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Elastic behavior of weakly cemented contact
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SUMMARY

We investigate the elastic behavior of weakly cemented contact. We show that the radial distribution of
stresses and the stiffnesses of a cemented contact are governed by the ratio a/RΛ, where R, a and Λ are
respectively the grain radius, the contact size, and the ratio of the elastic moduli of cement and grains.
Moreover, we show that a cemented contact is always less stiff than a Hertzian contact having a similar size.
Finally, we propose accurate approximate expressions of the contact stiffnesses. Copyright c© 0000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Cemented dense granular materials are involved in numerous fields including geology [1, 2, 3, 4, 5]

and civil engineering [6, 7, 8]. Understanding the mechanical behavior of these porous granular

materials can provide key insights into phenomena like sedimentary rock failure, landslides, effects

on soils behavior of freezing and melting of interstitial water.

Bernabe et al. [2] have studied experimentally the effect of cement on the strength of granular

rocks. They observed that cement, even in very small quantity, significantly increases the strength

of granular materials as long as the deposition of cement is precisely located at the grain-grain

contacts. Alternatively, numerical simulations have been used to study the failure of cemented

granular materials. Thus, Bruno et al [1] have shown that strength depends strongly on intergranular

bond material properties. More recently, Topin et al. [8] have distinguished different regimes of

crack propagation involving particle damage (abrasion or fragmentation) or not (crack propagation

either in cement or at the cement-particle interface). They have shown that the particle damage limit
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2 V. LANGLOIS

is controlled by a single parameter combining the cement volume fraction with the grain-cement

adhesion.

Likewise, the acoustic and elastic characteristics of cemented granular material may be affected

by the properties and structure of intergranular bond material. Within the framework of the effective

medium theories (EMT) [9, 10], the elasticity of granular media depends on the normal and

tangential contact stiffnesses. Thus, the theoretical description of the elasticity of granular materials

has been based on the classical solutions to the problems of normal (Hertz theory, [11]) or oblique

[12, 13] interaction of elastic spheres. Johnson et al. [14] have studied the compression of two

adhesive spheres. Digby [9] solved the problem of interaction of spherical particles that are initially

bonded together across small areas. Dvorkin et al. [15, 16] have studied the effects on the contact

stiffnesses of an elastic intergranular bond (fig. 1a). Their model shows clearly that the cemented

contact stiffnesses depend on both the amount of cement and the elastic moduli of cement and grain.

Contrary to a Hertzian grain-grain contact, this elastic cement contact model predicts that the contact

stiffnesses are independent of the applied pressure. Coupled with EMT, the model reproduces fairly

well the experimental results obtained for small amount of cement [3, 17].

Although based on the classical contact mechanic and contrary to a Hertzian grain-grain contact,

a complete analytical solution of the cemented contact model stays to find, if indeed that is possible.

The use of numerical methods is necessary for the calculation of the stiffnesses. To circumvent

this difficulty and for practical purposes, statistical approximations of the stiffnesses, having a

polynomial form in the ratio α of the contact radius a to the radius of the grains R, have been

proposed [18, 3] : Aα2 + Bα+ C where the coefficients, A, B and C depend on the ratio Λ of the

elastic moduli of cement and grains. However, these expressions lead to an unphysical result: non-

zero stiffnesses as the contact size tends to zero. Moreover, their domain of validity is not clearly

specified.

In this brief note, we resume the major steps of the cement contact theory (CCT) [16], and show

that the ratio a/RΛ governs the radial distribution of stresses and the stiffnesses of a cemented

contact. New approximate expressions of the normal and tangential stiffnesses are proposed.

2. NORMAL LOADING OF TWO CEMENTED SPHERES

At first, we focus on the normal loading of two cemented spheres (fig1a). We assume that contact

stresses and displacements are axisymmetrical with respect to the line that connects the centers of

the two spheres. In CCT, the cement layer is assumed to be bonded to the grains, and therefore,

no slip or debonding occurs at interfaces between the cement layer and the grains. Thus, the

normal displacement of the center of the spherical grain relative to the median plane of the cement

layer δn can be related to the displacements δc of the surface of the cement layer and δg of the

surface of the grain: δc(r) + δg(r) = δn for any r located inside the contact area (r < a). As the

thin cement layer is approximately treated as an elastic foundation [11], the displacement δc is

proportional to the normal stress p: δc = h(r)p(r)/Mc where Mc(= 2Gc (1− νc) / (1− 2νc)) is the

constrained modulus of the cement and h(r)(= R−
√
R2 − r2) is its initial undeformed thickness.

