 9]
Onf =D HpxOaf =Y Hix0u(f = fo) + Y Hiy % Oufn
n=1 n=1 n=1
and using (2.22) and (227])

10aflley < Z 11 % 0a(f = fu)ll o) + Z 1Hs # Do full o)

ni|a n 1
< 022 (o) 8, (2 dy (1, e, +CZ s | allzm 102, e)

so (228) a) is proved. The same reasoning, using ([2.23]) gives (2:28) b). O

We can now give the

Proof of Theorem Step 1. Regularization. For § € (0,1) we consider ~;s
the density of the centred Gaussian probability measure with variance §. Moreover we

15



consider a truncation function ®s € C'°° such that 1 By 1(0) < dbs <1 By, s-1(0) and whose
derivatives of all orders are bounded uniformly w.r.t. . Then we define

Ts - COO—>COO, T5f:(q)5f)*”y5 (229)
Ty : C° = C®, Tsf =Ds(f *7s).

Moreover, for a measure i € M we define T 11 by

(T5 1, ¢) = (1, T59) -

Then T is an absolute continuous measure with density pr:, € CZ° given by

przul) = s(0) [ 2atac = y)duta).
Step 2. We prove that for every yp € M and p,(dz) = f,(x)dz,n € N we have

Takesme( Ty 1ty (T5 pin)n) < CTgrmie (1 (fn)n)- (2.30)

Since || 76 o0 < C 600 one has di(Tip, T 1) < Cdi(pt, 1),

For p,(dz) = f.(x)dxr we have pr:,, (y) = Ty f, Let us now check that

fis.

< Clfn

— ||2m+q,2m,(e) : (231)

2mt-q,2m,(c)

For a measurable function g : R — R and for A > 0 we denote g\(z) = (1 + |z|)*g(z).
Since (1 + |z|)* < (14 |y)*(1 + |z — y|)* it follows that

Tap(a) = (14 L) 0s(o) | 3a)ata =)y < [ amalorte =)y = 751 = 02(0).

Then by @I7) [[(T59)xlle < v * galle < Cllvsally lgall. < Cllgall. Using this inequal-
ity (with A = 2m) for g = 0, f, we obtain (2.31]). And (2.30) follows.

Step 3. Let it € Sy km,e 50 that pgpm.(p) < co. Using [228), a) we have ||T5 1ty <
Pakm.e(T5 ) and moreover, using and (2.30)

sup |75 ptllyya.0 < € D pgm,e(T5 1) < Pgm,e(p) < 0. (2.32)
5€(0,1) 5€(0,1)

So the family Ty i, 6 € (0,1) is bounded in W% which is a reflexive space. So it is weakly

relative compact. Consequently we may find a sequence 6, — 0 such that 7§ u — f €

W weakly. It is easy to check that Ty p — p weakly so p(dr) = f(x)dr and f € Wo°.

As a consequence of ([2.32) we have ||1t]|jy0.e) < Cpgrm.e(pt). O

2.3 Integration by parts formulas

In order to use the criterion presented in the previous section one needs to have estimates
for the densities of the approximating measures p,. Sometimes these densities are explicit
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and then there is no problem. But sometimes they are not and then the integration
by parts machinery is very useful - we present it in this section. An example related
to diffusion processes is given in Section M} if an ellipticity condition holds then one
may exhibit a Gaussian random variable but under Hormander condition this is no more
possible.

We recall that M is the set of positive and finite measures on R? with the Borel o-field
and LF := LP(RY, dp). For € My, m € N,p > 1, we define the Sobolev space WP to
be the space of the measurable functions g : R — R such that for every multi index «
with [a| < m there exists a function 0,(g) € L, such that

[0t xgdn= (-0 [ £ x0u(g)au v € C(R. (2.33)

We denote
agg =0, (g )
Notice that 0% is not a differential operator. Indeed it is easy to check that this operator

verifies the following computation rules (see Lemma 9 in [I]). Let ¢ € W;” and ¢ €
Cy(R?). Then ¢t € W,* and

0 (¢y) = Y0} ¢ + 0. (2.34)
Taking ¢ = 1 we obtain
Op = 'l + 0. (2.35)
We define the Sobolev norm

||g||WLn,p - ||g||Lﬁ + Z ||agg||Lﬁ

1<|a|<m
and for p > d we denote

k 1 d —1
(1) = Iyt Ml with Kap = 77

The corresponding definition in terms of random variables is given by means of the usual
integration by parts formulas. On a probability space (€2, F, P) we consider a d di-
mensional p integrable random variable F' and a one dimensional p integrable random
variable G. Suppose that for each o with |o| < m there exists a p integrable random
variable H,(F, @) such that

E(0.f(F)G)) = (-)E(f(F)Ha(F.G)) Vf € CZ(RY). (2.37)

(2.36)

If pup is the law of F' and g(x) = E(G | F' = x) then the above integration by parts formula
is equivalent to g € WP and 0,(g9) = E(H,(F,G) | F' = ). Indeed, taking conditional
expectations

/ (Ouf % g)dpr = E@af(F)E(C | F)) = E@uf(F)G))
— (“)PE(f(F)HA(F,G)) = (~1)“E(f(F)E(H.(F.C) | F))
- / (f X 0u(g))dpir.
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Moreover, since |E(H,(F,G) | F = z)|" <E(|H.(F,G)|" | F = z) we have

lgllfyrr SEIGP + ) E|Ha(FG)P. (2.38)

1<]a|<m

We will express our results in terms of positive measures but, in view of the above in-
equality, everything translates immediately in terms of random variables.

Remark 2.15 An analogous formalism has been introduced by Sigekawa [25] and by
Malliavin and Thalmaier [19] (0"g corresponds to the so called “covering vector fields”

from [19]). Here we follow [1J].

We introduce now the Poisson kernel on R?. It is given by

Q,
Qs(z) = asIn|z|, Qu(z) = H%,d > 2
X

where a; are some normalization constants. In order to include the one dimensional
case we denote ()1(z) = z,. The kernel @), is the fundamental solution to the equation
AQq = dp. In [I] Theorem 5 we prove the following estimate. Suppose that 1 € Wﬁvp for
some p > d. Then

O,(1) = sup 3 / 0.Qa(e — IPT du(@) P <Oy, (239

zeRd

with kg, given in (Z36) and C' a universal constant.

Following the idea of Malliavin and Thalmaier [19], in [I] we used the kernel @), in order
to give a representation theorem for the density of p. Consider a function ¢ € C£°(R?)
such that 15, ) < ¢ < 1p,) with B,(0) = {z : |z| < r}. For a fixed 2 € R we denote
. (y) = ¥(z — y). Proposition 9 from [I] says that, if 1 € W;}’p for some p > d, then
p(dz) = p,(x)dz with

pu@) = 3 [ Quly = 20/ o <app(d) (2.40)

Notice that by ([Z35), if 1 € Wj’p then v, € Wj’p and 01, has the support included in
By(x). So 1fjz—y|<2) appears just to emphasize this fact.

Suppose now that 1 € W™¥ for some m € N and p > d. In Theorem 8 from [1] we prove
that p, € C™1(RY). And it is easy to see that for a multi index a with || < m — 1 one
has

Dappu(x 1)l Z/an — 2)080; u (Y) L {ja—y|<2p(dy).

