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Abstract. We consider a diffusion process X; and a skeleton curve x;(¢) and we give a
lower bound for P(sup,., d(X;, z4(¢)) < R). This result is obtained under the hypothesis
that the strong Hormander condition of order one (which involves the diffusion vector
fields and the first Lie brackets) holds in every point x;(¢),0 < t < T Here d is a distance
which reflects the non isotropic behavior of the diffusion process which moves with speed
v/t in the directions of the diffusion vector fields but with speed ¢ in the directions of the
first order Lie brackets. We prove that d is locally equivalent with the standard control
metric d. and that our estimates hold for d,. as well.
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1 Introduction

We consider the diffusion process solution of dX;, = Z;lzl o;(t, X,) o dW} + b(t, X,)dt
where the coefficients o, b are three times differentiable and verify the strong Hérmander
condition on order one (involving o; and the first order Lie brackets [0}, 0,]) locally around
a skeleton path dx;(¢) = ijl 0;(t, x,(6))dldt + b(t, 2,(¢))dt. The aim of this paper is to
give a lower bound for the probability that X; remains in a tube around z;(¢) for t < T.
This problem has already been addressed in the literature. The first result was given
by Stroock and Varadhan in their celebrated paper [15]. They obtain a lower bound
for P(sup,«7 || Xt — 24(9)|| < R) and use it in order to prove the support theorem for
diffusion processes. Here || X; — ;(¢)|| is the Euclidian norm. Later, one has considered
other norms which reflect the degree of regularity of the trajectories of the diffusion process
X:: Ben Arous and Gradinaru [4] and Ben Arous, Gradinaru and Ledoux [5] obtained
similar results for the Holder norm. And more recently Friz, Lyons and Stroock [10] use a
norm related to the rough path theory. All these results hold without any non degeneracy
assumption.

Tubes estimates has also been considered in connection with the Onsager-Machlup func-
tional for diffusion processes. There is an abundant literature on this subject: see e.g. [7],
[8], [11], [12], [16]. In this case one considers strong ellipticity conditions and the norm
which describes the tube is the Euclidian norm or some Holder norm. Notice that these
are asymptotic results whether in our paper we give estimates which are non asymptotic.



Finally, in [I] and [3] one obtains similar lower bounds for general Itd processes under an
ellipticity assumption.

The specific point in our paper is that we use a distance which reflects the non isotropic
structure of the problem: the diffusion process X; moves with speed v/t in the direction
of the diffusion vector fields o; and with speed ¢t = v/t x v/t in the direction of [o;, g;].
Let us be more precise. For R > 0 and = € R" we construct the matrix Ag(t,z) with
columns v/ Ro;(t, z), [\/Eaj, VRop)(t,x),1 <i,j,p < d. If the above vectors span R" the
matrix ArA%(t, z) is invertible, so we are able to define the norm

) = (ArAR) 7t 2)y. y)

Our main result is the following (see Theorem [3 for a precise statement): we assume that
the non-degeneracy condition holds along the curve x;(¢),0 <t < T and we prove

1 T o 2
P(sup | X; — x <1)>ex <—C’<——i—/ dt)).
(tSIT)‘ t t(¢)|AR(t,gct(¢)) <1)=>exp R . on
Computations involving the above norms are generally not easy - so we give some estimates
which seem to be more explicit. In Proposition[Ilwe prove that |y, ., describes (roughly

speaking) ellipsoids with semi-axes of length /R in the directions of 0,(t,x) and of length
R in the directions of [0}, 0;](t, x). Moreover we associate to the above norms the following
semi-distance: d(z,y) < R if and only if [y[,, ) < 1. With this definition we have
{supy<r [Xe = 2 D) a 0000y < 1} = {Supcr d(@(0), Xy) < R}. In Proposition 28 we
prove that the semi-distance d is equivalent with the standard control metric d. (see
(II) for the definition) so the estimates of the tubes hold in the control metric as well.
In Proposition [l we give local lower and upper bounds for d and d. in terms of some
semi-distances which describe in a more explicit way the ellipsoid structure we mentioned
above.

The paper is organized as follows. In Section 2 we give the statements of the main results.
In Section 3 we consider a process Z; which is a linear combination of W/, j = 1,...,d
and of f(f WidWi 1 < i,j < d. And we give a decomposition of such a process - this
decomposition represents the main ingredient in our approach. Roughly speaking the idea
is the following: we consider a small interval of time [0, §] and we split it in d subintervals
I = (ti—,t;) with t; = 55. We fix i and for ¢ € I; we take conditional expectation with
respect to Wtj ,J # i so all these processes appear as “controls”. And the only process
which is at work is W/. Then the vector (W; — W} ), ftiil(Wg — W} _)dWi,j #iis
Gaussian (with respect to the above mentioned conditional probability). And we may
choose the trajectories (controls) (W7 —W7_ ), j # i in such a way that the covariance
matrix of the above Gaussian vector is non degenerated (this is a support property proven
in Section 7). Then we are able to use estimates for non degenerated Gaussian random
variables. The process Z; appears as the principal part in the development in stochastic
series of order two of the diffusion process X;. In Section 4 we use the estimates for Z; in
order to obtain estimates for X; and so to finish the proof of the main theorem stated in
Section 2. '

The fact that one may choose (W7 — W} _ )ser,,j # ¢ in an appropriate way is due to the
support theorem for the Brownian motion. But the quantitative property that we use



employs in a crucial way the estimates of the variance (with respect to the time) of the
Brownian motion obtained in [9].

Acknowledgments. We are grateful to Arturo Kohatsu-Higa and to Peter Friz for useful
discussions on this topic.

2 Notations and main results

We consider the n dimensional diffusion process

d
AXy =D 0y(t,X0) o AW/ +b(t, X, )dt M

j=1

where W = (W1, ..., W) is a standard Brownian motion, odWW/ denotes the Stratonovich
integral and o;,b: Ry x R" — R" are three time differentiable in € R" and one time
differentiable with respect to the time ¢t € R,. We also assume that the derivatives with
respect to the space © € R™ are one time differentiable with respect to t. And for (¢,z) €
R, x R™ we denote by n(t, z) a constant such that for every s € [(t—1)V0,t+1],y € B(z,1)
and for every multi index « of length less or equal to three

d
[050(s, y)| +10:956(s, )| + D 105 0;(s,9)| + 1095 0,(s,9)]) < nt, 2). (2)

=1

Here, a = (ay,...,ax) € {1,...,n}* is a multi index and |a| = k is the length of o and
0% = Oy, ++-Os,, -

In the following we assume that for external reasons one produces a continuous adapted
process X which solves equation (1) on the time interval [0,7] and we give estimates for

this process. More precisely, for ¢ € L2([0, T]; R?), we assume there exists a solution of

dz(¢) = Z 0j(t, 7(8))pldt + b(t, :(9))dt (3)

and we want to estimate the probability that X; remains in a tube around the deterministic
curve x; = x(¢).

We need some more notations. First, we use the following notation of directional deriva-
tives: for f,g: Ry X R" — R" we define 9, f(¢t,z) = > ., ¢'(t,x)0,, f (¢, x) and we recall
that the Lie bracket (with respect to the space variable z) is defined as [f,g](t,z) =
Oy f(t,x) — Org(t, x). Moreover, let M € M,,y,, be a matrix (which generally may be not
square) such that M M* is invertible (M* denotes the transposed matrix). We denote by
A(M) (respectively N*(M)) the smaller (respectively the larger) eigenvalue of M M* and
we consider the norm on R"

[Ylar = V((MM*)y, ). (4)



We are concerned with the matrix A(t, z) € M,,x,, with columns o;(t, x), [0}, 0,](t, x), 1 <
1,7,p < d,j # p. Here and all along the paper

m = d>.

We will write
A(t,z) = (oi(x), [0j, 0p](t, )i j.p=1.....d 52 (5)
We denote by A(¢, ) the lower eigenvalue of A(t, z) that is

Altx) = inf B (Ai(t2),€)", (6)
=1
Ai(t,x),i=1,...,m, denoting the columns of A(t,x). Moreover for R > 0 we define

Ag(t,z) = (VRoi(t,2), [VRoj, VRop|(t, )i jpet....djtp

Consider now some z € R",t > 0 such that (0;(t,2), [0}, 0,|(t,2))ijp=1,..dj£p SPan R".
Then ArA%(t, x) is invertible and we may define |y| Ap(te) - We give some lower and upper
bounds for |y|AR(t7x) . We denote by S(t,x) the space spanned by o1(t, z), ..., 04(t, ) and
by S*(t,z) the orthogonal of S(t,x). We also denote by II; , the projection on S(t,z) and
by IT;, the projection on S*(t,z). Moreover we denote

> Ao ayl(t,2),0*. (1)

d
Aeg = inf oi(t, ), €)?, A\, = inf
b seS(t,foI:l;( (t:2).€) b £eS+(ta),lE|=1 =

By the very definition A;, > 0 (which is different from A(¢, x)) and under our hypothesis
A, > 0 also. Then Proposition 26 gives:

Proposition 1 If R < \;,/(4m x n*(t,z)) then

1
4Rn?(t, )

4

o }2
R2NE, '

1 2 4
M.y + 12t a) TIy|" < |?/|,24R(t,x) < B .yl° + T,y

(8)

For y > 1 and 0 < h < 1 we denote by L(u,h) the class of non negative functions
f: Ry — R, which have the property

ft) < pf(s) for [t —s| <h.

We will make the following hypothesis: there exists some functions n : [0,7] — [1,00)
and A : [0,7] — (0, 1] such that for some ¢ > 1 and 0 < h < 1 we have

(Hy)  n(t,ze(9)) <ng,Vtel0,T],
(Hy) Mt zi(¢)) >\ >0,Vt €[0,T], 9)
(H3) n,\ € L(uh).



Remark 2 The hypothesis (Hs) implies that for each t € (0,T), the space R™ is spanned
by the vectors (o;(t, 1), [0, 0p|(t, 24))ijp=1,..dj<p, SO the Hormander condition holds along
the curve x(¢).

The main result in this paper is the following.

