Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints

Nicolas Bousquet

To cite this version:

HAL Id: hal-01101250
https://hal-upec-upem.archives-ouvertes.fr/hal-01101250
Submitted on 8 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ACCELERATED MONTE CARLO ESTIMATION OF EXCEEDANCE PROBABILITIES UNDER MONOTONICITY CONSTRAINTS

by

Nicolas Bousquet

EDF Research & Development
Dpt. of Industrial Risk Management
6 quai Watier, 78401 Chatou, France
nicolas.bousquet@edf.fr

Abstract. — The problem of estimating the probability \(p = P(g(X) \leq 0) \) is considered when \(X \) represents a multivariate stochastic input of a monotonic function \(g \). First, a heuristic method to bound \(p \), originally proposed by de Rocquigny (2009), is formally described, involving a specialized design of numerical experiments. Then a statistical estimation of \(p \) is considered based on a sequential stochastic exploration of the input space. A maximum likelihood estimator of \(p \) based on successive dependent Bernoulli data is defined and its theoretical convergence properties are studied. Under intuitive or mild conditions, the estimation is faster and more robust than the traditional Monte Carlo approach, therefore adapted to time-consuming computer codes \(g \). The main result of the paper is related to the variance of the estimator. It appears as a new baseline measure of efficiency under monotonicity constraints, which could play a similar role to the usual Monte Carlo estimator variance in unconstrained frameworks. Furthermore the bias of the estimator is shown to be corrigeable via bootstrap heuristics. The behavior of the method is illustrated by numerical tests led on a class of toy examples and a more realistic hydraulic case-study.

On considère l’estimation de la probabilité \(p = P(g(X) \leq 0) \) où \(X \) est un vecteur aléatoire et \(g \) une fonction monotone. Premièrement, on rappelle et formalise une méthode, proposée par de Rocquigny (2009), permettant d’encadrer \(p \) par des bornes déterministes en fonction d’un plan d’expérience séquentiel. Le second et principal apport de l’article est la définition et l’étude d’un estimateur statistique de \(p \) tirant parti des bornes. Construit à partir de tirages uniformes successifs, cet estimateur présente sous de faibles conditions théoriques une variance asymptotique plus faible et une meilleure robustesse que l’estimateur classique de Monte Carlo, ce qui rend la méthode adaptée à l’emploi de codes informatiques \(g \) lourds en temps de calcul. Des expérimentations numériques sont menées sur des exemples-jouets et un cas d’étude hydraulique plus réaliste. Une heuristique de bootstrap, reposant sur un réplicat de l’hypersurface \(\{x, \ g(x) = 0\} \) par des réseaux de neurones, est proposée et testée avec succès pour ôter le biais non-asymptotique de l’estimateur.
1. Introduction

In many technical areas, the exceedance of some unidimensional variable \(Z \) over a certain critical value \(z^* \) may define an event of probability \(p \) which has to be carefully estimated. Assumed to be strictly positive, \(p \) can be defined by

\[
p = \int_{\{g(x) \leq 0\}} f(x) \, dx
\]

with \(X \) a random vector of uncertain input parameters with probability density function (pdf) \(f \), taking its values in a \(d \)-dimensional space, and \(g(X) = z^* - Z \) a deterministic mapping from \(\mathbb{R}^d \) to \(\mathbb{R} \). This framework is often encountered in structural reliability studies (Madsen & Ditlevsen, 1996), when \(g \) is a computer code reproducing a physical phenomenon. A Monte Carlo (MC) method is the usual way to estimate \(p \), by \(\hat{p}_n = \frac{1}{n-1} \sum_{k=1}^{n} \{ g(x_k) \leq 0 \} \) where \(n \) is large and the \(x_k \) are independently sampled from \(f \). Avoiding regularity hypotheses on \(g \), this unbiased estimator presents good convergence properties and an estimation error independent on \(d \). Unfortunately, this strategy often appears inappropriate in practice when \(p \) reaches low values, since \(g \) can be time-consuming and the computational budget may be limited: a good estimation of a probability \(p \sim 10^{-q} \) typically requires at least \(10^{q+2} \) calls to \(g \) (Lemaire & Pendola, 2006). Furthermore, \(\hat{p}_n \) has the theoretical defect not to be robust, in the sense given by Glynn et al. (2009): its relative error, namely its coefficient of variation, does not tend to a finite limit when \(p \to 0^+ \), given any finite number \(n \) of trials.

Many non-intrusive strategies have been proposed to accelerate the MC approach. Traditional methods from the engineer community in structural reliability (FORM/SORM) treat the estimation of \(p \) as an optimization problem. The computational work is usually fast but the estimators suffer from weakly or non-controllable errors. Statistical approaches are judged in terms of reduction rate with respect to the MC estimator variance \(\text{Var}[\hat{p}_n] = p(1 - p)/n \). Methods like quasi-MC, sequential MC or importance sampling (Kroese & Rubinstein, 2007) are based on selecting a design of experiments (DOE), namely a set of points in which \(g \) is tested, such that be explored in areas close to the limit state surface \(S = \{ x \in \mathbb{R}^d ; g(x) = 0 \} \). Most advanced methods often get rid of the time-consuming difficulties by emulating the behavior of \(g \), for instance using kriging techniques (Cannamela et al., 2008) which presuppose smoothness conditions on \(g \).

Minimizing the strength of regularity hypotheses placed on \(g \) underlies the development of specialized acceleration methods. For instance, computer codes can suffer from edge effects which restrict smoothness conditions (Munoz-Muniga et al., 2011). On the other hand, the reality of the phenomenon can imply various form constraints on \(Z \). Especially, the assumption that \(g \) is monotonic with respect to \(X \) is a standard problem in regression analysis (Durot, 2008).