We need the following variant of Proposition 9 in [I].
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Proposition 2.16 Suppose that 1 € WP for some m € N, and p > d. Then p(dz) =
pu(x)dz with p, € C" 1 (RY) and for every multi index v with || < m —1 and k € N

10p(2)] < C X o ap()m (1)uso() (2.41)
with ug(z) = (1 + |z|)™* and

ma(n) = / (1+ o)) dp(z).

Proof. We write
d

d d
‘801]9“ Z S Z[3>1/2(Z JZ2)1/2
i=1 i=1

1=1

with
1= / 0:Quly — )7 uldy))5 and = ( / 00 () 1oy ().

We use ([239) and we obtain

1,p *
Wy

d
Qo <ol
i=1
Moreover using Schwarz inequality

15 [ 108080 ) i) e Bt

Using repeatedly [2.35) one can check that [1hslyme < Cy[1]|ymee where Cy is a
universal constant which depends on the derivatives of Y up to order m. Take now a
random variable £ of law p. We may assume without loss of generality that |z| > 4 and
then, using Chebyshev inequality

l\)l»—l

||

<

p(Ba(x)) = P(§ € By(x)) < P([¢] = P

) < —mg(p).

So J; < C'|pl| / (1)ug2(x). We conclude that

m2p
ka,p
[Oapu(x)] < C LT (L lwgnar my (ks () = e ap (1) (1) usys ()

and consequently (24T]) is proved. O
By using Remark 2] as an immediate consequence of (241]) (with p = d + 1) we obtain

1/2
||pu’|2m+q72m,(e) < Cd,e02m+q,2(d+1)(M)m2{d+1+m) (). (2.42)

We can now re-formulate the results from Section 2.1 We define
~ 2
Mo ge(R) = {1 € Ma(R?) : Comqiain) (1M1 o (1) < R}
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and by ([ZAI) we obtain My, ge(R) C My, 4.(C x R) where C is a universal constant.
Then we consider the following

Hypothesis fIq(k, m,e). For q,k € N and m € N, there exists a > 1 such that

k+q d

2m ﬁe(La(R) 2
R

La(R)l+

’”)dk(u, Myqe(R)) < .

liInR—)oo

We define B B
B,(k,m,e) = {u € MR : H,(k,m,e) holds for u}.

Our criterion can be stated as follows.

Theorem 2.17 Let ¢,k € N, m € N, and e € €. Then B,(k,m,e) C By(k,m,e) C
qu,m,e C Waee,

3 Interpolation spaces

We give a variant of the results from the previous section in terms of interpolation spaces.
More precisely we will prove that the space S, j.m. considered in Section 2] (Z.10]) is an
interpolation space.

To begin we recall the framework of interpolation spaces. We are given two Banach spaces
(X, lollx), (Y lleolly) with X C Y (with continuous embedding). We denote L£(X,X)
the space of the linear bounded operators from X into itself and we denote by |L|x
the operator norm. A Banach space (W, ||o||,;) such that X C W C Y is called an
interpolation space for X and Y if L(X, X)NL(Y,Y) C L(W,W). Let v € (0,1). If there
exists a constant C'such that || Ll < C[|L[x x ||L||§,_§’ forevery L € L(X, X)NL(Y,Y)
then W is an interpolation space of order . And if one may take C' = 1 then W is an exact
interpolation space of order . There are several methods for constructing interpolation
spaces. We focus here on the so called K-method. For y € Y and ¢ > 0 one defines
K(y,1) = infaex(|ly — ally + ¢ Jo]ly) and

< dt
bl = [ K@OT. (), = (e Yyl <o)
0

Then one proves that (X,Y), is an exact interpolation space of order 7.

In the theory of interpolation spaces one considers a more general situation: one does not
require that X C Y but instead one works with X NY and X + Y. Moreover one considers
a whole family of norms given by [ly[ , = Jo K (y,1))1% with oo > ¢ > 1. In our
framework we are concerned with X C Y and ¢ = 1 so we leave out the general setting.
But we will need a variant of the norm |[|y|, : for v € (0,1) and b > 0 we define

b dt R dt
ol = [ I K0T and = [l Ky 7

Notice that K (y,t) < ||ly|ly- so if v > 0 then
ylye < Nl < 1yl + Crallylly-
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Therefore we may work with one or another of these two norms. But if v = 0 then
I Int¢|° K{(t, y)% may be infinite. This is why we prefer to work with lyl,, - We define

K. (X,)Y)={yeY: |y|%b < 00}

In the case v > 0 we have K, ,(X,Y) ={y € Y : |ly|,, < oo} and moreover if b = 0 we
have [[y]l, = [[yll, o and (X,Y); = K, 0(X, V).

We introduce now another space which is the analogous of the space S, . defined in
(ZI0). Let a,0 > 0 and m € N,. For y € Y and for a sequence x,, € X,n € N we define

= n a 1
To.ma(y (Tn)n) = 320" |ly = ally + Z ol (3.1)

n=1

Moreover we define
Poma(y) = inf T (Y, (20)n)

with the infimum taken over all the sequences x,, € X,n € N. We define

SomaX,Y)={yeY :pS" (y) < oo} (3.2)

0,m,a

It is easy to check that pgfﬁ;a is a norm on Sp (X, Y).
Finally we define the space which corresponds to the balance: for o, 8 > 0

Bosg(X,Y)={y €Y :limg,oo R*(In R)’dy (y, Bx(R)) < 00}.

In the appendix we prove the following relation between these spaces (see Proposition
and Proposition [6.3):

Proposition 3.1 Given 0,a > 0 and m € N,, one has
Bog(X,Y) C Spma(X,Y) =K, ,(X,Y) (3.3)

with

v 0 2ma and a:iﬁz2+a+%.

= b pr—
2m + 6’ 2m + 6 2m’
In particular, taking a = 0 we obtain

2
Bos(X,Y)C (X)Y), with a=-—1—f=—""1)

3.1 Distribution spaces

We precise now the particular spaces we will work with. We denote by W#> the closure
of the Cp° functions with respect to [[of[, ., and we consider the dual space Wkee So
Wk is the space of the bounded linear functionals u : W% — R with the norm

lullyree = sup{|(u, £)] : f € W1 f o < 1}
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Let k,q,m € N,m > % and e € &, ., for some o,y > 0 (see (211))). We will work with the
spaces

X = wrmterme  gnd Y = Wk (34)
It is easy to check that, if [ > d, then W% C L' Indeed if w(z) = (1 + |x\)_
v(x) = (1 + |z])'f(x) then using Hélder inequality [|f(z)|dz = [ |w(z)v(z)|dx <

2loll o) lwlle.y < 20 fllog e lwlle,) and by Remark 2.1 this is finite. So we may em-

bed X W2mte2me in Y = Wk in the sense that f € X — f € Y with (f,g) =

f f x)dx. Moreover for a measure p € M we denote by p the linear functional
f g(x . Since g € W™ is bounded (f1,g) is well defined. So one has

u E VV’“Oo The dlstance introduced in (27) becomes

de(p,v) = sup{' o~ [oa] € @, ol <13
= up{[(— 7.0 : 6 € CHR, [l < 1} = i — Fllypee