Theorem 3 Suppose that (H,), (Hs) and (H3) hold and that Xy = xo(¢). Let p € (0,1).
There exists a universal constant C (depending on d and p only) such that for every
R € (0,1) one has

T [T 00t ;
P(sup | Xy — 24(0)] 41,0000y < 1) = exp <_C’u9<ﬁ+/0 W(E+|¢t| )dt))- (10)
t

t<T

Remark 4 Suppose that X; = W, is just the Brownian motion and that x; = 0, so that
=1, N =1 pu=1and ¢ = 0. Then | Xy — il 4, 0,5y = R Y2W, so we obtain

P(supycy |Wi| < VR) > exp(—CT/R) which is coherent with the standard estimate (see

[12]).
Remark 5 Since 0yxi(¢) — b(t, x:(d)) = o(t, x:(¢))p(t) we immediately obtain

1 1

dn(t,a:t(qb)) |atIt(¢) - b(t,ZEt(QS)” < |¢(t)| < m |at$t(¢) - b(t, :L't(gb))|

with Ny z,¢) gwen in (7).

We establish now the link between the norm |z[,, ) and the control (Caratheodory)
distance. We will use in a crucial way the alternative characterizations given in [14] for this
distance - and these results hold in the homogeneous case: the coefficients of the equations
do not depend on time: o;(t,z) = o;(z) and b(¢,x) = b(x). Consequently now on we have
a matrix Ag(z) instead of Ag(t,z). We define the semi-distance d : R"* x R" — Ry by
d(z,y) < VR if and only if Yl 4@y < 1 (see page BTl for the definition of a semi-distance).
We also consider the standard control distance d. (Caratheodory distance) associated
to o01,...,04 in the following way. Let y;(¢) be the solution of the equation dy,(¢) =
27:1 0 (y:(¢))pldt (notice that here b = 0). We denote C(z,y) = {¢ € L*(0,1) : yo(¢) =
x,y1(¢) = y} and we define

de(z,y) = inf{(/o1 |¢8|2d8>1/2 RS C(x,y)}. (11)

In Section 8 Theorem we prove that d is locally equivalent with d.. Moreover we
obtain the following bounds for them. We define d(x,y) and d(z,y) as follows:

e d(r,y) < VR if and only if

4
RX,

4

Rg)\i_ ‘Hi‘(y—l’)f < 1;

ey — @) +




e d(z,y) < VR if and only if

1
4Rn?2

1
AR?n?2

2
Moy — ) + 1y [Ty — )P < 1

Then as an immediate consequence (we give a detailed proof at the end of Appendix 4)
of Proposition [Il and Theorem 28 we obtain:

Proposition 6 Let z,y € R" be such that

Ao/ A(A))

v =2l < =it

(12)

Then B
d(z,y) < d(z,y) < d(z,y). (13)

Moreover for every compact set K C R" there exists some constants C,rx such that for
ever x,y € K which satisfy (13) and such that d(z,y) < rx one has

CiKc_l(x,y) <d.(r,y) < Crd(x,y). (14)

As an immediate consequence of the definition of d and of the local equivalence of d,. with
d we obtain the following:

Proposition 7 Suppose that (H;),i = 1,2,3 hold and Xo = x¢(¢). Let p € (0,1). There
exists a universal constant C (depending on d and p only) such that for every R € (0,1)
one has

T T n?(l—l—dp) 1 ,
P(supd(z(¢), X¢) < R) > eXP(—Clig(ﬁ +/ W(E + |¢e7)dt)).
0 t

t<T

Moreover there ezists a constant C' (depending on d and p but also on x,(¢) and on the
coefficients o;(x4(9)),b(z(¢p)) and on their derivatives up to order three) such that

o T Tnf(l-‘rdp) 1 ,
Psup de(w:(9), Xi) < R) 2 exp(-C —+/——+ dt)). (15
(sup de(i(6), Xi) < R) 2 exp(=Cp(3 + | ED (5 + led)dt). (15)

We finish this section with two simple examples.

Example 1. We consider the two dimensional diffusion process
t

X =o + W}, X2 =1, +/ Xdw?2.
0

Straightforward computations give

1 1
2 TP with Tl = (—f) ——e &),
€145 ) = [T RIS (\/551 5(6+x%)€2)



In particular, if 27 = 0 then Ty s& = (%51, &) and consequently {¢ : €], < 1} s an
ellipsoid. But if 7 # 0 and 0 is small, then the distance given by [¢| As(x) 1S equivalent
with the Euclidian one.

If we take a path x; which keeps far from zero then we have ellipticity along the path and
so we may use estimates for elliptic processes (see [1] and [3]). But if z,(¢) = 0 for some
t € [0,7] then we may no more use them. Let us compare the norm here and the norm
in the elliptic case: if z; > 0 the diffusion matrix is not degenerated so we may consider
the norm [{[p, ) with Bs(z) = doo™(x). We have

2 1 2
€ p50) = 551 + 5—1,%52 = 551 + mfg = €145 ()

So the estimates obtained using the Lie brackets are sharper even if ellipticity holds.
Let us now take x; = x5 = 0, x,(¢) = (0,0). We have ngy =1 and \; =1 and X; — 2y, =
(W}, [y W2dW?2). And we obtain

/WdW2

Example 2. The principal invariant diffusion on the Heisenberg group. We
consider the diffusion process

t<T t<T

P(sup ( ‘Wl‘ —I— ) <1) = P(sup(| Xy — xt|A5(0 <1)>e 9.

1/t I
X =m + W}, XP=a4+W?, X}=ua3+ §/ Xdw? — 5/ XZ2dw}.
0 0

Direct computations give

2 2

(51 2f)2+%(£2 0 2f) ty

OqI}—‘

|£‘?45(m) = ‘As_l(x)f‘
In particular for x = 0 we obtain

P(;‘;I/’é(\WH2+ }WE}2+A?(W)) < 1)

zP(sup( W + < \Wﬂ + 5 (W)) Sl) > e T

t<T

where A,(W) = [J WdW?2 — [ W2dW.

3 Multiple stochastic integrals

3.1 Decomposition

We consider the stochastic process

Z%WZ + Z a; j / WiodW? (16)

i,j=1

8



with a;,a,; € R". Our aim is to give a decomposition for this process. In order to do it

we have to introduce some notation. We fix § > 0 and we denote s;(d) = %6 and
. . . - k@) . .
ALBIW) = Wiy =W o APEW) = [ vimwi)oaw?

Sk—1

Notice that A}7(8, 1) is the Stratonovich integral, but for i # j it coincides with the
Ito integral. When now confusion is possible we use the short notation s, = s,(0), A}, =
AL(6, W), A} = A (6, ). Moreover for p =1, ...,d we define

pp(0, W) = ZAf

i#p
d d d
i, N i|2
’pr((s, W) = Z CI,Z'J'AP’] + Z Z Z ai,jA{Ap + 5 Z Q5 }Ap}
i#i,ip,i#D I=pi1 itp i1 ip
d d o d 4 ’ ‘ (17)
W) = D ap A+ A+ A
I>p j#l . p>l j#l J#p
1
W) = Zan, A2+ 37 a, AIAD + Ale,
I>p
We denote (0, W) = ZZ:1 np(6, W) and (6, W) = Zzzl Y, (0, W) and
[alip = aip — ap;. (18)

Our aim is to prove the following decomposition.

Proposition 8

Z(6) =Y ap(AS,W) + (6, W) + D > [alip AR5, W) + (6, W) + v(5, W) (19)

p=1 p=1 i#p

Remark 9 The reason of being of this decomposition is the following. We split the time
interval (0,0) in d sub intervals of length 6/d. And we also split the Brownian motion in
corresponding pieces: (W! — Wsipil)spilgsgsp,'l’ =1,...,d. Let us fix i. For s € (s;_1,s;) we

have the processes (W1 —W] _)s_ <s<s;,J = 1,...,d. Our idea is to settle a calculus which

is based on W' and to take conditional expectation with respect to W7, j # 1. So (W —
Wi )eiii<s<sirJ 7 1 will appear as parameters (or controls) which we may choose in an
appropriate way. And the random variables on which the calculus is based are A} = W —

Wi and Al = [P (Wi—WJi_)dW{,j # i. These are the random variables that we have

Si—1 Si—1

emphasized in the decomposition of Z(3). Notice that, conditionally to the controls (WI —
Wsji71>siilgsgsi,j = 1, this is a centered Gaussian vector and, under appropriate hypothesis
on the controls this Gaussian vector is non degenerated (we treat in the Appendiz 3 the
problem of the choice of the controls). But there is another term which appear and which

is difficult to handle by a choice of the controls W7 : this is AV = Lon (Wi =W, )dw].
So we use the identity A = A AT — A" in order to eliminate this term - and this is the

reason for which (a; ; — a;;) = [a];; appears.

9



Proof. We decompose

0) = Z(s1)) = Z(s1-1) Z(ZaZAHLZa”/ WlodI/W)

=1 = i,j=1

and we write

s -1
/ l WiodW? =W A+ A7 = (> ADAl+ A,
s p=1
Then
d d d d
=3 ) ani+ >0 aiy ZN )A] +Z Z a; ;A =t S1+ Sy + Ss.
=1 =1 =1 i,j5=1 =1 i,j=1

Notice first that

Z alAl + Z Z a; A}

=1 i#l

We treat now S;. We will use the identities

A =2A) and  AJA] = AY + A}

Then
.53 = Z Z ai,iA;’Z + Z Z CLZ'J'A;’]
=1 i=1 =1 i#j
= Z Z ai,iAE’Z + Z Z CLMA;J + Z Z al,jAﬁ’J + Z Z ai,in’]
=1 i=1 =1 i#l =1 j#l I=1 i#j,i#lj#l
1 d d . d .
= 52D |l D0y
=1 i=1 =1 i#l
d d
+3 % ay (A{Ag _ A{’l) +5 Y a,al
=1 j#l I=1 i#j, i;ﬁl,j;ﬁl
= _Za,,}A" + = ZZ@H}A’} +ZZ (ai; — ag) AP
=1 i#l =1 i#l

+z(zamA;~) MY Y

J# I=1 ij il A

We treat now Ss. We want to emphasis terms which contain Af. We have

d d
So=3_3 a;ALA] = Sy + Sy + Sy + S¥
I>p i,j=1

10



) d d d
with pr = szl Zl:pH and

d d d
Sy o= apnAPAL S =Y "a, ,APA]
I>p I>p j#l
d d d d
Sy o= D ) aALAL S =" > aALA]
I>p i#p I>p i#p,j#l
We have
d d d
Sy =Y _Ar < >N ap,jAg)
p=1 l=p+1 j#l
and . -
% ZAz (ZZGM ) => A (ZZ%N>
p=1 i#p p=1 =1 j#l
so that
ZAP ( > ZamN - ZZ%AJ>
I=p+1 j#l I=1 j#l
Finally

ZalAl+ZZaA’

=1 i#l
—I-ZaplApAl_l_ZAp <ZZ%JA]+ZZ&MA]>
l>p l>p il ;U>l y;él
+Z Z a; g ALA] + Zau\A’\ + - ZZa“‘A’
I>p itpi Al oy
d
+ZZ<az»z—azﬁz->Az*l+z(zauA;) IS S ot
=1 il I=1 \j#l =1 i il

We want to compute the coefficient of AD: this term appears in

d
Z Ab(a, +¢ep)  with

d d d d
Z Z apvjA{ + Z Z aj,pA{ + Z ap,jAg;-

I>p j#l p>l j#l J#p

We consider now A;;p. It appears in

d
2y
E E Wi — Api) AP

p=1 i#p

11



The other terms are

d d d d d d

I=1 i#l I>p itp,j#l i=1 I=1 i#l
d d
§ : § : AT § ' P AL

_'_ al,jAl + apJApAl.