In the area of numerical experiments, monotonicity properties of computer codes have been considered theoretically and practically, e.g. proving the MC acceleration of Latin Hypercube Sampling for the estimation of expectancies (MacKay et al., 1979), carrying out screening methods for sensitivity analyses (Lin, 1993), constraining response surfaces (Kleijnen & van Beers, 2009; Kleijnen, 2011), predicting the behavior of network queuing systems (Ranjan et al., 2008), computing flood probabilities (de Rocquigny, 2009) or estimating the safety of a nuclear reactor pressure vessel (Munoz-Muniga et al., 2011).

Specific engineering works in structural reliability have highlighted the possibility of bounding and estimating \(p \) significantly faster than using a MC approach. Under the name of
monotonic reliability methods (MRM), de Rocquigny (2009) proposed a class of sequential algorithms contouring the limit state surface and enclosing p between deterministic bounds which dynamically narrow. A similar idea was explored by Rajabalinejad et al. (2011). However, although a parallelization of such algorithms was already implemented (Limbourg et al., 2010), these methods were only empirically studied and some of the proposed estimators of p remained crude.

The present article therefore aims to provide a first theoretical approach of the accelerated MC estimation of p when g is assumed to be monotonic and possibly discontinuous, although some smoothness constraints are assumed on the failure surface S. More precisely, this article is structured as follows.

Section 2 is dedicated to a general description and a mathematical formalization of MRM. The main contribution is presented in Section 3: a statistical estimator of p is proposed, based on uniformly sampled DOEs in nested spaces. Defined as the maximum likelihood estimator of dependent Bernoulli data, its asymptotic properties are theoretically studied. The estimator is shown to be robust, and its variance gains a significant reduction with respect to the usual MC case. It may also be viewed as a baseline (or target) variance for monotonic structural reliability frameworks. The non-asymptotic bias of the estimator is examined in Section 4, through numerical experiments involving a class of toy examples. Based on a neural network emulation of S, bootstrap heuristics are proposed and successfully tested to remove this bias. Finally, a more realistic hydraulic case-study illustrates the benefits of the complete method.

Along the paper some connections are done with other areas of computational mathematics, especially about implementation issues, and a discussion section ends this article by focusing on the research avenues that must be explored in the area of stochastic sequential DOEs to improve the results presented here.

2. Material

2.1. Working assumptions, definitions and basic properties

Let $g: \mathbf{X} \mapsto g(\mathbf{X})$ be a deterministic function defined as a real-valued scalar mapping of $\mathbf{X} = (X_1, \ldots, X_d)$ on its definition domain $\subset \mathbb{R}^d$. Deterministic means that the function $g(x)$ produces always the same output if it is given the same input x. Global monotonicity is defined as follows: $\forall i, \exists s_i \in \{-1, +1\}$, $\forall \epsilon > 0$, $\forall \mathbf{x} = (x_1, \ldots, x_d) \in \subset$, such that

$$g(x_1, \ldots, x_{i-1}, x_i + s_i \epsilon, x_{i+1}, \ldots, x_d) \leq g(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_d)$$

where s_i represents the sign of monotonic dependence: $s_i = 1$ (resp. $s_i = -1$) when g is decreasing (resp. increasing) along with the i-th component x_i. The following assumption is made without loss of generality since any decreasing i-th component can be changed from x_i to $-x_i$:

Assumption 1. — The function g is globally increasing over \subset.

To be general, $\subset = [0, 1]^d$ and \mathbf{X} is a random vector defined on the probability space $(\subset, \mathcal{B}(\subset), P)$. Next assumption is made following this same concern of generality.
Assumption 2. — All inputs x_1, \ldots, x_d are independently uniform on \mathbb{R}^d.

In real cases, x_1, \ldots, x_d can be defined as transformed inputs, as usual in structural safety problems. In such cases one can write $x = F(y)$ where $y = (y_1, \ldots, y_d)$ is a vector of physical inputs and F is their joint cumulative distribution function (cdf). Therefore $g = \hat{g} \circ F^{-1}$ where \hat{g} is a monotonically increasing function and F has to preserve this monotonicity. When the y_i are independent, F is a product of marginal cdfs and is naturally increasing, so the assumption is not restrictive. Else, technical requirements on F are needed, which depend on the way this joint distribution is defined and the technique used for this space transformation. See for instance Chen (2009) for such requirements on Gaussian copulas. Another general result is given in the Appendix (Supplementary Material).

Assumption 3. — Both subspaces $- = \{x \in \mathbb{R}^d, g(x) \leq 0\}$ and $+ = \{x \in \mathbb{R}^d, g(x) > 0\}$ are not empty (so that p exists in $[0, 1]$).

Definition 1. — A set of points of \mathbb{R}^d is said to be safety-dominated (resp. failure-dominated) if g is guaranteed to be positive (resp. negative) in any point of this set.

Denote by \succeq the partial order between elements of \mathbb{R}^d defined by $x \succeq y \Leftrightarrow x_k \geq y_k \forall k = 1, \ldots, d$. Then assume that some point value $g(\tilde{x})$ is known, and consider the sets $\tilde{x} = \{x \in \mathbb{R}^d, x \succeq \tilde{x}\}$ and $\tilde{x} = \{x \in \mathbb{R}^d, x \preceq \tilde{x}\}$. The increasing monotonicity implies that if $g(\tilde{x}) < 0$ (resp. $g(\tilde{x}) > 0$), then \tilde{x} is safety-dominated (resp. \tilde{x} is failure-dominated). This proves next lemma.

Lemma 1. — Both inequalities are true with probability 1:

\[p \leq 1 - P(X \in \tilde{x}^-) \quad \text{if } g(\tilde{x}) > 0, \]
\[p \geq P(X \in \tilde{x}^-) \quad \text{else.} \]

More generally, assume that n input vectors $(x_j)_{j=1,\ldots,n}$ can be sorted into safe and failure subsamples following the corresponding values of $\{g(x_j)\}_{j=1,\ldots,n}$. They are respectively defined by

$\Xi_n^+ = \{x \in (x_j)_{j=1,\ldots,n} | g(x_j) > 0\}$

and

$\Xi_n^- = \{x \in (x_j)_{j=1,\ldots,n} | g(x_j) \leq 0\}$.