Recall pgim,e defined in (29) and take 0 = ¢+ k + ad,a = 7. Given e € &, one may
find a universal C' such that for every y € M one has

1 ~
apq,k,m,e(u) = perza( ) S Cquﬁ,m,e(,U)' (35)

We have the following analogous of Theorem 2.3k

Proposition 3.2 Let k,q,m € N,m > 4

5 and e € E,,. We take § = q+ k + ad and
X = W?2mta2me 'y — Wk Then,

S@WLW(X, Y) C Wee,

The proof is identical with the proof of Theorem (we have not used there the fact that
i is a measure, but only the fact that it is a distribution) so we skip it.
The main result in this section is the following:

Theorem 3.3 Let k,q,m € N and e € &, for some o,y > 0. We take 0 = g+ k + ad
and we denote X = W?2mtakme c koo =Y Then,

Wq+1,2m,e - Sq,k,m,e — S@,mm/(X7 Y) = Kp,b(X7 Y) c wee
0 - 2myy
2m+60"" 2m+0’

with p=
the first inclusion holding for m > d/2, and

0 0
Buo(X,Y) C Soms(XY)  u=gv=2+7+ .

Proof. As a consequence of the previous proposition the elements of Sy, (X,Y) are
functions. So using ([B.5) we obtain S,y m.e = Spm~(X,Y). The equality Sp,,~(X,Y) =
K,(X,Y) and the inclusion B, ,(X,Y) C Spm~(X,Y) are proved in ([3.3)). The inclusions
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wathzme - G, (X,Y) = K,,(X,Y) C W€ follow from Theorem 2.4l and the fact that
So.m~(X,Y) =Sy kme. O

We come now back to the examples given in the first section.

Example 1. We take e,(t) = |t|” so that 5., (t) = t|'/P= . It follows that e, € &, ., with
o= pi* and v = 0. The Sobolev spaces associated to e, are the standard Sobolev spaces so
we denote WP = W% and so on. We also have b= 0 so K,,(X,Y) = (X,Y), which is
the standard interpolation space. Moreover 0 = q+k+ad=q+k+d/p.p=0/(2m +0)
and we obtain

+1,2m, _ 2m+q,2m, k,00 R
W P C Sqhme, = (WATTEIP 7 500) FC WP,

q+k+d/p.
2m +q+k+d/p.

with p =

Example 2. We take ejog(t) = (1 + |t]) In(1 + [t]). So €05 € Eo1 . Now we work with

Ulnt)® dt

Kmb(X,Y):{yEY:/ K(y,t)7<oo}.

tp
0
This is no more a standard interpolation space. The above theorem gives

Wq+l,2m,e1og C Sq,k,m,elog _ Kp,b(W2m+q’2m’el°g, Wf,oo) C Wq,elog’
q+k - 2m
2m +q+k S 2mtqtk

3.2 Negative Sobolev spaces

Usually in interpolation theory one discusses about LP spaces and the case of L> treated
above appears as a limit case which is more delicate. In this section we investigate the
results that one may obtain for LP using the machinery based on Hermite expansions
(presented in Section 2.2)). For simplicity we leave out the Orlicz norms and we restrict
ourself to LP spaces. So the spaces we work with are X = W?2m+¢2mp and Y = WFp+ =
(WkP<)* the dual of the standard Sobolev space WP+, The result in this section is the
following:

Theorem 3.4 Let k,q,m € N. We denote X = W?m+a2mp c W=kP« =Y. Then

q+k

Watl2me ~ W2m+q,2m7p’ W=kP<) — WP with =,
( )o P o ¥q+k

. . . d(2m—1)
first inclusion holding only for p, > Gy and m > d/2.

Proof. The proof is the same as for Theorem 233 so we sketch it only (we use the notation
introduced in that proof).

Let us first prove that (X,Y), Cc W%P. By ([B.3) we have (X,Y), = K,0 = So.mo(X,Y)
with § = 2mp/(1 — p). Let v € (X,Y),. By the very definition of Sy, o(X,Y) we may
find a sequence v, € X such that

" 1
To,m,0(Us (Un)n) = Z 2" [u = vally + 92nm [on]|x < o0.

n=1
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For u € Y = (Whr+)* we define Tyu by (Tju,¢) = (u, Ts¢) - the operators Ty, T5, Ty
are defined in the Step 1 of the proof of Theorem 2.3)), see (2:29). The functional T5u
is associated to the function f(y) := Ps(y) (u,vs(- —y)) in the sense that (Tju,¢) =

[ f)o(y)dy.

Since ||T50yrpe < |0l jyrp. We obtain ||Tju — Tiv,[ly < |Ju — v,y . Notice that the
notation T v, is introduced for the functional ¢ — [ v,(y)d(y)dy. So (T5vy, @) = (fa, @)
with f,(y) = @5(y) (Un, V(- —¥)) = Ps(y)vn * V5(y) = T5v,. We have already proved in

231) (take f, = v,) that HT(SU"HX < ||vn||x - We conclude that

T0,m,0 (T;U, (Tgvn)n) S 7T9,m,0(u7 (Un)n)
Using (2.28), b) we obtain

175 ullwar < CTo.m0(u, (vn)n)
so the family 75w, > 0 is bounded and consequently relatively compact in W%P. Let
u € WP be a limit point. Since (Tju, ¢) — (u, ¢) we have (u, ¢) = (u, ¢) .
The proof of the inclusion Wath2me  (W2m+a2mp 1)/ =kp+) ‘is analogous to that of (G.5)
so we skip it. [

Remark 3.5 Let us compare this result with the one in Example 1 given before. We have
replaced the dual of W5 by the dual of W*P= and then the interpolation index is smaller
and does no more depend on the dimension (because d/p,. does no more appear).

4 Diffusion processes

We consider the SDE
N t _ t
Xy =x+ Z/ o;(s, Xs)dW! —I—/ b(s, Xs)ds (4.1)
j=1"0 0

with ¢;,b : Ry x R — R? j = 1,..., N measurable functions and W a standard N-
dimensional Brownian motion. We want to keep weak hypotheses on the coefficients
so we do not know that the above SDE has a unique solution. So, we just consider a
continuous and adapted process Xy, ¢ > 0, which verifies ([I)). We assume that the
coefficients have linear growth: for every T' > 0 there exists a constant Cp such that
N
|b(t, z)| + Z loj(t,2)] < Cr(1+ |x|) V(t,z) € [0,T] x R (4.2)
j=1
Moreover for an open domain D C R? we define Ci,e([0,7] x D) to be the set of functions
f:[0,T] x D — R? for which there exist C;h > 0 such that for every (t,z),(s,y) €
0,7] x D
[f(t2) = f(s,9)] < C(Infa — y[|” " 4 [Inft — s]|7®Y). (4.3)
Finally we say that a probability measure 1 on R? has a local density p, on D if u(A) =
[ pu(x)dx for every Borel set A C D. We consider now an open domain I' C R? and we
define
T=inf{t: X, ¢ T'}.
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4.1 A local ellipticity condition

We first study the case in which the diffusion coefficients o, j = 1,..., N, satisfy a local
ellipticity condition. More precisely, we prove that

Theorem 4.1 Let the coefficients b and 0, j = 1,..., N, be measurable and with linear
growth. Foryo € I', T > 0 and 0 < r < %d(yo,FC), suppose that 0; € Clog([0,T] X
B.(v0)),j =1,....N and 00*(yo) > 0. Let X; be any continuous and adapted solution to
the SDE ({{.1). Then the law of Xy~ has a local density on B, 4(yo).