We put everything together and ([I9) is proved. O

3.2 Main estimates

Throughout this section we will assume that

Span{a;,[aljp. i, j,p=1,....d,j #p} = R". (20)

Let us introduce some notation. We consider the matrix A = (a;, [al;,%,7,p = 1,...,d, j #
p) to be the matrix with columns a; and [a];,. For R € (0,1] we define the matrix
Ar = (VRaj, Rla);p,i,5,p = 1,...,d, j # p) and we denote \.(Ag), \*(Ag) the lower and
the larger eigenvalue of ArAj. We just write A\ (A),\*(A) if R = 1. We associate the
norms [y[% = ((ArAr) 'y, ).

In Proposmon 28] from the Appendix 4 we prove the following basic properties. For every
0O<R<R<LI1

iy > Wlay > ool 1)
and
1 1
VRV lyl < lyla, < NeRE || (22)
Finally
|ArYl 4, < lyl. (23)

Lemma 10 Suppose that (20) holds. There exists an universal constant Cy such that for
every R>0>0 andr >0

rR A (A)
> < —
P<§g{; [Zelap 2 7) < P ( Cod (T N3 )) (24)
with
27.]

Remark 11 One might think to use directly Bernstein’s inequality in order to estimate
P(sup,<s | Zi] 4, > r) but then one would not obtain the right inequality. Indeed one writes

1 Zil 4, < (Ry/ A ~YZ,| and then the above probability is bounded by

2 2)\ A
P(sup |Z;] > rRy\/A(A)) < exp(— il (>)

<6 )

12



So one obtains RTZ instead of? and this is not in the right scale. The reason is that in

the above argument we just use the lower eigenvalue A(A) in order to upper bound |Z| ,
since in the proof of our lemma we use the more subtle inequality |Ary|, < |y|.

Proof. Let t <. We decompose Z(t) instead of Z(9) and similarly to (I9) we obtain

d
Z (AD(E, W) + py(t, W) +ZZ [ali pALP (8, W) + n(t, W) + o (t, W),

p=1 i#p

in which n(t, W) and (¢, W) are defined as in (I7) with A7 and A¥ replaced by Al (t, W)
and AY(t, W) respectively, and these last quantities are defined as follows: for ¢ € [0, 77,
A;(t W) = Wsip/\t - Wsip,ﬂ\t and A;;] (ta W) fsp/\lt/\t(WZ Wsipfll\t)dWsj'

We denote by u(t) € R™ the vector with component u,(t) = t=2(AB(t, W) + p,(t, W)) =
t2WP p=1,...,d and u; ;(t) = 0,i # j and we also denote

d

=Y lalip AR W)+t W) + (W),
p=1 i#p
Then we have
d d
Z(t)=> tPau,(t)+ > > tlali, x 0+ U(t) = Awult) + U(t).
p=1 p=1 i#p

Using the norm inequalities given above

I()\AR_R\/f Z\Altw\+2\wtw>

zyl

so that

Py, > 5) < 3 (st > D)

] <5
d rRy/A(A)
S P AR (t, W .
+sz 1 (Stlig} )} Ca )

It is easy to check that

(sup‘Ap (t, W)‘ rft 'C)g(A)) < C”exp(— rityA-(4) ')\*(A)>

<6 C'ad

Moreover,

sup‘A” (t, W)‘ < 2sup
t<6 t<d

t
/ Widws
0

13

+ 2sup(‘Wti‘2 + ‘Wtjf)
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Using ([43]) from the Appendix 1 we obtain

sup / Widw? TR' )<Cexp< TR'i*(A)).
<8 Cao

So we have proved that

(SUP\U( Nap > g) SCeXP<—L A(A))

t<s Caé
Using (21)) (recall that ¢ < § < R) and (23))

| Agu(t ‘AR \/ |Atu Na, < \/ |u <—sup\Wt|
It follows that

P(ig?‘AtU(t)‘AR > g) < P(ig?‘Wt\ > T\éﬁ) < Cexp ( - 72_R>

O

We give the main result in this section.

Proposition 12 Suppose that \.(A) > 0. Let p € (0,1) be fized. There ezists an universal
constant C, (depending on d and on p only) such that for every

A2 (A)
TS aa (26)
one has o »
AT (A C A P(A
(|Z§|A <7’) 2 ? ad(g ) Xexp(—%). (27)

Proof. Step 1. Scaling. Let B, = 5 12W,s. Then B is a standard Brownian motion
and we denote

A(B)= B!~ B, Ai(B)= / (B~ B)aBLi £ ]
i

We also denote by A(B) the vector (A!(B), ALi(B),i,j,p = 1,...,d) and we define O(B) =
(©1(B), ...,04(B)) with ©,(B) = (AL(B), AJP(B), j # p). We consider the o field

g .= U(Wsj - ngﬂ(é)vsp—l(é) <s< Sp(5>vp =1,..d,j #p).

Conditionally to G the random variable ©,(B) is Gaussian with covariance matrix @,(B)
given by

QB = [ (BI-BL)is it
Qy(B) = [ (BI=BL)B - BL)ds i#pitp
() =

14



Since the random variables ©;(B), ..., ©4(B) are independent O(B) is a Gaussian random
variable. We denote by Q(B) the covariance matrix of ©(B) and by A.(B), \*(B) the
smaller and the larger eigenvalues of Q(B). Since this matrix is built with the blocks
Qp(B),p=1,...,d we have

d

A(B) =[] Mp(B) and A H \i(B

p=1

where A, ,(B), A\;(B) are the smaller and the larger eigenvalues of Q,(B).

We come now back to our problem. Let n(A(B)),v(A(B)),e(A(B)), u(A(B)) be the
quantities defined in (I7) with A = A(d, W) replaced by A(B). Then dn(A(B)) = n(o, W).
The same is true for 1 and € and finally vou(A(B)) = (s, W). So using ([IJ)

Zs = Zl Voa,(AL(B) + 11, (A(B))) + Zl ; 8[alp AL (B) + 6n(A) + 51 (A).

We define now the vector a(A(B)) = (1 (A(B)), s (A(B) € R™,i # j) by piy(A(B)) =
0 and then we may write the above decomposition in matrix notation

Zs = As(0(B)+ u(A(B))) + on(O(B)) + 0 (A(B)) (28)
= y+.4;0(B) +n;(0(B))

with

y = Asp(A(B)) + 6v(A(B)),  15(6) = on(0).
Step 2. Localization. We take
A (A)
Cya?
where (' is an universal constant to be chosen in the sequel. For each p = 1,...,d we
define the sets

Mpep = {det Qy(B) > =0, sup S"[Bi - B)_,| <= 7,q,(B) <=}

p—1<t<p j#p

e <

(29)

with
=X Bl -Bl|+ >
J#p J#EPFEP
By (&I in Appendix 3 we may find some constants ¢ and ¢, depending on d and p only
such that

/ (B~ Bl)aB|.
i

P(Apep) > 2D for e <e, (30)

And using the independence we obtain

P(Noy Apep) > e x e300, (31)

15



On the set N_A,., we have det Q,(B) > &” so that detQ(B) > &%. We also have
A*(B) < e and this gives A\, (B) > ¢®?. And we also have det Q(B) < e~ % so

d
Wy Apey © {det Q(B) < e % M (B) = 7,3 ¢,(B) < de} (32)
p=1

Step 3. Inverse function theorem. We will use (B3] with G = Z; so we have to esti-
mate the parameters associated to 75 and As. Notice first that M. (As) > 62A\.(A), ¢z, = 0
and ¢y, < Cyad. So the first inequality in (54]) reads

VA A

r < .
- 026 - 16(027775 + 037776)

And this is verified by our hypothesis. Moreover

A2 (A)

Cod + de).

e(ns,7) < Caa(l6] + ) |ep(AB)) < Cua(r + ) ¢,(B)) < Caal

p=1 p=1

If we choose C; in (29) sufficiently large and Cs large also we obtain ¢, (ns,7) < 1 which is
the second restriction in (54)). Let pg z,(2) be the density of Zs conditionally to G. Then,
using (B3, if |z —y[,,, < r <1 we obtain

pe.z;(2) > (41 (B)fm eXp(—¥ 1z —yl3,)
(8m)m/2\/det Q(B)+/det A, A7 4M(Q(B)) ’
gd* 1

Gy Jae A P )

the second inequality being true on N?_; A, ,. On this set we also have

L(AB))] + [W(A(B))] < Csa ) ay(B) < Cgae

so that
Wla, < [As(A(B))] 4, + 0 [U(A(B))4, < In(A(B))] + Al(A) [ (A(B))]
S 076 R S C
A (A) 2

So, if |z],, < § then [z —y|,, < r. It follows that

3
T € 1 1
P-(17 < ) = 2)dz > ———exp(— / ———dz
g (| 6|A5 > 2) /{|Z|A6S%}pg725( )dz > (8m)m/? p( 46d2p) {ela, <5) det A5 A

d3e 1

m

9 r

(8)m/2 eXp(_ZladZP) " om

16



the last equality being obtained by a change of variable. Finally using (31I)
Fmg2d® 1
Tég eXp(— M)
We replace now ¢ by the expression in the RHS of (29) and we obtain (27)). O

Corollary 13 Suppose that A\.(A) > 0. Let p € (0, 1) be fized. There exists some universal
constant C (depending on d and on p only) such that for everyr, R > 0 the following holds.