Then one may define the sets

$\tilde{x}^- = \{x \in \Xi_n^- | \exists x_j \in \Xi_n^+, x \succeq x_j\}$,

$\tilde{x}^+ = \{x \in \Xi_n^- | \exists x_j \in \Xi_n^+, x \preceq x_j\}$

(see Figure 1 for an illustration). Finally, denoting $p_n^- = P(X \in \tilde{x}^-)$ and $p_n^+ = 1 - P(X \in \tilde{x}^+)$ to alleviate the notations, one has in all the sequel and for all $n \geq 0$,

\[p_n^- \leq p \leq p_n^+. \tag{1} \]

Hereafter, \tilde{x}^+ and \tilde{x}^- will be referred to as dominated subspaces, where the sign of $g(x)$ is known. Note that the complementary non-dominated subspace $\tilde{x} = / (\tilde{x}^+ \cup \tilde{x}^-)$ is the only partition of \mathbb{R}^d where further calls of g are required to improve the bounds. Finally, a topological assumption on S is needed to achieve the formal description of the situations studied by de Rocquigny (2009) and Limbourg et al. (2010).
Assumption 4. — The limit state surface $S = \{x \in \mathbb{R}^d : g(x) = 0\}$ is regular enough and separates in two disjoint domains $-$ and $+$ (simply connected).

The second part of this assumption implies that, in terms of classification, the two classes of points $-n$ and $+n$ are perfectly separable when $n \to \infty$. This property will be used later in the paper to carry out bootstrap heuristics. By regular enough, S is assumed not to be the surface of multidimensional stairs, so that it cannot be exhaustively described by a n–DOE with $n < \infty$. This mild assumption is ensured, for instance, if g is continuously differentiable on a non-empty measurable subset of S. More formally, it is assumed that $\forall n < \infty$,

\[
\sup_{x_n \in S} \int_{-n-1}^{n-1} \chi_{x_n} dx < p - p_{n-1}^-
\]

(2)

\[
\sup_{x_n \in S} \int_{-n-1}^{n-1} (1 - x_n) dx < p_{n-1}^+ - p.
\]

(3)

This will imply that $p_{n-1}^- < p < p_{n-1}^+$ and the finiteness of the strictly positive quantity $\hat{\omega}_{n+1}(p) = [(p_{n-1}^+ - p)(p_{n-1}^- - p)]^{-1}$ encountered further in the paper.

Remark 1. — In multi-objective optimization, a dominated space can be interpreted as a subset of a performance space delimited by a Pareto frontier (Figueira et al., 2005). In this framework, g is thought as a monotonic rule of decision depending of d variables, for which the set of n best possible configurations (the frontier) is searched.

Remark 2. — The proportions $(p_{n-1}^-, 1 - p_{n-1}^+)$ are the volumes of two unions of hyperrectangles sharing the same orthogonal basis. Computing such volumes is known in computational geometry as Klee’s measure problem, for which recursive sweepline algorithms (van Leeuwen & Wood, 1981) can provide exact solutions. Details about their implementation are given in Appendix (Supplementary Material). When d exceeds 4 or 5, these exact methods appear however too costly, and trivial MC methods must be prefered in practice to compute these quantities.

2.2. MRM implementation: a one-step ahead strategy

Starting from $\mathcal{O} = \{1^d\}, \mathcal{U}_n^- = \{0^d\}$ and $\mathcal{O} = \{0, 1\}^d$, the iterative scheme shared by all MRM variants at step $n \geq 1$ is based on:

1. selecting a DOE $\{x_n^{(1)}, \ldots, x_n^{(m_n)}\} \in \mathbb{R}^d$;
2. computing the signatures $\xi_{x_n} = \{g(x_n^{(j)}) < 0\}$;
3. updating the subspaces

 $-n = \mathcal{U}_n^- \cup \{x \in \mathbb{R}^d | \exists x_n^{(j)}, \xi_{x_n} = 1, x \preceq x_n^{(j)}\}$,

 $+n = \mathcal{U}_n^+ \cup \{x \in \mathbb{R}^d | \exists x_n^{(j)}, \xi_{x_n} = 0, x \succeq x_n^{(j)}\}$,

 $n = \mathcal{U}_n^- \cup \mathcal{U}_n^+$

4. updating the bounds $\{p_n^-, p_n^+\} = \{	ext{Vol}(\mathcal{U}_n^-), 1 - \text{Vol}(\mathcal{U}_n^+)\}$.

Since $-n \subset -n+1 \forall n \geq 0$, then $P(X \in -n) \leq P(X \in -n+1)$ and the sequence (p_n^-) is nondecreasing. Symmetrically, the sequence (p_n^+) is nonincreasing. Since bounded in $[0, p]$ and $[p, 1]$, both sequences are converging.

At each step, the DOE must be chosen accounting for the increasing monotonicity of g. Denoting $x_n^{(1)}$ and $x_n^{(2)}$ two elements of the DOE and assuming to know $\xi^{(1)}_{x_n}$, it is unnecessary to compute $\xi^{(2)}_{x_n}$ in two cases:

- if $\xi^{(1)}_{x_n} = 1$ and $x_n^{(1)} \succeq x_n^{(2)} \Rightarrow x_n^{(2)} \in -x_n^{(1)}$ and $\xi^{(2)}_{x_n} = 1$,
- if $\xi^{(1)}_{x_n} = 0$ and $x_n^{(1)} \preceq x_n^{(2)} \Rightarrow x_n^{(2)} \in +x_n^{(1)}$ and $\xi^{(2)}_{x_n} = 0$.