We will need the following approximation result. We fix § > 0 and we construct X? by
N . .
X} = Xr—sype + Y 0(T =6, Xp_5) (W) —Wi_y), te[T—6T].
j=1

We denote by p the law of X7, and by ps the law of X%. Moreover we consider a
truncation function ¢ € C* such that 1p_,,) < ¥ < 1p,(,) and such that for every

multi index a one has [|0°¢|| , < C,r~1ol where C,, depends on « but not on 7. We define
v =tp and vs = us.

Lemma 4.2 Under the hypothesis of the Theorem[{.1] one has
Cs <170 —(2+h)
dy(v,vs) < —567%(Ind)
T

where Cy, > 0 depends on the constants in {{.3) and ({{-3) associated to o; and b, h being
the constant from ({.3) related to o; and b.

Proof. Since X, € I'“ and r < 3d(yo, I'*) we have (X)) = 0 so ¥(Xrar) = (X7)1iry.
It follows that for any ¢ € C(R?)

/ bl = B((Xrnr) = E(G0(Xr)Lirory) = Ry + 1
with
Rs = E((¢¢(X7) — (X)) Lrary) and I =E(¢(X])1rsry).

We write
I= [ odvs =7 with J=B@o(X)1pem),

‘/mu— /¢du5

We estimate |.J|. Let n = inf{t > T — 6 : | X, — X(r_g)a-| > 5} and ns = inf{t > T — ¢ :
Xf — X(T_(;)AT‘ > %} Using standard arguments one checks that

< |J| + | Rs| -

Pn<T)+P(ns <T) < C6.
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Suppose that we are on the set {n > T} N {ns > T} If (X4) # 0 then | X3 —yo| < %
and since ns > T it follows that ‘X T—§)Ar — yo‘ < 3 < 7. Since | X, — yo| > r this implies
that 7 > T — 4. And we have |Xp_5 —yo| < 2 And since n > T it follows also that
| X — yo| < rfor every T —§ <t < T. Then Xt € I' and so 7 > T. We conclude that
{P(X) £ 0yN{r <T}C{n<T}U{ns <T}. So that

[ <ol (P(n <T)+P(ns <T)) < Cll¢]l 0

We estimate now

|Rs| < ||V(¢>w> E(| X7 — X2| sy Lixren, o))

< 7(I|¢>||oo +IVOlOE(Xr — X7| Lypsmingrsmingxres, o) + C 19]l 0

On the set {n >T}N{r >T}N{Xr € B.(yo)} we have
Xp— Xp = Z/ (05(t, X2) = 05(T = 6, X1-6)) 1 (X1 s Bar (yo) i Xe € B (o)} AWF +

+ / b(t, X,)dt.
-5
If we are on the set {X7_s € Ba,(yo)} N{X; € Bar(yo)} we may use ([{3]) and we obtain

0(t, X0) = 05T = 0, Xr-5)| <C(Lppx,xp_ypo5ray+

—(2+h)

In =

—(1+h
+ |In | Xy — X7 ]| (e Liix,—xp_sl<s-1/13 + 5)

—(2+h)

§01{|Xt—XT76‘2571/4} + 2C' |In

i

It follows that

B [ (0, 3) —oy(T — 5, X sy

T—6

Lin>TYn{r>TH{X1€ B0 (y0)})

T
< /T JE(WJ’ (t, X0) — 05(T — 0, X1—5)1* L{xr_s€Bar (vo) X1 Bar (40)} ) It

—2(2+h)

L + 6%

< (C4l|ln~ In =

—2(2+4h) T
+/ P(|X; — Xp_s| > 6 VHdt < Co
T—6

The drift term may be upper bounded directly:

/ ' b(t, X,)dt

T—06

2

) < CE(

2

E( /T (14 |X,)dt| ) < C.

T—06
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So we have proved that

C §1/2
< = B
[R5l < (Il + ||V¢Hoo)|ln5‘2+h
and finally
d dvs| < C \Y 751/2
‘/cb V—/cb vs| < — (19l + 1l ¢||oo)|ln5‘2+h-
O

Proof of Theorem 4.7l Step 1. We define 7 and 75 by

/ 607 = E(0t(Xrn)Lxs semaiuy)  and / 6075 = E(SU(XD) L xa s toon)-

One has

’/qbdu—/gbdy

so that d;(v,7) < C0. In the same way d; (vs, 7s) < C0 so that, using the previous lemma

< (|9l PEXT € Br(yo)} N { X715 € B3 (y0)}) < Cll¢yll 6

dy(1,75) < 051/2(110 §)=2+h) (4.4)
Step 2. We have 7s5(dy) = ps(y)dy with

ps(¥) = E(W(¥)Vas(xrar) (Y = Xrar)Lxr s€Bar(yo)})
where as(x) = doo*(x) and
1

Vag(z) (Y) = \/TT;( exp(— <a5 y>?/>)

is the Gaussian density of covariance matrix as(z). We may find a constant A, such that
the lower eigenvalue of as(x) is larger then d\, for © € By, (yo). It is then easy to check
that for every multi index « one has

sup H@Olv%(m)Hoo < Oz,
xEBQT(yo)

We also have [|0%¢]| < Cr~lol so it is easy to check that

C |y0|2m
r2m+q

_1m :
||p5||2m+q,2m7p S C(T’ yO) X 6 2(2 +q) 'lUZth O(T, yo) =
Step 3. We will use the criterion ([29) so we focus on ej,,. And we have for p > 1

||p5’|2m+q72m,elog Hp5||2m+q 2mp < C(’f’ y0> X 0 2 2m+q)
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We conclude that
Ds € Mm,q,elog (Ré) with R5 = 0(717 yO) X 5 2m+q)'
We have 6/2 = C R}/ so (@) reads

o Rl/ 2m+q)

dy (v, Mipg,e1, (R5)) < W

Now we look to (2.9) with £k =1 and a > 1:

a+1 q g+1 1
Ry (In Ry) " 50y (v, My gy (R)) < R 7777 (In Ry) " 0710,
It is clear that if ¢ > 0 the above quantity blows up, but, if ¢ = 0 then anl 2m T =0 and

this term disappears. Moreover we take m sufficiently large in order to have 5~ < h and
a > 1 sufficiently small in order to have a(1 + m) <1+ h. And then the above quantity

is bounded. So v is absolutely continuous and then g is absolutely continuous on B, (yp).
O

4.2 A local Hormander condition

In this section we work under a local Hormander condition. In contrast with the situation
from the previous section in this case we are no more able to exhibit an explicit density
(as the non degenerated Gaussian density in the previous section) so we are obliged to
use integration by parts. This is the specific point in this example.