Suppose that
rR A (A) AP (A)
0 < Cln% <7’/\ - ) X —ra (33)

.
P(|Zsl 4, < 5) 2 P(Pg(1Zs] 4, < ), M1 Apep) 2

Then
r’m C.a*

20, P 3By

P(Su?|Zt|AR s, |Z5|A5 <r)=> (34)
t< '

with C. the constant from (27).
Proof. We use (24) and (27) in order to obtain
P(su163 |Zt|AR < |Z5|A5 <r)> P(|Z5|A5 <r)-— P(sug) |Zt|AR >r)
t< ' t< '

i Cy2de rR (T N «/A*(A)>)

a

> _ _ _

> & exp( XF(A)> exp( o
r’m Cga2dp

> e

the last inequality being a consequence of our restriction on 4.1

4 Diffusion processes

4.1 Short time behavior

We consider the diffusion process X; solution of () and the skeleton z; = x;(¢) solution
of ([B) and we give for them an estimate which is analogous to (34]). Using a development
in stochastic Taylor series of order two we write

Xt — X(] + Zt + b(O, Xo)t + Rt

where Z; is defined in (I6) with a; = 0;(0,Xo), a;i; = 0s,0;(0,Xo) so that [a);; =
04, 0,](0, Xp), and

d t s
Ry=>»" / / (05,05 (u, X)) — 05,05(0, Xo)) 0 AW 0 dW?
ji=170 70
d t s d t s
+Z/ / 0bai(u,Xu)du0dW;—l—Z/ / Du0j(u, Xy,)du o dW!
i=1 /0 JO =170 70
d t s ] t s
+) / / Oy, b(u, X)) 0 dWids + / / Apb(u, X, )duds.
i=1 70 /0 0o Jo

17



We denote

A(t,x) = (0i(t, o), [0, 0p)(t, 7)) i jp=1,..ajzp and

A5(t7 I) = (\/go-i(tv ZL’), [\/SUJW \/go-p] (tv x))@j,p:l ~~~~~ d.j#p:

In particular A\ (A(t,x)) = A(¢, x).
We will need the following estimate for the skeleton z; = x,(¢) as in (). And for

¢ € L([0,T], RY), we set S
£(0) = (/0 |¢8|2ds> ? (35)

Lemma 14 Let § be such that e4(8) +v6 < 1,0 < m and

n(0, z0)(e4(0) + V) + Vo < #m (36)
Then for every 0 <t <6 and z € R,
‘Z|?45(0,x0) < 4\2‘15@,%) < 16 |Z‘§15(0,x0)‘ (37)
Moreover,
s o = 0 = b0, 20}, 0y < 425(0) + 1 0160)5. (38)

Proof. First, one has z; € B(xg, 1) for every s < §. In fact, setting 7 = inf{t > 0 :
|z — x| > 1}, for s < § A T one has

|zs — mo| < n(0, £0)Vo(e4(8) + V) < %

because £4(8) + V6 < 1 and § < Wlxo)‘ This gives s < 7. This means that 6 < 7, so

that |xs — x| < 1 for every s < §. Moreover, by using (30),

|2 — 0| + 5| < n(0,20)V(e4(0) + V3) + 6 < SCZ?’%(’O:E;))) x V6. (39)

Now, ([B7) follows immediately from Proposition 27l in Appendix 4 (see page [36]).
We prove now ([B8)). For ¢t < §, we write now

t t
Jyi=x — w9 — b(0, 20)t = / (Oszs — b(s,xs))ds + / (b(s,xs) — b(0,z9))ds.
0 0
By using inequality (63]) in Lemma 28] from Appendix 4 (see page B3), we get

t t
|Jt|1245(0,x0) < 2t/ |0sxs — b(s, 958)|,245(0,x0)d5 + Qt/ |b(s, zs) — b(0,$0)|?46(07x0)d5
0 0

— I 1

18



As for I}, we use [B7): for s <t < 0 we have
055 — b(s7x8)‘?45(0,w0) < 4|0sws — b(S7IS>|§15(s,xS)'
Moreover, we can write

d
Osxs — b(s,x5) = Zaj(s,xs)qu(s) = As(s,x5)(s), with ¢;(s) = %(ﬁj, Vi i(s) =0
j=1

so that
1

|asxs - b(S>IS)|A5(s,xS) = |A6(Sax8)¢(s)|A5(S,xS) S |¢(S)| = % |¢(S)| .

Then, for t < § we can write

é 9
<85 [ 10 b )y ds <8 [ 100 ds = 82,(0)"
0 0

We estimate now I;": by using (39),

I <26 |b(s, 25) — b(0, 20)|*ds

2(0 t 1
< 2” (0, 20) / (|s] 4 |zs — m0|)%ds <

o %o) S}
= SN0, 70) s 72(0, 29)

By inserting the estimates for ] and I}, we get

sup | Je| as(0,00) < <8€¢(5)2 + 0.

<8

1 12
)52) < dey(8) +

n2(0, zo n(0, o)

O

The main estimate in this section is the following proposition.

Proposition 15 Let (9) hold and let p € (0,1) be fized. Then there exist some universal
constants Cy,Cy (depending on d and p only) such that the following holds. Let 0 < 6 <
R <1 andre(0,1) be such that

co(8) < TAVNOT0) g PR A0, 2) (40)
¢ - Cln?’((),:zo) ’ - Cl 7’L6+6dp(0,l'0)
and suppose that
,
[Xo = 2ol 4,0.0) < g (41)

Then

m ( _ C’gnde(O, SL’(])

r
P<Stlig Xt — Te| armny) < 20 1 X5 — @] ay5.0p) < 7") > A exp (0, 20) ) (42)
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Proof. For t <4, by using (B7) we obtain

6
| X — SCt|A5(t,m) < 41X - xt‘As(O,ro) S 42 uj|A6(07x0>

with

L = Xo—w, =2, Izi=~R
I4 = Xt — Ty — b(O, l’o)t, [5 = (b(O,X()) - b(O,xo))t,

We have to estimate the above terms for ¢ < §. First

n(0, xq) n?(0, x) r
I <Y IXy— x| < —2 | Xy — 2 X Vo< =
| 5|A5(0,m0) = )\(0,5(7(]) | 0 0| = A(O,Io) ‘ 0 0|A5(0,m0) )
and by (38])
1 T
|[4|A5(0,x0) < 48(1)(5) + n(O,ZE())(S < g

And by our assumption [I1|,; .y < - So we have

r
g

| X¢ — xt|A5(t,mt) < 4(\Zt\A6(o,xo) + |Rt\A5(o,mo))-

N3

Since R > 4, by (62) in Lemma 23] from Appendix 4 (see page B3) we have |y, ¢ ) <
1Yl 45(0.20) 50 il ap0.29) < § for i =1,4,5. And this gives

,
Xt — Tl a ) < 5 +4(1Zt] 4 p(0.00) T 1Bl agy(0.20))-

Using the above inequalities we easily obtain

P (S;li? X = @1l < 201X = Talay 5. <7)

<

ZP(ig?|Zt|AR(0,xo)+ig?‘Rt|AR(0,xo = \ZﬂAé(om +|R5|A5(Omo < g)

> p Z <Lz <’ R -

2 (igs)| t|AR(o,xo) > §a| 6|A5(o,x0) = E) <SUP| t|A5 0,20) = g)
We upper bound now the last term. First, using the norms inequalities

”
(sup|Rt|A§0IO > §> < P(sup|Rt| > K)

)
with K = VA0 ”)é(o’m{)). We define now 7 = inf{t : |X; — Xo| > 1). Using the norms inequal-

ties, (@0) and (@I) we obtain |zg — Xo| < 1 so that for ¢ < 7 we have |X; — x| < 1. It
follows that up to 7 the diffusion process X coincides with a diffusion process X which

20



has the coefficients and their derivatives up to order three bounded by n(zg). We denote
by R the reminder in which X is replace with X and we write

P(igg\Rt| > K) < P(stgg 7| > K) + P(r < 9).

Since 7 =7 := inf{t : }7,5 — Xo} > %) a standard reasoning based on Bernstin’s inequality
gives P(1 < §) = P(T <) < exp(—1/Con?(zp)).

In order to estimate the last first we use (43]) from the Appendix 1 (see Lemma[I8 at page
24) with & = 3,p3 = % and with £ =1,p; =2, and K = %\/)\(O,xo). A straightforward
computation gives

79/ A(0, z) r?X(0, z) r2BAY3(0, 20)
P Rl > =57) < 0o (= G ) O (- G )
0.1

< Cexp ( — C613n2(0, o)

the last inequality being a consequence of ({40).

Using (34))

r r rm C.n?(0, x)
P( Z <Lz < _) > <_ L \U %) )
Stl;l(sﬂ t|AR(vaO) =g | 5|A5(07xo) =16/ = 2C, A0, 20)

with C, the universal constant in ([34]). Our assumption on ¢ gives

762/3)\1/3(0’ fo) ) -

rm C.n2%(0, x)
Co'/3n%(0, x) P ( a )

1
C exp ( - 2 %90, A0, 7o)

so we have proved that

m

C*n2dp(0, I0)>

-
P<SUP Xt = Tl a0 < 275 1Ko — Tl 4y (5.05) < T) 2 A0, o)

exp | —
) 40, p(

O

4.2 Chain argument

We recall that, by the hypothesis (@) we have some functions A\,n € L(u,h) such that
A(t) < TAXE, x¢) and ng > 1V n(t, z) such that \,n € L(u, h) for some h > 0 and p > 1.
We also consider some R, 7, p € (0,1) and we define (with C the constant in (40))

2 Ci(Inl)3pgte C’lnt

1ot) = 5+ =g a0

Notice that, if dp < & then f, € L(1®, h). We define

1

=inf {6 >0: / fu(s)ds > —}

0

21



Lemma 16 i) One has

er)\Hdp rA )\i/Q
t)) < .
Cl (ln ) n6+4dp €¢( ( ) — Cln?

h
(1) < 5

A

i) If |t — t'| < 6(t) then

1

8
108 Vs < Wlay @ S 30 1WA 0o -

Proof. i) Since ft+h/2 2ds =1 > 1/p® we have §(t) < h. So we may use the properties
L(p, h) for t < s <t +5( ). Consequently, for 0 < ¢ < J(t)

1 - t+6C(1n )3 6-+4dp . 1 C’(ln )3nf+4dp 5
8= o\ 1+dp §Z g X oitdp <
K t Rr2 s H Rr2)\;

which gives

er)\?’d”

t .
)= Ci(In %)3nf+4dp

We also have

1 t5 (26 1 O t+5
= 6 ds R
I t 2/\>\ M 2 AN Sy
so that 2 0
2 A t
t) < ———.
o) = s

This proves 7).