Thus the order of trials should be carefully monitored, in relation with the partial order between the elements of the DOE. Reducing the DOE to a single element, i.e. $m_n = 1$ for all steps, minimizes the number of unnecessary trials. This one-step ahead strategy is favored in the present paper.

2.3. Stochastic MRM

Initialization. — First iterations should be monitored to reduce significantly the width of $[p_n^-, p_n^+]$, such that further iterations mainly focus on refinements. A deterministic strategy seems the most appropriate to start from $[0, 1]$ until providing non-trivial bounds. A dichotomic diagonal MRM, illustrated on Figure 2 in a two-dimensional case, was used in the examples considered further. It explores the non-dominated space in an intuitive way and stops at step $k_0 \geq 1$ such that

$$k_0 \geq 1 + \frac{\log(1/p)}{d \log 2}.$$

Consequently, an expected crude prior value of p can help to estimate the minimal number k_0 of trials. To alleviate the paper, the notation $(+0, -0, p_0^+, p_0^-)$ now describes the situation after $N-1$ introductive deterministic steps with $N \geq k_0 + 1$, such that $0 < p_0^-$ and $p_0^+ < 1$.

Switching to stochastic DOEs. — Pursuing a deterministic strategy can be too costly to be efficient, the upper bound p_n^+ offering possibly a very conservative assessment of p (de Rocquigny, 2009). Intuitively, such a strategy should be optimized by selecting the next element of the DOE as the maximizer of a criterion which predicts a measure of dominated volume. Apart from the difficulty of predicting, choosing the criterion remains arbitrary. Switching to a stochastic strategy, which allows for a sequential statistical estimation of p in addition of providing bounds, seems a promising alternative approach. In this framework,

$$x_n \sim f_{n-1}$$

at each step $n \geq 1$, with f_{n-1} a pdf defined on $n-1$. Then the probability space $(\Omega, \mathcal{B}(), P)$ becomes endowed with the filtration $\mathcal{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the $\sigma-$algebra generated by a $n-$sequence. The sequences (p_0^-, \ldots, p_n^-) and (p_0^+, \ldots, p_n^+) become monotonic and bounded stochastic processes with dependent increments.

Uniformly sampled DOEs. — The remainder of this article is devoted to a baseline statistical estimation of p in a monotonic framework, in a similar spirit to the MC approach in unconstrained frameworks. Therefore, in the following, the sampling is chosen uniform at each step:

$$x_n \sim U_{n-1}.$$
Figure 1. Two-dimensional dominated and non-dominated subspaces after $n = 14$ iterations. Points $\{0, x_a, x_b, x_c, x_d, x_e, x_f, x_g\}$ have nonzero signatures and are vertices of $-n$. Points $\{x_h, x_i, x_j, x_k, x_l, x_m, x_n, 1^2\}$ have zero signatures and are vertices of $+n$.

Figure 2. Diagonal deterministic (DD-MRM) strategy, assuming a low p, stopping after 4 steps.
3. A maximum likelihood estimator of p

Assume that x_1, \ldots, x_n are successively uniformly sampled in the nested non-dominated spaces $0, \ldots, n$. Next lemma follows.

Lemma 2. — $p_n^+, p_n^- \xrightarrow{a.s.} p$.

In corollary any estimator of p located between the bounds is strongly consistent. Especially, any crude average of the bounds gains a statistical validity. A more sophisticated approach can be carried out by noticing that, at step k, the occurrence of a nonzero signature ξ_{x_k} follows a Bernoulli distribution $B(\gamma_k)$ conditionally to F_{k-1}, with

$$
\gamma_k = \frac{p - p_{k-1}^-}{p_{k-1}^+ - p_{k-1}^-}.
$$

After n steps, all information about p is brought by the dependent-data likelihood $L_n(p) = L_n(p|x_1, \ldots, x_n)$ defined by the product of these conditional Bernoulli pdf:

$$
L_n(p) = \prod_{k=1}^{n} \left(\frac{p - p_{k-1}^-}{p_{k-1}^+ - p_{k-1}^-} \right)^{\xi_{x_k}} \left(\frac{p_{k-1}^+ - p}{p_{k-1}^+ - p_{k-1}^-} \right)^{1 - \xi_{x_k}},
$$

the maximum estimator (MLE) \hat{p}_n of which is considered in next proposition.

Proposition 3.1. — Denote $\ell_n(p) = \log L_n(p)$. There exists a unique and consistent solution \hat{p}_n in $[p_{n-1}^-, p_{n-1}^+]$ of the likelihood equation $\ell_n'(p) = \sum_{k=1}^{n} \hat{\omega}_k (p_k - p) = 0$, such that

$$
\hat{p}_n = \frac{\sum_{k=1}^{n} \hat{\omega}_k (\hat{p}_n) p_k}{\sum_{k=1}^{n} \hat{\omega}_k (\hat{p}_n)},
$$

with $\hat{\omega}_k (p) = \left((p - p_{k-1}^-) (p_{k-1}^+ - p) \right)^{-1}$ and $p_k = p_{k-1}^- + (p_{k-1}^+ - p_{k-1}^-) \xi_{x_k}$

Assumption 4 ensures the existence of \hat{p}_n since, by (2) and (3), p cannot be reached by at least one of the two bounds (p_{n-1}^-, p_{n+1}^-) for any finite n. Similarly, the quantities defined in next propositions remain finite if the limit state surface S has mild smoothness properties. They are related to the behavior of the inverse of the Fisher information associated to (5), which converges to 0 faster than the variance of the usual MC $n-$estimator

$$
V_n^{\text{MC}}(p) = \frac{p(1-p)}{n}.
$$

Lemma 3. — Assume that S is such that (2) and (3) hold (Assumption 4). Then, $\forall n \geq 0$,

$$
E \left[\frac{1}{(p - p_n^-)^2} \right] < \infty,
$$

$$
E \left[\frac{1}{(p_n^+ - p)^2} \right] < \infty,
$$

and consequently $E[\hat{\omega}_{n+1}(p)] < \infty$.