In this framework it is difficult to work with time dependent coefficients so now on o;,b
depend on z only. Our equation is

N t t
X, =z + Z/ 0 (X, )dW? +/ b(X,)ds.
=1 /0 0

We denote by oq the drift coefficient when writing the equation in Stratonovich form that
isop=b—% Z;VZI S 07 9y0;. We can do this only if o; are one time differentiable - in
our case this will be locally true, and this will be sufficient. For an open domain D C R?
we denote by C*(D) the class of functions which are k time differentiable on D. For [ < k
we construct recursively

AO = {Uj>j - ]-7 -'-aN}a Al = {[¢> Uj]>¢ S Al—laj - Oa >N}

and

Ap(o,z) = inf > (g(x),)*. (4.5)

So the condition Ag(o, x) > 0 says that we have ellipticity in the point x and the condition
Ag(o, ) > 0 says that the weak Hormander condition of order & holds in z.
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Theorem 4.3 Let I' C R? be an open domain and 7 be the exit time from T'. Fix
yo € T and r < d(yo,T¢). Suppose that the diffusion coefficients have linear growth,
0j,b € C¥(B.(y0)),7 = 0,1,..., N, for some k > 2 and moreover, Ay(c,z) > 9 > 0, for
x € B.(yo). Then for every T > 0 the law p of Xrp, is absolutely continuous with respect
to the Lebesque measure with density p, € C*2(B,4(yo)).

Remark 4.4 In Proposition 23 from [1] we prove a similar result for a diffusion process
with coefficients which are globally in C*(R?) and for which we do not consider the stopping
time 7. Here we generalize this result for local reqularity and with a stopping time.

The proof is analogous to the proof of the previous theorem but now we will use another
approximation process. For § > 0 we consider some coefficients a;?,b‘s € C*RY),j =

1, ..., N such that 09(y) = o;(y),b°(y) = b(y) for y € B,(yo) and such that
> Mgl < >0 Imwndall.. (4.6)
0<a|<k 0<al<k
for j =1,..., N and the same for b°. We also assume that

inf Ap(0®,2)> inf Ag(o,z) =:¢e, > 0. (4.7)

z€RN z€B;-(yo)

Then we define Xf =X, fort <T — ¢ and

t
o2 (X2)dWi + / b(X%)ds for (T—0)AT<t<T.
(

T—(;)/\TF

We denote by p the law of X7, and by ps the law of X%. Moreover we consider a
truncation function ¢ € C* such that 1p_,¢,) < ¥ < 1p,(,) and such that for every
multi index o and every p > 1 there exists a constant C, , such that

89
(0

Such a function is constructed for example in [I], Section 2.7. We define v = 9u and

= Yus.

Lemma 4.5 Under the hypotheses of Theorem[{.3, for every p > 1 one has

Ca 7p

rlal

(z) Cx Y(z) < (4.8)

di(v,v5) < Op5p/2

Proof. We define n = inf{t > T"—0 : |X;, = Xp_5| > 7}, = inf{t > T -6 :
X) — X2_5| > 2} and we write

‘/(bdy—/(bdyg

I = E(|¢y)(Xrar) — o0(X3)| Lipsmynims>)-

< T +2(¢ll, (P(n <T)+ P <T))  with
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Since the coefficients o; have linear growth we have for every p

C

Pin <T)<P( sup [Xi(z)— Xr_s(x)] > 5) < _P(gp/g
T—§<t<T
And the same is true for P(ns < T').
We will now check that I = 0. We write
I = I'+1" with
I' = E(|ov(Xrar) = o0(X0)| Lisrynfns >} Lir<T),
I" = E(|¢v(X7ar) — 0W(XD)| LisTingns >3 Lir>T)-

We have 1 (X,) = 0. Suppose now that ¢(X9) # 0 and n; > T. Then X_sr €
Bsy/a(yo) € I' so 7 > T — 6. But then, since > T it follows that 7 > 7" which is in
contradiction with 7 < T. So we have proved that I’ = 0.

We check now that I” = 0. We are on the set 7 > T so 7 disappears from the equation of
XJ. We are also on the set {n > T'}. If (X7 (x)) # 0 it follows that X7 € B, /4(yo) and
consequently for every T'— § <t < T we have X; € B, /5(yo). On this set the coefficients
o; and o9 coincide so X; and X} solve the same equation. Since the coefficients are
Lipschitz continuous on B, 5(yo) this equation has the uniqueness property. We conclude
that X; = X? for T — § <t < T. Suppose now that 1)(X2) # 0. Then, since we are on
the set {ns > T'}, the same reasoning gives that X; = X? for T —6 <t <T. So I" =

and we obtain
‘ / odv — / odug
O

We now prove the following estimate for the Sobolev norms of v :

Co g2
< 22 6], 67,

Lemma 4.6 Under the hypotheses of the Theorem [{.3, for every q <k —1 andp > 1
there exist Cy ), and l, such that

1 ||W3(;P < qupd_lq'

Proof. We consider the semigroup associated to the diffusion process X; that is P, f(z) =
E(f(X¢(x))) where X;(x) is the solution to our SDE starting from Xy = z. And similarly
P} f(x) = E(f(X{(x))). Then

/ Felvs = E(f(X3)p(X3)) = / Prs(z, dy) / F(2)0 ()P (y, dz).

A standard result concerning diffusion processes under Hérmander conditions (see [17])
says that for every multi index «

E(y (X3 (2))0" (X5 () = E(f(X5) Ha(X5 (2), ¥ (X (2))))

where H,(X2(z),19(X2(x))) is the weight which appears in the integration by parts for-
mula using Malliavin calculus. An inspection of the structure of this weight shows that

Ho(X}(@), (X} () = Y 9"0(X3(x))0s(x)

18I1<le|
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where 63(z) is built using Malliavin derivatives of X (z), the Ornstein Uhlembeck op-
erator and the inverse of the covariance matrix of X$(x). Moreover, under the uniform
Hormander condition (A7) and the boundedness condition (@) one can see that for
every p > 1

E|63(o)l" <

where C' depends on p, on £ and on the bounds in (£6]) and [ € N is a power which depends
on the order of the Hormander condition. Moreover, taking conditional expectations we
obtain

E(f (X5 (@) Ha(X5 (), ¥(X3(2)))) = E(f(X](2)E(Ha(X5(2), (X5 (2)) | X5(2)))
= Y E(f(X](@)0%(X3(2))E(6s() | X3()))

181<la

= D E((XJ@)0 (X3 (2))05(X] ()

where aﬁ(Xg(:c)) =E(0s(z) | XJ(x)). Using Holder inequality
C

E |9s(e)| <El8s() < = (4.9)
We now come back and we write
/ O fdvs = E(0° F(X2)(X) = / Pr_s(z, dy) / 0% f(2)(2) P2y, d=)
_ / Pr_s(, dy)E(0" F(X2 (1)) (X2(3))
S / Pr_s(a, dyE(F (X)) 0P (XE ()85 (X2 (1))
1B]<]
A5 (XE(y)) ~
_ %& [ Pr-ste.anmoxiy >>W9M§<y»w<my>>>>
85w
= Y [Pt dy) [ 19229500 Py, d2)
B|<|Oc/ ' / B '
8
- /f ( aw )Hﬁ(z)) dvs(z).
18] < e

This proves that

0°Y(z) »
0 1(z) = Z 0s(2).
e V)



Now we compute

Bap(2) ~
Jearas < o 3 [|12 5,0

18I<[at|

p
d,u(;(z),

< c Z/éﬁ(z)

last inequality being a consequence of the property (48] for ¢». And by (4.9)