1) We use here next Proposition 7] from Appendix 4 (see page [30]).

If |t — /| < 8(t), then |z, — zp| < 3Y2(t)(dey(5(t)) + 6Y2(t))n; so (T3) is verified and we
may use (74) to obtain

1
4 ‘y‘A(S(t)(tvmt) < ‘y‘A(S(t)(t,7wt’) =4 |y‘A6(t)(tvmt) :

It remains to compare |y|A5(t)(t,1't) with |y|A5(t/)(t,xt) . Since 6(#') < h and |t —t'| < 2h we
have |t — s| < h for every s € (¢',t' + 6(t'). We use the property L(u® h) for f; and we

obtain

t+6(t) 1 t'+5(t")
w0 = [ fiods= o= [ fods = a0,
t t/
o (6(t)/5())"? > 8. Suppose now that 6(¢) < §(¢).
1 1
16 Y] 4y (1) < |y|A5(t/)(t,gct) < I

We use then (2I) and we obtain

‘y|A5(t)(t {Et) .
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We construct now a time grid in the following way. We put ¢, = 0 and
t = th—1 + 0(tk—1)

and we denote

r
Gk = { sup |Xt - xt‘AR(t,{Et) S T}’ Fk = { ‘th - xtk|A6(tk)(tk7xtk) S g}

tp—1<t<ty

Proposition 17 i) Suppose that () holds and let R,r € (0,1) and p € (0, ;). There
exists a universal constant C' (depending on d and on p) such that

Cn2dp ) .

P(NE,©,nT,) > P(NZle,NTy) exp ( N

th—1

it) Moreover there exists an universal constant C' such that
P( sup |Xs—93s|AR(s,x(s)) = ) > eXP -y’ / fu(t) —dt>

0<s<T
T 1 T n6+6dp (ln 1)3
9 t r 2
>ew (=0 (5453 | S (T + o))

Proof i) Let

~ 1
I'y = { |th - xtk‘Aé(tk,l)(tkflvmtkfl) < 32/187”}.

Using ii) from the previous lemma we obtain I'y C T, so by (@2)

nfﬁ pl (o) )

Ptkfl(@k N Fk) 2 Ptk,l(@k N fk) Z exXp ( — Cm
te—1 0

The above inequality holds if }thfl — Ty, ‘Amk (v ) < g and this is true on the
-1 —L —

set I'p_1.
1) Let Np = min{k : t;, > T'}. Since Xy = xy we may use the recursively the inequality
from i) and we obtain

Nr  2dp

1y
P(sup|X; — =z <r >P<ﬂ{T@iﬂFi>>ex ( C kl)
(915l £0) 2 P 001 2 oo (- 03 1
We write
Np—1 .y, nzd” Np—1 2dp
/ fh st Z Z; /t'l fh(S) )\SP - 3dp Z )\dp / fh

1 L
= Iu8+3dp Z )\dp

i=1 ti—1

the last equality being a consequence of the definition of d(¢;). O
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5 Appendix 1. Exponential decay for multiple sto-
chastic integrals

In this section W = (W', ..., W9) is a standard Brownian motion and o = (ay, ..., ;) €
{1,...,d}* denotes a multi index. We use the notation @ = (a, ..., a,_1). We consider an

adapted and bounded stochastic process a and we denote by ||a|| a constant such that
sup;<r |a(t,w)| < ||al|,, almost surely. Then we define the iterated stochastic integrals

Iofa, W)(t) = a(t), I (a,W)(t) = / 17 (a, W)(s)d W2,

Lemma 18 There exist some universal constants Cy, C}. such that for each T, K > 0 and
every multi-indexr o = (v, ..., ag) one has

K Pk
P( sup |12 > K)< ~ O\ Tl '
(suplip(a. W)= K) < Ceosp (= gapar) ) o
with
pL=2, p = 2D
1 ’ k1 2+pk.

Proof. We assume that ||al|,, = 1 almost surely (if not we normalize with ||a||_ ) and
T =1 (if not we use a scaling argument). We proceed by recurrence. We take some ¢ > 0
and we write

P(sup|I2(a,W)(#)| > K)<I+J with
t<1

I = P(wp|f(a. W)(O] = K.sup |1 (0. W)(0)] < Q)

t<1
J = Plsup |Iy(a,W)(0)] 2 Q).
Using the recurrence hypothesis

J < Crp_yexp(—C)_,QP1).

We set h(t) = fg 112 (a, V(/’)(s)‘2 ds and we write I (a, W)(t) = b(h:) where b is a stan-

dard Brownian motion. So, we obtain

/K2
1< Plsup b(0)] > K, h(1) < Q%) < P(sup [b(t)] > K) < Cexp(~ s
t<hi t<Q? Q

).

2
We choose Q solution of QP! = K?/Q? that is Q = K>"k-1. Then we obtain

P(sup I (a, W)(8)] > K) < Crexp(~CfK 1)

t<1

with Ck =CV Ck_l,C,’f = C/ N C]/C—l' ]
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6 Appendix 2. Small perturbations of Gaussian ran-
dom variables

6.1 The inverse function theorem

We give first a quantitative version of the inverse function theorem. We consider a three
time differentiable function

n:R*— R* and @) :=0+n(0).

We assume that
n(0)=0 and Vn(0)<

|~

In particular this implies that V®(0) is invertible and
1 1 1 1
V)l > Ll — [Va(O)af > L[~ T la? = | Jaf

We also have |[V®(0)z| < v/3|z| so
1
5 2l <Ve(0)2] < V3 af.

We denote

c = max sup |0%n(z)|, ¢ = max sup |02, n(z
2(n) = ma, sup [5n(@)], es(n) s sup |95k (=))]

and we take h, > 0 such that

1
and h, < . 44
"= T eal) T ea) .
Proposition 19 Suppose that n € C3*(R?, R?), n(0) = 0 and Vn(0) < %. Then there
exists a neighborhood Viy,y C B(0,2h,) of zero such that ® : Vi, ) — B(0,1h,) is a
diffeomorphism. In particular, one has

hy <

N —

ol B(o,%hn) — B(0,2h,)

and for every y € B(0, %hn) the following estimates hold:

1, _
1127 W] <yl < 4o (y)]. (45)
Proof. The existence and the differentiability property of the inverse function ®~! in
a neighborhood of the origin is a well known result from the Inverse Function Theorem.
What we aim to prove is that ®=* : B(0, $h,) — B(0,2h,) and the estimates in (@3).
Since 1(0) = 0 we have

n(0) = Vn(0)0 + /01(1 — 1) (V*n(t6)0,0) dt
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with V2n% = (97n*)ij=1.4.k = 1,...,d. So, given y € R? and recalling that V®(0) =
I+ Vn(0), the equation ®(#) = y reads

0 =U,(0), with U,(0) := (vq>(0))—1(y - /1(1 — 1) (V*n(t6)0,0) dt).

0
Recall that 1 |z| < [V®(0)z|. Then, for 6;,0, € B(0,2h,) we have

1

\Uy(61) — Uy(02)] = ‘(V(I)(O))—l/

0

(1 =) ((V?n(t6r)01, 01) — (V?n(t6:)0s, 92>)dt‘

< 2/1(1 —1) }<V277(t91)91,91> - <V277(t92)92>92>} dt
< 2hy(ealn) + es(n) 61— 0] < 3 10y o],

so that )
Uy (01) — Uy(62)] < B |6h — 6] (46)

Notice also that for y € B(0, 3h,) and 6 € B(0,2h,) the above inequality gives

1
Uy (O)] < [Uy(0) = Uy (0)] + Uy (0)] = 5 6] + 2 [yl < Py + hy = 2. (47)

We define now
0o =0, Oy =U,(6k).

From (47) we know that 6, € B(0,2h,), k € N and consequently
1
Uy (Or+1) = Uy (Ok)] < 5 10k = O -

So the sequence 6,k € N converges to the solution of the equation § = U,(f), that
is ®(y) = 6. We have thus proved that for any y € B(0,3h,) there exists a unique
0 € B(0,2h,) such that ®(f) =y, that is ®~' : B(0, 3h,) — B(0, 2h,) is well defined.
Finally, for y € B(0, 3h,) let § = ®~(y). Then § = U,(0) so, using @T) 0] = |U, ()] <
116] + 2 |y| which gives || < 4|y|. Moreover, again by ({@T),

1

61 = 10,(0)] = [U,(0)] = 1U,(6) = U, (0)| >

1
— 210
[yl =5 10l

which proves that 6] > £ [y| > 1[y[. O

Let us consider a more specific variant of the local inversion theorem we will need in next
Section Bl We consider a matrix B € My with columns B; € R% i = 1,....,d and we
suppose that B is invertible. Then we consider the equation

y = BO+r(0) (48)

where r € C*(R4, R?). Our aim is to prove that for small y the above equation has a
unique solution and to obtain some precise estimates for 6 and its projection on a suitable
subspace of R? in terms of y. In order to do it we have to introduce some more notations.
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We fix d’ € {1,...,d — 1} and we denote d’ = d — d'. For x = (21, ...,z4) € R? we denote
T = (21,...,2¢) and T = (g1, ..., xq). We denote by B € Myxa (respectively by

€ Mxqr) the matrix with columns By, ..., By (respectively the matrix with columns
Byi1, ..y Bg). Let S = Vect{By, ..., By). Since B is invertible the columns B;,i = 1,...,d
are linearly independent and so dim S = d’. We denote by S+ the orthogonal of S by II
the projection on S and by II* the projection on S+. We define B+ to be the matrix
with columns Bi := II1B;,i = d' + 1,...,d. Since By, ..., By span R? it follows that
B i=d +1,..,d span St which has dimension d”. So Bi*,i = d’ + 1,...,d are linearly
independent. We conclude that the matrices B*B, §*<§ € My and ?Lv*gL €
M grwqr are all invertible, and as usual we denote by A.(B), )\*(E) and )\*(gL) the
smaller eigenvalue of B*B, §*<§ and ?l’*gL respectively.