Proposition 3.2. — Denote $J_n(p)$ the Fisher information associated to (5). Then
\[J_n^{-1}(p) = \left(\sum_{k=1}^{n} E[\tilde{\omega}_k(p)] \right)^{-1} \leq V_{n}^{MC}(p) \frac{n}{\sum_{k=1}^{n} (1 - c_{k-1})^{-1}} < V_{n}^{MC}(p) \] (9)
where $c_0 = 0$ and $\forall k > 1$,
\[c_k = E\left[\frac{p^-_k}{p} + \frac{1 - p^+_k}{1 - p} - \frac{p^-_k (1 - p^+_k)}{p(1 - p)} \right]. \]

Proposition 3.3. — Denote $\gamma_0 = [(p^+_0 - p^-_0)/p^-_0]^2$. Then
\[J_n^{-1}(p) \leq V_{n}^{MC}(p) \left(\frac{p\gamma_0}{1 - p} \right). \] (10)

In this data-dependent context, the central limit Theorem 3.1 remains classical in the sense that the Cramer-Rao bound given by the inverse of the Fisher information is asymptotically reached by the MLE. It is technically based on the martingality of the score process $n \mapsto \{\ell_n(p)\}_n$. Therefore inequalities (9) and (10) imply asymptotic variance reduction with respect to Monte Carlo and robustness. From (10), the asymptotic coefficient of variation (CV) of the MLE is such that
\[CV[\hat{p}_n] \leq \frac{p}{E[p_{n-1}]} \sqrt{\frac{\gamma_0}{n}} \approx \sqrt{\frac{\gamma_0}{n}}. \]

Theorem 3.1. — Let (λ_n) be any deterministic sequence in $]0,1[$ such that $\lambda_n \to 1$. Under the supplementary assumptions:

(i) : \[\frac{1}{n^\delta} \sum_{k=1}^{n} (\tilde{\omega}_k(p) - E[\tilde{\omega}_k(p)]) \xrightarrow{p} 0 \quad \text{for any } \delta \geq 1. \]

(ii) : \[\frac{p^+_n - p}{p_n} \xrightarrow{p} 1. \]

(iii) : \[\frac{\bar{p}_n - p}{p - p_n} \xrightarrow{p} 0 \quad \text{and} \quad \frac{\bar{p}_n - p}{p_n} \xrightarrow{p} 0 \quad \text{with } \bar{p}_n = (1 - \lambda_n)\hat{p}_n + \lambda_n p \]
then
\[J_n^{1/2}(p) (\hat{p}_n - p) \xrightarrow{p} \mathcal{N}(0,1). \] (11)

The law of large numbers (i) reflects the requirement that the sum of weights $\tilde{\omega}_k(p)$ cannot diverge faster than $O(J_n(p))$ from its mean behavior when $n \to \infty$. Although difficult to check in practice, this behavior seems rather intuitive because the sampling trajectories mainly vary at the first steps of the algorithm, when the non-dominated space is still large. Therefore (i) can be perceived as an indirect requirement on the surface S. Assumption (ii) appears somewhat natural, saying that the bounds converge to p symmetrically. Assumption (iii) expresses the idea that any estimator located between \hat{p}_n and p converges to p faster than the bounds. Again, it seems intuitive since \hat{p}_n is defined as an incremental average (cf. (i)), and therefore adopts a smoother behavior than the bounds, as a function of n.

Next proposition allows for an empirical estimation of the asymptotic variance and confidence intervals. The additional requirement (v) appears mild and in the same spirit than the smoothness assumptions on S, saying that p cannot be exactly reached by an average of the bounds for any finite number n of trials.

Proposition 3.4. — Denote $\hat{J}_n(p) = \sum_{k=1}^{n} \hat{\omega}_k(p)$. Under the assumptions of Theorem 3.1 and assuming in addition:

- (iv) : Assumption (i) remains true $\forall \delta \geq 1/2$,
- (v) : $\exists n < \infty$ such that $p = (2n)^{-1} \sum_{k=1}^{n} \hat{\omega}_k(p)(p_{k-1}^- + p_{k-1})/ \sum_{k=1}^{n} \hat{\omega}_k(p)$,

then

$$\frac{\hat{J}_n^{5/2}(p)}{|J'_n(p)|} \left(J_n^{-1}(\hat{p}_n) - J_n^{-1}(p) \right) \overset{\mathcal{L}}{\to} \mathcal{N}(0,1).$$

(12)

The reality of the theoretical descriptions hereinbefore are examined in the two next sections, through numerical experiments led on toy examples and a more realistic hydraulic model.

4. **Numerical experiments I: toy examples**

The statistical behavior of the MLE is illustrated here using the following generic toy example. For a given dimension d, denote

$$Z_d = h_d(Y) = Y_1/(Y_1 + \sum_{i=2}^{d} Y_i)$$

where the physical input Y_i follows the gamma distribution $\mathcal{G}(i+1,1)$ with pdf F_{Y_i}, independently of other inputs. Obviously, $\forall d \geq 2$, h_d is increasing in $(-X_1,X_2,\ldots,X_d)$ where $X_i = F_{Y_i}(Y_i) \sim \mathcal{U}[0,1]$, and Z_d follows the beta distribution $\mathcal{B}_d(2,2^{-1}(d+1)(d+2)-3)$. Therefore, denoting $q_{d,p}$ the p-order quantile of Y_d, the deterministic function defined by

$$g_d(X) = h_d \circ F^{-1}(X) - q_{d,p}$$

is related to the known exceedance probability p.