J[5s)] dustz) = ffato|" < 5
O

Proof of Theorem Since v coincides with g on B, /2(yy) we may look to the

regularity of v (instead of p). We recall now the hypothesis H,(k,m,e) with k =1 (we
work with di),m = 1 and e(t) = ¥ -in particular we have ., (t) = t'/P* where p, is the
conjugate of p. Then, we consider hypothesis

14q _d_

2 La R 2px —~
I (F) di(v, My ge,(R)) < o0.

We also recall that L,(R) = R(In R)* for a > 1 so that

_ LR
H,(1,1,e,) : limp ()

1+gqg

¥ L(R)% i, 4
R

LQ(R)H_

We also recall that Ml,q,ep(R) is the class of probability measures p such that ||1 ||Wg,p <R.
So in the previous lemmas we have proved that vs € ]\Z%ep (Rs) with Ry = 5=l and
dy(v,vs) < CO" = Ré_n/lq for some [, depending on ¢ and every n € N. So we have

14+q d

;La(R) - di (v, Ml,q,ep(R)) < RHT”?”%(IH R)a(HHTu?P%) x R~

La(R)l+

and this inequality is true for every n € N. So, by Theorem 217 we have v(dz) = p,(x)dz
with p, € W*=1P for every p > 1. Then using the Sobolev embedding theorem we obtain
that p, € C¥=2. [

5 Stochastic heat equation

In this section we investigate the regularity of the law of the solution to the stochastic
heat equation introduced by Walsh in [28]. Formally this equation is

ou(t,z) = O?u(t, z) + o(u(t,z))W(t,x) + b(u(t, r)) (5.1)
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where W denotes a white noise on Ry x [0, 1]. We consider Neumann boundary conditions
that is d,u(t,0) = O,u(t,1) = 0 and the initial condition is u(0, x) = ug(z). The rigorous
formulation to this equation is given by the mild form constructed as follows. Let Gy(z, )
be the fundamental solution to the deterministic heat equation dyv (¢, z) = d?v(t, z) with
Neuman boundary conditions. Then wu satisfies

u(t,r) = /OGt(x,y)uo(y)dy+/0 /0 Gi_s(z,y)o(u(s,y)dW (s,y)  (5.2)
+/0 /0 Gis(z,y)b(u(s, y))dyds

where dW (s, y) is the It6 integral introduced by Walsh. The function G;(z,y) is explicitly
known (see [2§] or [5]) but here we will use just few properties that we list below (see the
appendix in [5] for the proof). More precisely, for 0 < € < t we have

t gl
/ / G? (z,y)dyds < Ce*/? (5.3)
t—e JO

Moreover, for 0 < z; < ... < x4 < 1 there exists a constant C' depending on min;_; 4(z; —
x;_1) such that

¢ 1 d 2
Cel? > én:f1/t /0 (Z fiGt—s(!Ez’,y)> dyds > C~'e'/?. (5.4)
—€ i=1

This is an easy consequence of the inequalities (A2) and (A3) from [5].
In [23] one gives sufficient conditions in order to obtain the absolute continuity of the law
of u(t, z) for (t,x) € (0,00) x [0,1] and in [5], under appropriate hypothesis, one obtains
a C* density for the law of the vector (u(t,xy),...,u(t,zq)) with (¢, z;) € (0,00) x {0 #
0},7 = 1,...,d. The aim of this section is to obtain the same type of results but under
much weaker regularity hypothesis on the coefficients. One may first discuss the absolute
continuity of the law and further, under more regularity hypothesis on the coefficients,
one may discuss the regularity of the density. Here, in order to avoid technicalities, we
restrict ourself to the absolute continuity property. We also assume global ellipticity that
is

o(x) >c, >0 for every x € [0, 1]. (5.5)

A local ellipticity condition may also be used but again, this gives more technical com-
plications that we want to avoid. This is somehow a benchmark for the efficiency of the
method developed in the previous sections.

We assume the following regularity hypothesis: o, b are measurable and bounded functions
and there exists h > 0 such that

lo(z) —o(y)] < [In |z —y||"**, for every z,y € [0,1]. (5.6)

This hypothesis is not sufficient in order to ensure existence and uniqueness for the solution
to (B2) (one needs o and b to be globally Lipschitz continuous in order to obtain it) - so
in the following we will just consider a random field u(t, z), (t,z) € (0,00) x [0, 1] which
is adapted to the filtration generated by W (see Walsh [2§] for precise definitions) and
which solves (5.2)).
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Proposition 5.1 Suppose that (2.3) and (5.6) hold. Then for every0 < z; < ... < x4 <1
and T > 0, the law of the random vector U = (u(T, xy), ..u(T, x4)) is absolutely continuous
with respect to the Lebesgue measure.

Proof. Given 0 < ¢ < T we decompose
uw(T,z) =u(T,x)+ I.(T,z) + J(T, x) (5.7)
with
wlta) = [ Glepuldy+ [ [ Grofopotuls n (7 =)W (s.0)
+/0 _E/O Gr_s(z,y)b(u(s,y))dyds,
LT = [ [ Greotuls. ) - ofuls A (T =) p)aiW (s.0)

000) = [ [ ottt ynds

Step 1. We prove that
E|L(T,z)|* + E|J.(T,z)|* < C|lne| 2T £1/2, (5.8)

Let p and p. be the law of U = (u(T, x1), ..., u(T, z4)) and U. = (uc (T, 21), ..., ue(T, 24))
respectively. Using the above estimate one easily obtains

dy (e, pie) < C e~ /4 (5.9)
Using the isometry property
) T 1
BT = [ [ G a)Blo(u(s,) — oluls A (T = 2),0)dyds.
T—e JO
We consider the set A, ,(s,y) = {Ju(s,y) — u(s A (T —¢),y)| < n} and we split the above
term as E|I.(T,z)|* = A.,, + B.,, with
T 1
A= [ [ Bt~ aluls AT = 2),) Ly
T—e JO
T 1
B = [ [ G n)Eotuls.) — oluls A T = 2).)Phac oy
T—e JO

Using (5.6])

Tl
A < C(lnn)*EH / / G2 (z,y)dyds < C |Inp| 23R 172
T—eJO
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the last inequality being a consequence of (B.3]). Moreover, coming back to (5.2), we have

081/2
7]2

s 1
P (5.0)) < S lulsg) ~u(s AT =2 < & [ [ 62 e <
T—eJO

Cel/2 [Tl C
- / / G2, (x,y)dyds < —
n T—e JO n

we obtain

so that
B, <

so that, taking n = ¢'/16

E|L(T,z)|* < C(|lng| Pt 4 /)12 < O lne| 2T £1/2,

We estimate now
T 1
T <0l [ [ Grsldyds = bl
T—e JO

so (B8) is proved.
Step 2. Conditionally to Fr_. the random vector U, = (u (T, z1), ..., u-(T, z4)) is Gaus-
sian of covariance matrix

T 1
S (U) = / / Gr (1, 9)Gr sl y)o (uls A (T =€), y))dyds, 7,5 =1,....d.
T—eJO

By G.4)

o

where C' is a constant which depends on the upper bounds of o and on c¢,.

We use now the criterion given in (ZI2) with k£ = 1 and ¢ = 0. Let py. be the density of
the law of U.. Conditionally to Fp_. this is a Gaussian density and direct estimates give
(with the notation from Section [2.)