Theorem 20 We assume that the matriz B is invertible and that r(0) = Vr(0) = 0. Set

-----

A\ (B)'/? A\ (B)
yl < —— and Jyl < 3B (e(r) 1 () (49)
the equation ({8) has a unique solution 6 and
2| - Bl i 16¢5(r) [Bly | 12
0l < <= ll, |0|<—=—|Ty|+ = y|” (50)
N (B) g @ B
In particular if |TI*y| < |My| then |y| < 2[Ily| so
— B 64co(r) | B
o< —m il [7]< ey 4 B2 Pk e oy
A(B) A(BH) A(BH)A(B)

Proof. We write the equation [@8) as B~'y = 6+ B~'r(#) and we use Proposition T9 with
n(0) = B~'r(0). Since 9, B~'r(0) = B~'0,7r(#) we have cy(n) +c3(n) < M(B)"V2(co(r) +
c3(r)). So our assumption (49) ensures that for some h,, fulfilling ([44)), one has |[B~1y| <
%hn and we may use Proposition [I9 in order to produce the solution 6 of our equation.
And moreover, by (45]) one has

0] <4|B7'y| < ly| .

A (B)

In particular this proves the first inequality in (50). Using (49) we also have |#| < 1. Since
r(0) = Vr(0) = 0 we obtain

16¢o(r) | 2
0)| < max sup |927(0)] x |0 = cy(r) |0]> < —2
I ( >|_|a\:}2{\9}|l£1| pr(0')] < |0| 2(1) 107 < W (B) |y

We multiply our equation with (?l’*gL)_lgl’* and we obtain
(EL,*?L)—l?l,*y — ? + (?L,*?L)—lgj_,*r(e).
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Notice that ﬁ**y = ?Lv*ﬂly SO ‘(?l’*ﬁﬂ_l?l’*y

gives

< ATY(BY)|B| [ITty| and this

1602(T) |B‘oo |y|2 )

7] < XHB) Bl [y |+ X7 (B 1Bl 1r(6)] < |B|01> S E o

(B
O

6.2 Estimates of the density

For h > 0 we denote _
c.(n,h) = sup max |9’ (z)] . (52)

jw|<2h I

Let © be a m dimensional centered Gaussian random variable with covariance matrix
Q. We assume that @ is invertible and we denote by A(Q) and A(Q)) the lower and
the upper eigenvalue of () respectively. We also consider a matrix I' € M,,,, with
n < m and we recall that |z|} = (I'T*z,z), \.(I) is the smaller eigenvalue of I'T* and

Br(y,r) ={z:ly—zlp <r}.
Lemma 21 Suppose that TT* is invertible. Let n € C3(R™, R™) such that n(0) = 0. Set
G=y+T0+1n(0) (53)

and assume there exists r > 0 such that

c(n,4r) < 1
AN (D)Y2 = 2m’

1
r < gA(D)2hy  and (54)

h,, being defined in ({{4). Then the law of G has a density pc on Br(y,r) and for z €
Br(y,r) one has

AQ)tm—mr2 2 2
> _ _
Pe(2) 2 g g (det @ det T2 P ( o) y‘F) (55)
X(Q)(m—n)/Z 8(m—n)/2 2m/2 1 )
< I -

In particular, (53) and (26) imply that, for z € Br(y,r),

AQ) \m/2 16 M(Q)\™/2
(16%(6)2)> pN(y,%A(Q)FF*)('Z) <pa(z) < ( A(C(Q) )> pN(y74X(Q)Fr*)(Z)

where px(y,Ba+) denotes the Gaussian density with mean y and covariance matriz BB*.

Proof. Step 1. We assume first that n = m,y = 0 and I' is the identity matrix. We
denote ®(0) = 0+n(0), so that ®(0) = G. Let f : R™ — R be a non negative measurable
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function with the support included in the (Euclidian) ball B(0,r), with r fulfilling (54]).
Using a change of variable and Proposition 19, we obtain

BU@O) = [ 00 G P (@0

= / f(2) pae)(2) dz,
B(0,r)

where we have set, for z € B(0,r),

1
pe©)(2) = (27)m/2 |det VO(D—1(2))| (det Q)

Since 7 < h,,, if z € B(0,7) one has § = ®'(2) € B(0,4r) and for € B(0,4r) we have

1/2 exp(—% <Q‘1<I)—1 (2), @7 (Z)>)

1
5 j2|* < (1= me.(n, hy)) 2> < [(VO(O)z, 2)| < (1+mea(n, hy)) |z* < 21af*,
because ¢.(n,4r) < 5. Therefore, if z € B(0,r) then
277" < |det VO(P ! (2))| < 2™

Moreover, using (43]) we obtain

1ol -1 — & (= 2 1 z an
(Q717(2),07'(2)) < ) 27 (2)] SA(Q)H d
“1p—1(4 1y L ~1(y 2 1 2
(@127 87() 2 55107 2 5o
So, as z € B(0,r) we get
1 2 ) om/2 1 )
(872 /det O GXP(—m 12|7) < page)(2) < WGXP(_8X(Q) 2[7)  (57)

Step 2. We still assume that n = m but now y and I' are general, with I" invertible. We
write G =y + (0 + nr(6)) with np(6) = T'n(d) and denote ®r(0) = 6 + nr (). One has
ca(nr) + c3(nr) < A(T)"Y2(ca(n) + e3(n)), so that h,. > \(T)Y2h, and then (54) gives
r < Lh,.. Moreover, since c,(nr, 4r) < A\(T)"2c.(n,4r), (64) gives also c,(nr, 4r) < 5.
And since |I'z|. = |z|, one has G € Br(y,r) iff &r(©) € B(0,r). Then by a change of
variable, for z € Br(y,r) we have

1
= —— (z— .
pG(Z) |detF\p¢F(®)( (Z y))

Since [I~'(2 — y)| = |2 — y|p we use (B7) and we obtain

pa<z>2<8 /2 1 eXP(‘LV_y‘%)
m)ym/2,/det Q |det T| AQ)
2m/2 1

2
pc(?) Swm/2\/M\detF| eXp(—m 1z —ylp).
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Step 3. Now we allow n to be strictly smaller than m. Since I'T"* is invertible the lines
I't...,T" € R™ of T’ are linearly independent. We denote S = Vect{T'!,...,I""} and
we take [+t .,T'"™ to be an orthonormal basis in the orthogonal of S. Then we define
I' € M,,xm to be the matrix with lines I't, ..., I, ™" . T and we notice that

~~, [ TII* 0
FF_<0 ]m_n)

where I,_p, € M@u_n)x(m—n) is the identity matrix. In particular detT = vdet I'lT'* and
for z = (21,2),21 € R", 2, € R™" we have |2|% = |21]7 + |2|°. Moreover, for y € R"
we denote § = (y,0) and we also set 7j(6) = (7(6),0). So, we define H = § + 'O + 77(0),
and we notice that hy = h, and ¢, (7,4r) = c.(n,4r). For the density of H = (Hy, H»)
we can use the estimate from the previous step. Notice that since H, is an orthogonal

transformation of a Gaussian random variable, one easily gets that the estimates hold for
(z,u) € R™ such that z € B(0,r) and v € R™". Now, since H; = G we obtain

pa(2) :/ i pr(z,u)du

>

1 2
_/ o (8m)9/2 /T Q [det T =gy (== vl + ol

() E (-Lp_ |2>
(8m)m/2/det @+/[det TT7] p @) Y2 ).

The proof of the other inequality is the same. [

7 Appendix 3. Support Property

In this section we prove [B0). Let B = (B!, ..., B4~1) be a standard Brownian motion. We
consider the analogues of the covariance matrix @;(B) considered in the previous sections:
we define a symmetric square matrix of dimension d x d by

1
Qd’d = 1’ Qd’j = Qj’d = / B&‘ZdS7 j - 1, ,d - 1,
0
1
QP = QP :/ BIBfds, jp=1,..,d—1
0
and we denote by A(Q) (respectively by A(Q)) the lower (respectively larger) eigenvalue

of Q.

For a measurable function g : [0,1] — R%! we denote

1 1 1 2
0(€) = &+ /0 (g€ ds,  By(€) = /0 <gs,5*>2ds—( /0 <gs,g*>ds) with
6 = (61,...,§d)€Rd and 5*:(51,...,€d_1).

We need the following two preliminary lemmas.
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Lemma 22 With g(s) = B, s € [0,1] we have
(Q€,€) = (&) + B (€)-

As a consequence, one has

XQ) = inf (a3(6) + Bo(€)) and X(Q) < sup(a(€) + Fa()) < (1 +sup|Bi])*

Taking &, = 0 and &4 = 1 we obtain (QE,€) =1 so that \(Q) < 1 < XN(Q).

Proof. By direct computation

2

Q6 = G+2% | 1 <Bs,£*>ds+( / 1 <Bs,£*>ds>)

+/01 (B, &) ds - (/01 <Bs,§*>ds)2
- (m/ol <Bs,5*>ds)2+/01 (B,,&.) ds - (/01 <BS,5*>ds)2.

The remaining statements follow straightforwardly. [J
Proposition 23 For each p > 1 one has

B(ldet Q™) < Cpa < o0 (58)
where Cy, 4 is a constant depending on p,d only.

Proof. By Lemma 7-29, pg 92 in [6], for every p € (0, 00) one has

1 1 -
et QF = T(p) /R SRR

Let 0(&,) = fol (Bs, &) ds. Using the previous lemma

/ ‘g‘d(%—l) e~ (@8 qe = /(é'j_i_|§*|2)d(2p_1)/2€_(£d+9(§*))2_63(5*)dé’
Rd Rd

< C ((1 + 62(£,)) =172 4 ¢, 14@P 1)) =B ge,
Rd—1

= C/ sup 1V [ By| "7V (1 4 |&,[ 17D Prlege,
R

d-1 <1

We integrate and we use Schwartz inequality in order to obtain

1 d(2p—1)+1\2 2 1/2
E(—— §C+C/ E((1 + |, e~ 2B8EIN/2 ¢
(|det Q|p) L e ) )2
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For each fixed &, the process b, (t) := |, <Bt, «) 18 a standard Brownian motion and
Be(&) = |§“*|2 fol(bg* fo be, (s)ds)*dt = |§*| Ve, where Vg, is the variance of be, with
respect to the time. Then it is proved in [9 ] (see (1.f), p. 183) that

2|&.
E(e—258(§*)) — E(€—2\5*|2V5* — L
sinh 2 |&,|?