4.1. **First results**

In dimension 2, using $p = 5\%$, the behavior of MRM bounds can be easily compared to the MC 95%-confidence area (Figure 3). This small dimension induces a significant improvement in precision with respect to Monte Carlo, which however disappears in higher dimensions and highlights the need for real statistical estimators. Studies of the root mean square error (RMSE) and the standard deviation of the MLE, which are plotted in Figure 5 as functions of the increasing number of calls to g_d for dimensions 3 and 4, reflected the high variance reduction of the iterative estimator \hat{p}_n with respect to Monte Carlo but highlighted a positive bias (Figure 4). Indeed the highest weights favor local estimators $p_k = p_k^+$ when approaching S (ie., when $\xi_k = 1$ in (7)). On the examples considered in this last figure (as well as in other experiments not shown here), a marked gap in relative bias was noticed between dimensions 3 and 4. Under dimension 4, the bias remains reasonable from a moderate number of iterations (typically 400). Else it dramatically stays at high values. Other experiments have shown on this example the
effective convergence of the empirical variance of the MLE towards the Cramer-Rao bound as well as the good behavior of its empirical estimate (Figure 6).

4.2. Bias correction via bootstrap heuristics

Bias removal appears as a practical requirement, automatizing the estimation of p. Indeed, given a finite value of n, estimating p requires to decide from which iteration $k_n \geq 1$ the computation of the MLE \hat{p}_n can be worth it, redefining $\hat{p}_n = \sum_{i=k_n}^{n} \psi_{i,n}(\hat{p}_n)p_i$ with $\psi_{i,n}(p) = \tilde{\omega}_i(p)/\sum_{j=k_n}^{n} \tilde{\omega}_j(p)$. An intuitive rule is to select $k_n = \arg \min \text{RMSE}(\hat{p}_n)$. (13)

If the MLE were debiased, $\text{RMSE}(\hat{p}_n) \approx J_n^{-1}(p)$ which is minimized by $k_n = 1$.

Given a fixed number n of trials, two general approaches may be used for controlling and correcting the bias $B_n = E[\hat{p}_n] - p$ affecting \hat{p}_n. A corrective approach consists of obtaining a closed-form expression for the bias from Taylor expansions (Cox & Snell, 1968; Ferrari & Cribari-Neto, 1998) or penalizing the score or the likelihood functions (Bester & Hansen, 2005). This approach is not carried out here since the data-dependent context would require a specific algebraic work and technical developments about the empirical estimation of the main quantities involved. The alternative use of bootstrap resampling techniques (Efron & Tibshirani, 1993) can assess the bias empirically. For the simplicity of their principle, these heuristics are preferred here.

In the present context, bootstrap experiments must be based on a replication \hat{S}_n of the limit state surface S (see Figure 7 for an illustration). Under Assumption 4, S can be interpreted as the decision frontier of a supervised classification binary problem, without horseriding of classes (i.e., perfectly separable). Therefore \hat{S}_n depends on the choice of a classifier $\hat{C}_{n,M}$ calibrated from an arbitrary number M of points sampled in dominated subspaces. The rationale of the bootstrap heuristics is as follows. Given $\hat{C}_{n,M}$, the signature ξ_x of any $x \in n$ can be predicted by the occurrence of $P(g(x \leq 0)|\hat{C}_{n,M}) \geq 1/2$. Then denote $\hat{p}_{n,M}$ the volume under \hat{S}_n. It can easily be estimated by $\hat{p}_{n,M,Q}$ at an arbitrary precision by Monte Carlo sampling (depending on Q). Moreover a large number S of MLE estimators of $\hat{p}_{n,M}$ can be fastly computed using the predicted signatures.

The bootstrap heuristics make sense if the classifier is chosen such that $\hat{p}_{n,M} \to p$ when $(n,M) \to \infty$, so that the features of the experiment are asymptotically reproduced. Moreover, $\hat{C}_{n,M}$ must produce a monotonic surface \hat{S}_n. For these reasons, the four-layer monotonic Multi-Layer neural networks (MLNN) proposed by Daniels & Velikova (2010) have been chosen for the experiments. Based on a combination of minimum and maximum functions (so-called MIN-MAX networks) over the two hidden layers, these networks have universal approximation capabilities of monotonic continuous functions. Besides, this choice matches the advices by Hurtado (2004) who strongly recommended the MLNN and Support Vector Machines (SVM) to estimate S in a structural reliability context. Both tools are flexible, can estimate a frontier on the basis of a few samples and overcome the curse of dimensionality.
Figure 3. MRM deterministic bounds and MLE, with Monte Carlo and MLE 95%-confidence areas, in dimension $d = 2$, for $p = 5\%$. Empirical estimations are made over 300 parallel MRM trajectories.

Figure 4. Relative bias of the MLE \hat{p}_n for the dimensions $d \in \{2, 3, 4\}$.

Figure 5. Root mean square error (RMSE; left) and standard deviation (right) of the standard Monte Carlo estimator and \hat{p}_n for $d = 3$ and $d = 4$, for $p = 0.05$. Empirical estimations are made over 300 parallel MRM trajectories.
Figure 6. Ratios of MLE standard deviations over Monte Carlo standard deviations, computed over 100 MRM replications, in dimension $d = 2$.

Figure 7. Two-dimensional situation after $n = 14$ iterations. A replication \hat{S}_n (dashed curve) of S can be produced based on a monotonic neural network prediction of ξ in n. The volume under \hat{S}_n corresponds to a new probability \tilde{p}_n in the magnitude of p, which can be estimated by Monte Carlo at an arbitrary precision.
Classification-based bootstrap algorithm