CyeE>S(U.) >

||pU6||2m,2m,elog < Ce ™2,

So if p. is the law of U, then u. € Mmo,elog(Cs_mp). This is true for every m € N. Having
in mind (59) and taking R. = Ce™™/2 the quantity in (212 is

1
2 |lnR€‘a(1+ﬁ)+1 dy (1, 112) = Ce1/4 |1n€‘a(l+ﬁ)+l % |ln5|_(2+h) c1/4

—C |1n€|a(1+ﬁ)—1—h

where h > 0 is fixed, being the one in (5.0]), and a > 1 is arbitrarily close to one. Then
taking m sufficiently large we upper bound the above term by C'|In €|_h/ 2 and so we obtain

Moo RZ™ |In R.|*F 207 4, (1, My, (R2)) = 0.

Using now the result given in Example 2 we conclude that p is absolutely continuous. [
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6 Appendix

6.1 Super kernels

We consider a super kernel ¢ : R? — R, that is a function which has the support included
in B1(0), [ ¢(z)dx = 1 and such that for every non null multi index a = (o, ..., ) € N¥

one has )
/ya¢(y)dy =0 Yy = Hyf” (6.1)
i=1
See ([15]) Section 3, Remark 1 for the construction of a superkernel. The corresponding
¢s, 0 € (0,1), is defined by
bs(y) = % (%)

For a function f we denote f; = f*¢s. We will work with the norms || f[|, ., and [[f]|,; )
defined in (2.5) and in ([2.6]). And we have

Lemma 6.1 i) Let k,q € N,I > d and e € £. There exists a universal constant C' such
that for every f € W€ one has

1f = follwroe < C U llgae 074 (6.2)

i1) Let k,q € N and let e € £. There exists a universal constant C' such that for every
f € W% one has

1f = Fsllwrer < ClFllgo00 07" (6.3)
iii) Let | > d,n,q € N, with n > q, and let e € E. There exists a universal constant C
such that

1fsllsiey < CUF g 07, (6.4)

Proof. i) We may suppose without loss of generality that f € Cp°. Using Taylor expansion
of order ¢ + k

f(2)— fs(e) = / (F(x) — F()dsla — )
- / Iz, y)ds(x — y)dy + / Rz, y)és(x — y)dy

with
I(z,y) = Z Z(?“ ),
|0l|
R(z.y) — (q+1/<:) /aa (2 4+ Ay — 2))(@ — y)°d\.

lo]=q+k
Using (6.1) we obtain [ I(z,y)¢s(z — y)dy = 0 and by a change of variable we get

Z //dngg JO“f (2 4 Az)z%d.

|a\ q+k

| Bleoste — iy
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We consider now g € W5 and we write

Z /dA/dz¢5 /aa f(x + \2)g(a)da.

Ial q+k

/ (f(x) — fs(2))g(x)da

Let us denote f,(z) = f(z + a). We have (0%f)(z + a) = (0*f.)(x). Let o with |a| =
Zle a; = ¢+ k. We split « into two multi indexes 3 and ~ such that |3| =k, |y| = ¢ and
P97 = 9 (this may be done in several ways but any one of them is good for us). Then

using integration by parts
- ’ [0 futalgtaida
< [10 5@ 9@ dr < gl . [ 107 ool do
= lolw [ 071 da

‘ / 0 f(x + A2)g(x)dx

We write 9 f(z) = w(z)v,(z) with u;(z) = (1+ |2[))/? and v, (x) = (1 + |=|?) 720 f(z).
Using Holder inequality

f”q,l,(e) .

(ex)

[10 1@l ds < Clhul el < C

By Remark 1] [|u| ) < co. So we obtain

dzss (2 / o f(r+ A)g(@)dzdA| < C 1l 9l / 65(2) |2+ dz
¢ ||f“q,l,(e) ||ng,oo 5k+q'

ii) The proof is exactly the same but one uses directly Hélder’s inequality

IA

/\amz(xﬂ 0%g(x)| de < 2010 -l ) 10%]]....
And we have
10" flle, = inf{e: /e(lmf(ﬂ Ae))da < 1)
C
1
_ inf{c:/e(;mf(x))dxﬁ 1} =0 fll,,

iii) Let a be a multi index with |a| = n and let 5, be a splitting of « with || = ¢ and
|7| = n — q. We have

u(@) = (1+[a))' |0 fs(2)] = (1 + )" |07 f * 07 p5()]
< (14 [2)' |07 f] %107 5] (x) < v [07 5] ()
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with v(z) = 2(1 + \:c ! ‘ Bf‘ (x). The last inequality is due to the fact that if |07 ¢s| (z —
y) # 0 then(1 + |y|)' < 2(1 + |z])". Using (ZI7) we obtain

C
< =l < s Il

[ull ey < llv 107 ¢slll () < N7 sl vl e)
O

Proposition 6.2 Letr,k,ne N, withn >r andl > d, ande € £E. We take 0 = f:: and
v < 1+9 = k" Then (with the notation from Section 3)

T k+n
W C Byg(W, W) € (W W), (6:5)

Proof. We denote X = Wmbe Y = Wk Let f € W and § € (0,1). From (64) we
have

||f6||X = ||f6||n,l,(e) S C ||f||7’,l,(e) 5—(71—7’) =: R.
So fs € Bx(R). On the other hand, (6.2) gives

r _ k4r
1f = Fslly = 1F = Fsllwroe < Cllfllpie 0 = C U@ B

so that

R dy (£, Bx(R) < C [1£1710
This means that f € Byo(X,Y).
We prove now the second inclusion. We have By o(X,Y) C B, g(X,Y) for every a < 0
and every > 0. We recall that by Proposition Bl we have B, 3(X,Y) C (X,Y), with
a = ﬁ and 8 = —=. By our hypothesis o = % < 6 so we obtain By,(X,Y) C
Bus(X.Y) C (X,Y),. D
Recall now Hypothesis H,(k,m,e) and the set B,(k, m,e) defined in Section 211 To
shorten notations, we put X = W?2mteime 'y — ke Then M,,,.(R) = Bx(R) and
di(pty My ge(R)) = dy(p, Bx(R)). For a > 1 we have denoted L,(R) = R(In R)* and
Hypothesis H,(k,m,e) reads: there exists a > 1 such that

14 ke

Tt 2 (L (R)F ) (. B (R) < o0 (6.6)

And B, (k,m,e) is the set of measures p such that H,(k,m,e) holds for s.
Corollary 6.3 Let k,q,m € N with m > d/2, and e € €, 5 (see (Z11)). Suppose that
0<ac< Zg:f_t‘)] and B> 0. Then

watt2me o B (k,m,e).