We insert this in the previous inequality and we obtain E(|det Q|") < oco. O

We are now able to give the main result in this section. We define

Z\B’\ +) / BldBY (59)
J#p
and for €, p > 0 de denote
Ape(B) = {det Q(B) > <, sup |B,| < e, q(B) < ¢}, (60)
t<1

Proposition 24 There exist some universal constants c,q4,€,4 € (0,1) (depending on p
and d only) such that for every e € (0,¢,4) one has

P(A,o(B)) > c,q x 3D (61)

Proof. Using the previous proposition and Chebyshev’s inequality we get

P(detQ < &) <ePPE|det Q| < Cpqe?” and P(sup|B;| > e7”) < exp(—
’ t<1 Ce?r

).
Let ¢'(B) = L [Bil + Xy, | fo Biasy|. Since |3 Biapz| < |BI||B{| + |J, BraB
we have ¢(B) < 2¢'(B) + ¢'(B)? so that {¢/(B) < 3¢} C {q(B) < e}. We will now use the
following fact: consider the diffusion process X = (X!, X/, i =1,....d,1 < j < p < d)
solution of the equation dX! = dB!,dX}”? = X]dBP. The strong Hérmander condition
holds for this process and the support of the law of X is the whole space. So the law of
X is absolutely continuous with respect to the Lebesgue measure and has a continuous
and strictly positive density p. This result is well known (see for example [13] or [2]). We
denote cq := infzj<1 p(x) > 0 and this is a constant which depends on d only. Then, by
observing that ¢'(B) < v/m|X;|, where m = 1d(d + 1) is the dimension of the diffusion
X, we get

3

P(a(B) <) > P(q(B) < =) > P(1X4] < X &,

< € )Z gm
3vm/ = (3ym)™

w

with ¢4 > 0. So finally we obtain

P(A,.(B)) > ’deéd(dﬂ) — Cpae™ — exp(—

Ca2ﬁ)'

Choosing p > zipd(d + 1) and € small we obtain our inequality.[]
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8 Appendix 4. Norms and distances

In this section we use the notation from Section 3 and 4. We consider the matrix A with
columns a;, [a]j, = a;, — apj,@ = 1,...,d,j # p defined in Section 3.2 and we assume
that the non degeneracy condition (20)) holds. For notational convenience we denote A; =
a;,i=1,....,dand A;,;i = d+1,...,m will be an enumeration of [a];,,1 < j,p < d,j # p.
We work with the norm |y|iR = ((ArA%) 'y, y), y € R". We have the following simple
properties:

Lemma 25 i) For everyy € R" and 0 < R < R' <1 one has

R R
R |y|AR > ‘y‘AR, > R ‘y‘AR and (62)
1 1
— |yl < < — |yl 63
VR Iy\_\y\AR_R D Y| (63)
it) For every z € R™ and R > 0 one has
[Arz| 4, <12l (64)
iii) For every pu € L*([0,T]; R™) and R > 0 one has
t 2 t
)/ uods| < t/ a3, ds, t€[0,T). (65)
0 AR 0

Proof. i) It is easy to check that

L C (BN

which is equivalent with (62). This also implies (one takes R’ =1 so Agp = A) that

1 1 1., . L.
E)‘*(AR) <(A4) < ﬁ)‘*(AR) and EA (Ar) < X" (4) < ﬁA (Ag)

which immediately gives (G3).

ii) For 2 € R™, we write z = ARy +w with y € R™ and w € (ImA})* = KerAg. Then
Apz = ArAyy so that

|Arzy, = [ArAjyla, = ((ArAR) ' ArAjy, ARAGLY)
= (2, ApApz) = (Apy, Apy) = | Ay’ < |2

and (64) holds.
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iit) For u € L*([0,T]; R™) and ¢ € [0,T] one has

)/ usds —<AR /usds / prsds) = //<AR i, 1 Ydsdu

"2 /0 /0 (Ar™" (s = )y s = p) = (AR pisy 1) = (A s uu>>dsdu
1 t t
25/0 /0 <‘:us_,uu‘,24R —2‘M5|124R>d8du
t pt ¢
< [ [ ldstu=1 [l o
0 0 0

We give now some lower and upper bounds for [y[, . . We denote S = Vect{A;;i =1,...,d}

O

and Ilg is the projection on S. S* is the orthogonal of S and Ilg. is the projection on
S+. Moreover we denote

d d
A¢ = inf A%, Ag= su A;,€)? 66
do = D48 Ts= s 304 (66)
A = inf A€ 2 gL = sup A€ 2,
T Z (4.6, Ag gflz (4:,€)

By the very definition Ag > 0 and under assumption (20) we also have Ag. > 0. And
As < A (A), Ag < A*(A).

Proposition 26 Suppose that (20) holds and let

>\S
422 d+1 |HSA |

R <

(67)

Then for everyy € R"

1 4
— |[sy]” + ———=— [Tgy[* < |y|> Msy|* + Mgyl 68
AR )\S | Sy| 4R2 Asl | Sly| — ‘y‘AR — R)\S | Sy‘ R2 ASJ_ ‘ SLy‘ ( )
In particular, if |A|l = max;=1,_m, |Ai| and R < Ag/4m |A|_ then
1 2 1 2 2 4 2 4 2
— |11 ——|TI < < —— 11 II . (69
4R|A‘oo | Sy| + 4R2 |A‘oo | Si-y‘ = ‘y|AR - RAS ‘ Sy‘ + R2ASJ- | Sly| ( )

Proof. In a first stage we assume that A; L A; for i« < d < j. We will drop out this
restriction in the second part of the proof. Let Ts and T5: be the restriction of y — Ap ARy
to S and to S respectively. Since

d m
ApARy = RY (Aiy) A+ B2 Y (Aiy) A
=1 i=d+1
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our orthogonality hypothesis implies that Tsy = RZ? (Aiy) A; € S for y € S and
Tsry=R*Y" . (A y) A; € St for y € S+ Since AgAj, is invertible it follows that T
(respectively Tg1) is an invertible operator from S (respectively from S*) into itself. For

y € S we have
d

Rs |yl > (Tsy,y) = R (Ai,y)* > RAg|yl’

1=1

and since \y|2AR = (T5'y,y) for y € S, we obtain

ifyesS.

2 2 2
— < < ,
RAg ‘y‘AR T RAg !

Similarly, we get

1

2 2 2 : 1
< < — , ifyesS—.
R? Mg |y| o |y|AR - R? )\SJ_ |y| nY

Let y € R". Since (ArA%) gy € S we have ((AgA%) gy, [Ig1y) = 0 so that |y|iR =
|H5y|?4R + |H5Ly|124R . We obtain

sy|* + gy, (70)

1 ) ) 1 ) 1
— — < < — | S
R RQASLI sryl” < yly, < RA5| syl +R2ASL

We drop now out the orthogonality assumption. For j > d we consider the decomposition
A; =1IgA; + 1151 A; and we define the matrices Ap = (\/ﬁAl, o VRAG, RITgL Ay, ...,
Rllg: A,,) and /AlR =(0,...,0, RIIsA4y1, ..., RIIgA,,) so that Ag = ZR—I—ﬁR. We will check
that under the restriction (67) we have

— |2 11—« |2
4 ‘ARy‘ > |Apyl® > 1 ‘ARy‘ Vy € R". (71)
We suppose for the moment that the above inequality is true and we prove @); Since
|A%y|* = (ArA%y,y) the above inequality means that 4AA, > ApA% > iARA*R and
this gives
Lo 2 2
119, < Wl = 4lyl, (72)

Since the columns of Ap verify the orthogonality assumption we may use the result from
the first step with A replaced with A = (Ay,..., A4, Agi1,... Ay), with A; = A; if j < d
and A; = Ilg1 A; for j > d. Here, we have S = Vect{Al, oAy = Vect{Al, LAY =

S, so that Ag = Ag and A\g = \g. Moreover, since 5= = S+, the computations in (66]) are
actually done with £ € S+, and thus we obtain Agt = Ag1 and )\—J_ = Agt. So (70) gives

1
— |[gy|* + —=
e sl e

1 2
1 < I I
Moyl <y, < —— RA Mgyl +RQASL‘ sLY|

which together with (72]) imply (68)).
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It remains to prove ([[1). We have

2 d d
Ao = RS (A5,0)" = RY (45, T1sy) > R My
j=1 J=1
and
R 2 m m m
’AEy’ =R ) (Med;,p)* = R Y (TsA;, Hsy)” < R [Tgy* > [MeA,*.
J=d+1 Jj=d+1 j=d+1

L2 2
Then (67) gives ’ARy’ > 4 ’A*Ry’ . Using the inequality (a + b)? > 1a? — b* we obtain

2 2

* 12 7* n Lo |? nS 2 1
|AR?J‘ = ‘AR?JWLAR?J =5 ‘A - ‘AR?J > 4 ‘AR?J

and using (a 4 b)? < 2a2 4 2b* we get |A%y|* < 4 ‘ARy‘

From now on we consider the specific situation when a; = o;(t, x), [a]; ; = [0, 04](t, ) and
we denote by A(t,x) respectively Ag(t,z) the matrices associated to these coefficients.
We will need the following

Lemma 27 Let x,y € R" be such that |xt —y| < 1 and let s,t € [0, 1]. Assume that

|z—y|+|t—s|§%xx/g (73)

Then for every z € R" and 6 <1 one has
L e 2 2
1 |Z|A5(t,x) < |Z|A5(s,y) <4 |Z|A5(t7x) : (74)
Proof. The inequality (4] is equivalent to
1
4(A545)(8, ) = (AsA5)(s,y) = 7 (AsA5)(¢, ).