As the cemented contact area is considered small compared with the grain size (α = a/R ≪ 1),

this thickness can be approximated by r2/2R, and the displacement δg of the surface of the

grain is given by δg =
(1−νg)
πGg

∫ smax

0

∫ π

0
p(s, ϕ)dsdϕ [11]. Gg and νg are respectively the shear

modulus and the Poisson’s ratio of the grains. The parameters, s and ϕ, give the position of a

point inside the domain of integration S defined on figure 1b. However, under this formulation,

the domain of integration depends on the contact size a. Thus, to find the governing parameters,

we introduce normalized coordinates s′ = s/a and r′ = r/a. The displacement δg is now given by

δg =
(1−νg)a
πGg

∫∫

S′
p(s′, ϕ)ds′dϕ and the new domain of integration S′ is independent of the contact

size.
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}

Figure 1. (a) Cross-section of a cemented grain before and after loading (b) A cemented contact region. The
domain of integration S corresponds to the shaded area.

By combining the above equations and by normalizing the radial distribution of the normal stress

P (r′) = α2

Mc

p(r′), we arrive at the following integral equation:

Λn

α

∫∫

S′

P (s′, ϕ)ds′dϕ+
1

2
r′2P (r′) =

δn
R

(1)

where Λn = (1 − νg)Mc/πGg .

Then, by dividing both sides of equation 1 by δn/R and, by putting P1 = P
δn/R

, we obtain:

Λn

α

∫∫

S′

P1(s
′, ϕ)ds′dϕ+

1

2
r′2P1(r

′) = 1 (2)

As no evident analytical solution of the equation 2 can be found, a numerical method must be

used. However, by considering the equation, its solution is a function of both the position r′ and

the ratio α/Λn, and consequently, the solution of the equation 1, given by P = P1

(

r′, α
Λn

)

. δnR , is

proportional to the displacement δn. Therefore, the contact-cement model leads to a linear elasticity

totally different from the non linear elasticity of a Hertzian contact between two uncemented spheres

[11]. As we will discuss further later on, the contact-cement model predicts such a linear elasticity

as long as the cement behavior is linear elastic and the size of the cemented contact size is constant

[19, 20].

Another major result of the contact-cement model concerns the radial distribution of stresses.

As we have shown before, the ratio α/Λn determines the radial distribution of the normal stress

(fig 2a): the maximal stress is located at the center of the contact when α/Λn ≫ 1 (”soft cement”),

or at the periphery when α/Λn ≪ 1 (”stiff cement”). The threshold ratio between both regimes is

around 2. In the stiff cement regime, the radial distribution of the normal stress tends to the one
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Figure 2. Contact-cement model predictions: (a) radial distribution of normal stresses in two cases: soft

cement and stiff cement. The dashed curves correspond to asymptotic solutions: 1/2
(

1− r′2
)1/2

for stiff

cement, and 2/(r′ + r′c)
2 for soft cement (b) Cemented contact stiffness as function of contact size α.

obtained by the indentation of a circular rigid flat punch over an elastic half-space p0(1− r′2)−1/2

[11]. In the soft cement regime, the radial distribution of the normal stress is close to 2/(r′ + r′c)
2

with r′c = 2πΛn/α.

As the elasticity of a cemented contact is linear, the normal stiffness Dn is calculated by dividing

the normal force Fn (=
∫ a

0
p(r).2πrdr) by the displacement δn. We find that the normal stiffness

can be expressed as Dn = 2πMcknR with kn =
∫ 1

0
P1(r

′)r′dr′. Figure 2b shows the nonlinear

relationship between the normal stiffness and the contact radius. In the ”stiff cement” regime,

the normal stiffness tends to the one obtained by the action of a rigid flat punch Dn,rigid =
4aGg/(1− νg). This result is quite remarkable, because the expression of the stiffness Dn,rigid

is identical to the one obtained in a Hertzian sphere-sphere contact. Therefore, as Dn < Dn,rigid, a

cemented contact is always less stiff than a sphere-sphere contact having a similar size.

To avoid the use of numerical method, the normal stiffness of a cemented contact Dn can

be expressed as Dn = Dn,rigid/(1 + f(α/Λn)). The values of the corrective function f can be

evaluated, with a relative error from the results of the numerical method less than ±0.1% in the

range of 0 to 1000 for α/Λt, using:

f(x) = 0.3092x0.9098 0.1036x
0.4139 + 1

x0.4139 + 1

Figure 3 compares the normal stiffnesses calculated by using both approximations, the one given

by [18, 3] and the one proposed in this paper. The domain of validity of Dvorkin and Nur’s

approximate expression appears restricted to values of Λn close to 1, namely when the elastic moduli
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Figure 3. Comparison of the approximate stiffnesses: this paper (dashed line), from [18] for various values
of Λn(see curves) and α varying from 0.01 to 0.5 (plain lines).

of cement and grains are similar. In all others cases, even in the stiff cement regime, their expression

is inaccurate to determine the normal stiffness.