Proof. We take r = q+ 1,n = 2m + ¢,l = 2m in Proposition [6.21 Then 0 = ';:ffll. So
we know that for u € Wet12me€ we have
k+g+1

limp_oo R 771 dy (u, Bx(R)) < oo. (6.7)
Moreover, by (ZIT), for sufficiently large R
Lo(R)* 20
R
with p = a(1 + k+q + 5L) + 3. Our hypothesis on « ensures that k+q“ k+q + 42 and

so (61) implies (I@I)

Be(Lo(R)#7) < CRzw T2 (In R)”
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6.2 Norms

In this section we use the notation introduced in Section [8] which we recall here. We
consider two normed spaces (X, [[o|) and (Y, ||o]|;) such that X C Y. We also consider
some a > 0,m € N, and # > 0. For y € Y and for a sequence x,, € X,n € N we define

- nd, _a 1
Wﬁ,m,a(ya (zn)n) = Z 2 Qn ||y - anY + W ||$n||X :

n=1

Moreover we define pgf,f; .(y) = inf 7y 1, o (y) with the infimum taken over all the sequences

x, € X,n € N. Finally we denote
Soma(X,Y)={y €Y : pyr .(y) < oo}
Moreover we denote K(y,t) = inf{||ly — x|/ + t||z||} with the infimum taken over all

z € X and we define ) \
|In | dt
= Ky, t)—.
|y|'y,b /(; + (y> )t

We denote
K’y,b(Xa Y) = {y € Y |y|'y,b < OO}

Proposition 6.4 We have

0 2ma

X,Y) = K, p(X,Y ' = = :
So.m.a(X,Y) (X, Y) with " 2m+9’b 2m + 0

and there ezists a universal constant C' (which may be computed explicitly) such that

1
GPoma®) < ula < Cllylly + i a()).

Proof. Step 1. We write
n a 1
Tomalys (@a)n) = D 20 (|ly = wnlly + ey 1%nllx)

and we define

f 1
no nan(2m+o)’
We have Y
ty —t t th P n
n — In = lpQp wi Qp =
i 92m+0 ~ \ 4 1
And ) .
a’i=1- 22m+0+a = Qn Z 1 22m+9 = O

Then we write

— 4n tn n
W@,m,a(yv (xn)n> = Z2n9na X ||y X ||Y + HLL’ HX X (tn - tn+1)

- thain
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so that ] ]
Eﬂ-g,m,a(y’ (Tn)n) < Tomaly, (Tn)n) < a_ﬁé,m,a(ya (Tn)n)

with

- anY +1in HInHX

tn

Wé,m,a(?h (zn)n) - Z 2"971“ X ||y

n

X (tn — tn—i—l)-
Step 2. We have

Int,|"
t(L/I(lTJF(;) = (aInn + n(2m + ) In 2)? po?/Cm+0)gnd

Since b+ af/(2m + 6) = a we may find C such that

Int,|

> 2,
= 0/Cmr0) = ¢

C x a2n€

Notice that the functions ¢ — ¢ 2K (y,t) and t — t~'v/@™0) In¢|” are decreasing so we
obtain

I to|” K(y, tos1) b |’ dt Int,|” K(y,ta)

tn—l—l

By the very definition of K (y, t,) we may find z,, € X such that K (y,t,) > (|ly — .|y +
tn ||Zn|l ). It follows that

L) dt In¢|’ dt
/0 te/(2m+9)K(y’t)7 = Z/ 16/(2m+0) K(y, t)j
tn]” |ly = nlly + tn ||37n||x(t B

= 6/(2m-+6) t tns1)

1
> %ﬂ-g,m,a(y7 (I”>n)

So we have proved that for v = 6/(2m + 0) and b = 2ma/(2m + ) one has

Oy Oy
\y\%b > %We,m,a(ya (mn)n> = 2Cpg{rr}:a(y>

We write now

Qn, tn Qn tn
t, — tn—l—l = apt, = X X an+1tn+1 =—X X (tn—l—l - tn+2)
Qnt1 tn—l—l Qnt1 tn—l—l
2m~+60+a+1
S 2 (tn—i-l - tn+2)-

Then

ln tn b K 7tn tn ],Ilt b dt
gamAftatl o ntoa|” K (Y, tusr) (tnt1 — tnt2) 2/ L Ky, t)—

AT o T 0O
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For every x,41 € Xwe have K(y,tn11) < ||y — Zpt1lly + tos1 || Zns1]lx S0 that for every
sequence z,, € X we obtain

Int x +1 x
22m+€+a+1 Z ‘ 9/(21;‘ ||y n+1||Y n+1 H n+1||X (tn—l—l _ tn+2) >
n n+l

|lnt\ dt
= Z / t9/(2+9 t)7

tn—l—l

This means that

In¢|° dt

92mt0+atl e ey, (T)n) > gZm0ta+lys ma¥s (Tn)n) > /0 L072+0) K(y, t)7

Since this inequality holds for every sequence it holds for the infimum also. So we obtain

1 b
om+0+atl x XY [In ¢| dt
2 o p@ma(y) > A tg/(2+9)K(yat)

and the statement follows. [J

We define now
B, s(X,Y)={y €Y :limpoR*(In R) dy (y, Bx(R)) < oo}

Proposition 6.5

. 0 0
Ba,ﬁ(X7Y> CSG,m,a<X7Y) with 042%75:2_|_a_|_E

Proof. If y € B, 3(X,Y) one may find R,,C, such that for every R > R, there exists
rp € X such that

C

lzrllx <R and ly — zglly < Ro(m B

We take R,, = n~22?"™ and n, such that R, > R,. Then

> s Il < 3 =5 <o

n>ny N>Nx

Moreover, since 2ma = 0 and [ — a — 2a = 2 we have

annd 1 annd n2a C C
2 — = n%2" x < =
Re(InR,)" 22mma(2pmIn2 — 21nn)f = pfre2a p2
so that )
aonb
>on"2"ly —an,llx < D 5 < oo
N>Nx n>ny
OJ
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We come now back to the “balance” discussed in Section 2.1l We recall that for a > 1 we
have denoted L,(R) = R(In R)*. We also considered a general Young function e € £ and
we gave the hypothesis H,(k, m,e). We give here the statement of this hypothesis in our
abstract setting. Let # > 0 and y € Y.

Hypothesis H(0,m,e). For 0 € N, m € N, and e € & there exists a > 1 such that

LR 5 (Lo (RY™)dy (3, Bx(R)) < oo

1iInR—)oo

For 0 = k + q, X = W?mte2me and Y = WF* we obtain H,(k,m,e).

Lemma 6.6 If H(0,m,e) holds for y € Y then one may find a sequence x, such that

o0

n T 1
282" ly = zally + 53 Il < 0.

n=1
Proof. For a suitable a > 1 and large R we have

CR
Lo(R)"4 27 Be(La(R)Y/>m)

dy (p, Bx(R)) <

We choose R,, = n~%2?"" and we take a sequence x, € Bx(R,) such that

CR,
||y - anY S 140 .
Lo(Ry) +2mﬁ6(La(Rn)d/2m)

By the very definition of By (R,) we have

> oy €3 €Y <o
n=0 n=0

n=0

One also has

1
(2m)* x 22" > L,(R,) = —2*""(2nmIn2 — alnn)®* > 22"
na
the last inequality being true for sufficiently large n (we need 2nmIn2 — alnn > n). It
follows that L,(R,)¥?™ > 2" and this yields B(Lq(Rn)%?™) > 3.(2"). We conclude
that

C R
271956 2nd —, §2n956 2nd % - X L
( ) ||y HY ( ) La(Rn)ﬁﬁ(La(Rn)dmm) La(Rn)
C C(2m)®
< @ <

which shows that the first series is also convergent. [
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