1. Sample $x^+ = (x_1^+, \ldots, x_M^+) \overset{iid}{\sim} \mathcal{U}_{\frac{1}{n}}$ and $x^- = (x_1^-, \ldots, x_M^-) \overset{iid}{\sim} \mathcal{U}_{\frac{1}{n}}$.
2. From (x^+, x^-), build a monotonic classifier $\tilde{C}_{n,M}$ of $(-, +)$.
3. Replace g by the uncostly monotonic (increasing) function

 \[\tilde{g}(x) = \begin{cases}
 -1 & \text{if } P(g(x \leq 0) | \tilde{C}_{n,M}) \geq 1/2, \\
 +1 & \text{else.}
 \end{cases} \]
4. Sample $x_1, \ldots, x_Q \overset{iid}{\sim} \mathcal{U}$ and compute $\tilde{p}_{n,M,Q} = Q^{-1} \sum_{k=1}^{Q} \{ \tilde{g}(x_k) \leq 0 \}$.
5. For $i = 1, \ldots, S$, get a MLE estimator $\hat{p}_{n,M,Q}^{(i)}$ then estimate B_n by

 \[\hat{B}_{n,M,Q,S} = S^{-1} \sum_{i=1}^{S} \tilde{p}_{n,M,Q}^{(i)} - \tilde{p}_{n,M,Q}. \]

Numerical tests in function of n and d were conducted, and the results are presented in Table 1. The bias correction is found to be effective even from a moderate number of iterations (some hundreds) until dimension 5, and a budget of at least $n = 1,000$ is enough to correct a bias in dimension 8. With less than 10% of overestimation on average on this example, these bootstrap heuristics also appear relevant when the exact value of p is less interesting than its magnitude, which is often the case in design optimization where it is aimed to diminish p of a given factor by constraining the inputs [Tsompanakis et al. 2007].

<table>
<thead>
<tr>
<th>Dimension d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 0.05$</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
</tr>
</tbody>
</table>

Table 1. Relative error in % between estimated bias and real bias, for two true probabilities $p = 5\%$ and $p = 0.5\%$. Results are averaged on 100 experiments, each bootstrap estimation being based on $S = 1,000$ MLE replicates. For each n, the neural network is build from $M = 10^6$ sampled vectors, with a classification error rate less than 0.25% on these training data.
5. Numerical experiments II: a simplified hydraulic case-study

De Rocquigny (2009), Limbourg et al. (2010) then Munoz-Muniga et al. (2011) considered a simplified but realistic hydraulic model linking the downstream water level \(H \) (m) of a river section, of width \(b = 300 \) (m) and length \(l = 5000 \) (m), with the upstream discharge \(Q \) (m\(^3\)/s) and the friction coefficient \(K_s \) (m\(^{1/3}\)/s) of the river bed. Denoting \(Z_m \) and \(Z_v \) the upstream and downstream altitude of the river bed above seal level,

\[
H = \left(\frac{Q}{b K_s \sqrt{Z_m - Z_v}} \right)^{3/5}.
\]

Assuming a dike level \(h_0 = 55.5 \) (m), the flood probability is
\[
p = P(g' \circ F^{-1}(X) \leq 0)
\]
where
\[Y = \{F_Q(Q), K_s\} \text{ (2-dim. version)} \text{ or } Y = \{Q, K_s, Z_m, Z_v\} \text{ (4-dim. version)},
\]
\(F\) is the cdf of \(Y\) and
\[g'(Y) = h_0 - Z_v - H(Y),
\]
which is increasing in \((-Q, K_s, Z_m, -Z_v)\). Input distributions or punctual values are chosen as in Limbourg et al. (2010). \(Q\) follows a Gumbel distribution with location 1013 and scale 558, truncated in \([10, 10^4]\). \(K_s\) is normal \(N(27.8, 3^2)\) truncated in 0. In the 4-dim. version, \(Z_m\) and \(Z_v\) are triangular on \([53.5, 56.5]\) and \([48.5, 51.5]\) with respective modes 55 and 50 (their respective values in the 2-dim. version).

For several computational budgets and averaged over 100 repeated experiments, two alternative methods are compared to the MRM bias-corrected MLE: the MC method and an engineering FORM-IS method build on two steps: (a) with a limited number of trials (no more than 40), the First-Order Reliability Method (FORM) is run to provide an estimate of the conception point \(\beta = \arg \min ||u||\) on \(\{g' \circ F^{-1} \circ \Phi(u) \leq 0\}\), with \(\Phi\) the standard normal pdf and \(u\) a random variable evolving in the \(d\)-dimensional standard Gaussian space \(U\); (b) an Importance Sampling (IS) method that uses the budget left to sample in \(U\) using a standard normal distribution centered on \(\beta\). See Anonymous (2011) for details about the implementation of the method.

For a given \(n\), the three methods are compared through the following indicators: \(E[\hat{p}_n]\), \(CV[\hat{p}_n]\) and the relative average precision \(\gamma_n = E[(\hat{p}_n - p)^2]/p\). Using the DOEs produced by the MC and the FORM-IS methods, these bounds can obviously be computed accounting for the monotonicity of \(g\). For each version a MC computation involving 40,000 particles provides a precise estimate of \(p\), which is used for estimating \(p\) in \(\gamma_n\). Finally, \(S = 1,000\) bootstrap replicates were used for the correction of each MRM-MLE estimate. The results are summarized on Table 2.

In terms of magnitude, the three methods perform similarly. The benefit of using MRM instead of MC or FORM-IS in these low dimensions clearly appears in most cases, and more obviously in dimension 2: MC needs at least 200 times more iterations than MRM to reach a similar precision \(CV[\hat{p}_n]\), and if FORM-IS is significantly better than MC, the precision of its estimates remains far beyond of those produced by MRM. In dimension 4, the difference between these two methods somewhat vanishes and they lead to close performance when the number of iterations remains low. For both dimensional cases, it was noticed that a single
FORM run can provide a crude estimate of p with good magnitude after 10 iterations only. But the dimensional increasing allows the part of the importance sampling falling into the non-dominated area to be greater than in a two-dimensional setting.