As mentioned before, the pure elastic model for a cemented contact predicts that the contact

stiffness is independent of the applied pressure because of the constant area of an elastic cemented

contact [16]. However, for two elastic spheres uniformly coated with a thin elastic cement layer,

the contact stiffness may increase when the spheres are axially compressed together, due to the

increasing contact area [19, 21]. For two cemented grains with a plastic behavior of the cement

layer, two pressure-activated mechanisms can occur and increase the contact stiffness [20, 17]:

an increase of the contact size due to the plastic flow of the cement towards the periphery of the

contact area, and the formation of a direct grain-grain contact stiffer than a cemented contact. On

the contrary, some pressure-activated mechanisms could lead to the decrease of the contact stiffness

[17]: debonding/fracture at the cement-grain interface or inside the cement.

3. TANGENTIAL LOADING OF TWO CEMENTED SPHERES

Dvorkin et al [16] extend the method used in the normal loading to the case of tangential loading.

Here, the problem is to find the radial distribution of normalized shear stresses T (r′) = α2

Gc

t(r′)
which is solution of the following equation:

Λt

α

∫∫

S′

(1− νgsin
2ϕ))Tds′dϕ+

1

2
r′2T =

δt
R

(3)

where δt represents the tangential displacement of the center of the grain from the center of the

contact area. By considering the equation 3, we find that the radial distribution of normalized shear

stresses is determined by the Poisson’s ratio of the grains νg and the ratio α/Λt where Λt = Gc/πGg.

As previously, the model leads to a linear tangential stiffness of the cemented contact given by:

Dt = 2πGcktR where kt =
∫ 1

0
T1(r

′)r′dr′ and T1 is the solution of the equation 3 for δt/R = 1.

Moreover, the main results obtained with a normal loading and concerning the radial distribution of

stresses are still valid for a tangential loading.

A method similar to the one used in normal loading could be used to solve the equation 3.

However, in developing the term 1− νgsin
2(ϕ) , we arrive at:
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Figure 4. Contact-cement model predictions: tangential stiffness as function of the parameter
α/Λt (1− νg/2). The inset corresponds to the same curves in a log-log plot.

[

Λt

α

(

1−
νg
2

)

∫∫

T (s′, ϕ)ds′dϕ+
1

2
r′2T (r′)

]

+

[

Λt

α

νg
2

∫∫

S′

cos(2ϕ)T (s′, ϕ)ds′dϕ

]

=
δt
R

(4)

The terms contained in the first bracket are similar to the left-side terms of the equation 1 by

substituting Λn/α for
(

1− νg
2

)

Λt/α. Due to the zero mean value of cos(2ϕ) on the range [0, π],
the terms in the second bracket are small compared to the first terms and correspond to a corrective

term. Therefore, the radial distribution of shear stresses and the tangential stiffness are meanly

determined by the ratio α/Λt (1− νg/2). Figure 4 illustrates this result. Moreover, as shown in the

inset of figure 4, the tangential stiffness tends to the one obtained by the action of a rigid flat punch

Dt,rigid = 8aGg/(2− νg) in the ”stiff cement” regime (α/Λt ≪ 1). Again, since this expression

of the tangential stiffnesses and the one of a sphere-sphere contact in a no-slip condition [11] are

identical, a cemented contact is always less stiff than a bonded sphere-sphere contact having a

similar size.

Finally, the tangential stiffness of a cemented contact can be approximate by:

Dt,0 = Dt,rigid/ (1 + f (α/Λt (1− νg/2)))

with a relative error from the results of the numerical method less than 6% in the range of 0 to 1000

for α/Λt. A better approximation (< 0.2%) is obtained by:

Dt =

(

1 +
νg

2− νg
g (α/Λt (1− νg/2))

)

Dt,0

where g (x) = −0.428x/
(

1 + 1.336x1.222 + 4.031x0.523
)

.

4. CONCLUSION

Starting from the equations of CCT, we show that radial distribution of the stresses and the

stiffnesses of a cemented contact are governed by the ratio a/RΛ, where R, a and Λ are respectively

the grain radius, the contact size, and the ratio of the elastic moduli of cement and grains. In the

”rigid cement” regime (a/RΛ << 1), the stiffnesses of a cement contact converges to the stiffnesses

of a Hertzian contact having a similar size. Therefore, when a/RΛ < 0.1, both contact models

almost predict the same stiffnesses with a difference less than 3%. Moreover, we show that a

cemented contact is always less stiff than a Hertzian contact having a similar size. Consequently, the
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stiffnesses of both contact models are upper (cement contact) and lower (Hertzian contact) bounds

of the stiffnesses of prestressed cement contact.
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