We use the numerical inequality (a + b)* > +a® — b?, the hypothesis (73) and we obtain

1
2

(Asi(s.9),2)°

NE

((As45)(s,y)2,2) =

B
Il
—

I
NE

((Ase(t,2), 2) + (Asi(s,y) — Asp(t, 2), 2))°

e
Il
—

(A(;k t :c Z AM 8 y A&,k(t,$)72>)2

W,
N —
NE

e
I
—
e
I
—_

(Asi(t,x), 2)* — (2dm)*n*(t, 2)0(Jz — y|” + |t — s|°) x |2]*.

W,
N —
NE

e
I
—_
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Since A\, (As(t,x)) > 8*°X\.(A(t, z)) our hypothesis says that

(2dm)*n*(t, 2)8(|x — y|* + [t — s|") x |2 Siézk*(A(t, ) x [2[*
<M (Aslt, ) x [ef*
1 m
<1 D (Asult,x), 2)°
k=1
so that .
1 1 .
((AsA%)(s,9)z, 2) ZZ (Asi(t, 7). 2)" = 7 (As45)(t, @)z, 2)

k=1
Using (a + b)? < 2a® + 20? one proves the other inequality. [J

In the last part of this section we establish the link between the norm |z| An(te) and the
control (Caratheodory) distance. We will use in a crucial way the alternative character-
izations given in [14] for this distance - and these results hold in the homogeneous case:
the coefficients of the equations do not depend on time any more, so that we suppose now
0;(t,x) = 0;(x). Consequently, we handle the matrix Ag(x) instead of Ag(t, z).

We first introduce a semi-distance d on an open set 2 C R™ which is naturally associated
to the family of norms |y|,

We set Q = {z € R" : \(A(x)) > 0} = {x : det(AA*(z)) # 0}, which is open because
x — det AA*(x) is continuous. Notice that if z € Q then det AgA%5(z) > 0 for every
R > 0. For z,y € Q, we define d(z,y) by d(x,y) < v R if and only if |y — x|AR(x) < 1. The

motivation of taking v/R is the following: if we are in the elliptic case then |y — z| Ar@) ™
Ry —xf so ly — ],y <1 amounts to |y — x| < VR.

It is straightforward to see that d is a semi-distance on (), in the sense that d verifies the
following three properties (see [14]):

i) for every r > 0, the set {y € Q : d(z,y) < r} is open;
i1) d(z,y) = 0 if and only if x = y;

i11) for every compact set K & € there exists C' > 0 such that for every z,y, 2z € K one
has d(z,y) < C(d(z,2) + d(z,y)).

Moreover, one says that d; : 2 xQ — R, and dy : Q2 x Q) — R, are equivalent if for every
compact set K € () there exists a constant C' such that for every x,y € K

édl(:):,y) < do(z,y) < Cdy (2. ). (75)
In particular if d; is a distance and d is equivalent with d; then ds is a semi-distance.
And one says that d; is locally equivalent with ds if for every zy € ) there exists a
neighborhood V' of xy and a constant C' such that ({78 holds for every =,y € V.

We introduce now the control metric. For x,y € R™ we denote by C(z,y) the set of con-
trols ¢ € L*([0, 1]; R™) such that the corresponding skeleton duy (1)) = Z?:l o (uy (1))l dt

37



with ug(1)) = z satisfies u; (1)) = y. Notice that the drift b does not appear in the equation
of uy (). Then we define

de(x,y) = inf{(/ol |w5|20l8>1/2 VNS C(x,y)}.

Theorem 28 A. Let 2
< (A
oy = M4
256d%nS(x)
Then for every x,y € Q such that d.(z,y) < 1a*(z) one has d(z,y) < 90?(x)dc(z, y).
B. d is locally equivalent to d. on €.

C. In particular for every compact set K € §2 there exists rg and Ck such that for every
z,y € K with d(x,y) < rg one has d.(z,y) < Ckd(z,y).

Proof A. Let 6 > 0, z,y € Q and ¢ € C(z,y). Setting x; = uy5(1)), we obtain dx, =
ijl o;(x,)pldt with ¢(t) = 6~'¢(t6~"), which means that 2, = u,;(¢). Notice also that
Jo lisl*ds = 8 [ 6" ds.

We denote now Cs(z,y) the set of controls ¢ € L?([0, §]; R™) such that the corresponding
skeleton wu;(¢) with ug(¢) = z verifies us(¢) = y. As a consequence of the previous
computations, one has

do(z,y) = V6 x inf {(/06 |¢s|2d8> v cQ € Cg(:c,y)} = V5 x inf{e4(0) : ¢ € Cs(z,y)}.

Suppose now that d.(z,y) < 1a?(z). We take § = La?(x) so that d.(z,y) < fa(z)Vs.
Then one may find a control ¢ € Cs(z,y) such that £,(6) < fo(x) and y = 24(¢). Since
£4(6) + V0 < a(z) we may use (B8) and we obtain |y — Tl gy < 4E6(0) + Vo < 3afx). Tt
follows that

|y N x‘Agoﬂ(z)s(w - 30((1’) ‘ x‘Aé(w) =1
and this gives d(z,y) < 902(z)d = 90?(z) x 1o
902 (x) % do(z,y).
B. We prove now the converse inequality. We use the results from [14] so we recall the

definition of the semi-distance d, (which is denoted by py in [14]). Given ¢', ¢*7 € R,
1=0,...,d,1 <k < j <dwe consider the equation

a?(z). And this guarantees that d(z,y) <

w(o) =z +/ Zgb oi(vs(9)) + Zqﬁi’j[ai,aj](vs(qﬁ)))ds. (76)

i#]

Notice that ¢/, ¢*J are now real constants (in contrast with the time depending controls in
the standard skeleton) and we have added the vector fields [0}, 0;] which does not appear
in skeletons. And the drift term b does not appear. We denote by P.(x,y) the family of
paths v;(¢) which satisfy (76) and such that vy(¢) = y. We define d, by: di(z,y) < 0 if
and only if one may find ¢',¢*7 € R, 1 < i, k,j < d,j # k such that v.(¢) € P.(z,y)
and |¢'| < 4, |¢"| < §%. As a consequence of Theorem 2 and Theorem 4 from [14] d, is
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locally equivalent with d.. So our aim is to prove that d, is locally dominated by d. Let
us be more precise: we fix x € {2 and we look for two constants C., d, > 0 such that the
following holds: if 0 < § < 6, and d(x,y) < v/0 then one may construct a control ¢ € R™
such that v.(¢) € P.(x,y) and |¢| < Co\/9, |¢™7| < C26. This implies d,(x,y) < Cy\/9,
and the statement will hold. Notice that we discuss local equivalence, that is why we may
take C,, 0, depending on x.

We recall that A;(z),i = 1,...,m is an enumeration of o;(x), [0}, 0,](x),4,j,p = 1, ...,d and
that they span R™ because x € §2. So, we choose 11 < ... < ig < d <igy <..<i,<m
such that A;, (x),k = 1,...,d" span Vect{A;(x), ..., Aq(x)} and A4; (z),k =1, ...,n span R".
In particular all of them are linearly independent. We denote By(x) = A, (x) and we want
to use Theorem 20 for them. Notice that Vect{A;(x), ..., Ay(z)} = Vect{Bi(x), ..., By (x)}
so the projections II and II*+ considered in Theorem and in Proposition coincide.
In particular if d(z,y) < /8 then |TI(y — )| < |A(x)| V4§ and I (y — )| < |A(2)] . 0.
And this also implies that |y — x| < 2 |A(z)|_ V9.

As 6 € R™, we look for a solution to the equation

y=&(0), with &(0 —x+Zek/Bkgs s—x+§jek/ A, (£.(0))ds

So, we write it as

y=x+ B(x)0+r(0) with r(0 Zé’k/ (Br(&5(0)) — Bi(z))ds.

Clearly r € C3(R", R") and r(0) = Vr(0) = 0. Then,
ly — 2] < 2]A(2)| V3 < 2|A(2)| Vs
and we suppose that 0, is sufficiently small in order that |y — x| satisfies (49]), that is

A (B(z))2 A(B(x))

8d3(co(r) + ca(r))

ly — x| < and |y —z| <

We use then (51) and we obtain |6;| < C,v/0,i=1,...,d" and |6;] < C26, i =d +1,...,n
This proves that d,(z,y) < CyV/0.

C. For x € Q, we denote By(z,r) := {y € Q : d(z,y) < r} and this is an open set.
Since d and d. are locally equivalent for every compact K & 2 and for every x € K
there exists Cy, e, > 0 such that for y € By(z,e,) we have d.(z, y) < Cpd(z,y). Since the
set K is compact we may find z1,...,7y € K such that K C UN, By(x;,&,,). We denote
,,,,, ~n Cy,. Let us prove that there exists r, > 0 such that for every x € K
and every y e Bd(x r*) we have d.(z,y) < Chaxd(z,y).

For z € K one may find ¢ such that x € By(x;,e,,) and r > 0 such that By(z,r) C
Ba(xi,ez,). We define 1, = sup{r > 0: 3 i € {1,..., N} such that By(z,r) C By(z,e,)}
We claim that r, := inf,cx r, > 0. Indeed suppose that this is not true. Then one may
find a sequence y, — yo such that r,, — 0. Since r,, > 0 there exists n, such that for
n > n, one has By(yp, ﬁryo) C Bi(yo,1y,) C Ba(xi,ey,) for some i. Here C is the
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constant in the triangle inequality i) at page Bl And this means that r,, > %ryo >0
which is in contradiction with our hypothesis. So we have proved that r, > 0.

Consider now y € By(x,r,). There exists i such that By(z,r.) C By(z;, e,,) and this
means that y, z € By(z;,€,,) and consequently d.(x,y) < C,.d(x,y) < Cpaxd(z,y). O

Finally we give:

Proof of Proposition [ We will first prove that under our hypothesis d(z,y) <
Ao/ (A4m)ni(z). Let R be such that d(z,y) > VR so that |y — |4, = 1. Then by

Asy/A(A4)
> — 2| > Ry A(A) |y — > Ry A (A).
It follows that R < A,/ (4m)n () which proves our assertion.

We suppose now that d(z,y) > VR. Since R < \,/(4m)n’(z) we may use (8) and we
obtain

2, 2
RA Ma(y — =) + Rzm Ly =) = [y = ol > 1
which gives d(z,y) > V'R. So d(z,y) > d(z,y). Suppose that d(x,y) < v R. Then
1 2 1 il 2 2
 M(y— . My -—a)<ly- 1

and this reads d(z,y) < V'R which gives d(z,y) < d(z,y).0
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