<table>
<thead>
<tr>
<th>n</th>
<th>method</th>
<th>dimension = 2</th>
<th></th>
<th>dimension = 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>MC</td>
<td>E[\hat{p}_n]</td>
<td>CV[\hat{p}_n]</td>
<td>γ_n</td>
<td>E[\hat{p}_n]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.002775 190% 2,900%</td>
<td>0.010075 99%</td>
<td></td>
<td>0.002775 190% 2,900%</td>
</tr>
<tr>
<td></td>
<td>FORM-IS</td>
<td>0.002241 68% 478%</td>
<td>0.018147 74%</td>
<td></td>
<td>0.005498 82% 1,400%</td>
</tr>
<tr>
<td></td>
<td>MRM</td>
<td>0.002781 14% 48%</td>
<td>0.015498 82% 1,400%</td>
<td></td>
<td>0.002781 14% 48%</td>
</tr>
<tr>
<td>200</td>
<td>MC</td>
<td>0.002775 134% 630%</td>
<td>0.010075 70% 2,300%</td>
<td></td>
<td>0.002775 134% 630%</td>
</tr>
<tr>
<td></td>
<td>FORM-IS</td>
<td>0.002667 44% 244%</td>
<td>0.010242 42% 2,230%</td>
<td></td>
<td>0.002667 44% 244%</td>
</tr>
<tr>
<td></td>
<td>MRM</td>
<td>0.002776 6% 24%</td>
<td>0.012451 35% 800%</td>
<td></td>
<td>0.002776 6% 24%</td>
</tr>
<tr>
<td>1,000</td>
<td>MC</td>
<td>0.002775 60% 515%</td>
<td>0.010075 31% 1,200%</td>
<td></td>
<td>0.002775 60% 515%</td>
</tr>
<tr>
<td></td>
<td>FORM-IS</td>
<td>0.002736 27% 168%</td>
<td>0.009959 27% 1,000%</td>
<td></td>
<td>0.002736 27% 168%</td>
</tr>
<tr>
<td></td>
<td>MRM</td>
<td>0.002775 0.12% 5.6%</td>
<td>0.010911 20% 300%</td>
<td></td>
<td>0.002775 0.12% 5.6%</td>
</tr>
<tr>
<td>40,000</td>
<td>MC</td>
<td>0.002775 9.5% 475%</td>
<td>0.010075 5% 247%</td>
<td></td>
<td>0.002775 9.5% 475%</td>
</tr>
</tbody>
</table>

Table 2. Estimation results for the two-dimensional and four-dimensional versions of the problem.

6. Discussion

Many structural reliability problems deal with the fast estimation of a probability p of an undesirable event. This event can often be defined by the occurrence of an exceedance in output of some time-consuming function g with stochastic multidimensional inputs. In the present article, g is assumed to be monotonic and possibly non-continuous.

Pursuing pioneering works by de Rocquigny (2009) and Limbourg et al. (2010) who explored heuristically the benefits of this framework, this article first offers a formal description of the latter that focuses on the existence of deterministic bounds around p. A sequential strategy of numerical experiments in the input space allows for a progressive narrowing of this interval. The second and main aspect of the paper is the definition and the study of a statistical estimator of p when the strategy becomes stochastic and leans on uniform nested sampling. Easy to compute, it is defined as the maximizer of a likelihood (MLE) of dependent data sampled from Bernoulli distributions, whose parameters are explicit functions of the dynamic bounds.

A keypoint of the paper is the theoretical description of its asymptotic properties, which are found similar to those arising from the classical estimation theory, provided some intuitive assumptions are respected. They are found mild in practice on some examples. Both theoretical and applied results show a significant improvement of the fastness and the robustness of this
estimator with respect to the usual Monte Carlo estimator. In the third part of the paper, bootstrap heuristics are proposed and carried out successfully to remove the non-asymptotic bias affecting the MLE, via constrained neural networks. Only a basic continuity assumption on the limit state (or failure) surface is needed to benefit from their universal approximation capabilities.

Thus, the tools proposed in this article and its supplementary material in Appendix can be directly used in structural reliability applications, without preliminary learning step (as usual, for instance, in stratified methods). However, the generality of the frame allows for a wider range of theoretical and applied studies. These research avenues are briefly discussed in the following items.

Bias correction. — Following Hurtado (2004), support vector machines (SVM) should probably be considered instead of neural networks, since their geometric interpretation of margin maximizers appears more relevant to the problem than neural networks. In addition to the monotonicity constraint, they should be built at step \(n \) under the linear constraint that the volume under the predicted surface be equal to the current (biased) estimator \(\hat{p}_n \). This would certainly improve the properties of the bootstrap heuristics. More importantly, this method should be now tested on a large variety of examples, and the intuitive feeling of its ability to correct the bias must be confirmed by more applied and theoretical studies.

In parallel, future studies should focus on adopting a corrective approach to the bias affecting the MLE, then on selecting a slippery window of indexes, according to \((13) \) or a similar rule, such that the MLE converges faster to \(p \). The comparison of the experimental benefits of both approaches would help the method to become more ready-to-use.

Simplifying the assumptions. — Most of the technical assumptions that are needed to get the theoretical results present some intuitive features, and are underlyingly linked to the nature of the limit state surface. However, they remain difficult to check in practice, although asymptotic normality was always noticed in numerical experiments. Therefore, future work should be dedicated to simplifying those assumptions and classifying the limit state surfaces in function of their ability to allow a fast and robust estimation of \(p \).

Sensitivity studies. — Crucial tasks in structural reliability are sensitivity studies of probabilistic indicators to the uncertainty input model (Morio, 2011). Therefore, assuming \(\mathbf{X} = F(\mathbf{Y}) \) where the \(\mathbf{Y} \) represent physical inputs with cdf \(F \), given a budget \(n \), the variations of \((\bar{p}_n, \hat{p}_n, \bar{p}_n) \) due to modifying \(F \) in \(F_\epsilon \) should be the subject of future works. As a supplementary benefit of the method, the new values \((\bar{p}_{k,\epsilon}, \hat{p}_{k,\epsilon}, \hat{p}_{n,\epsilon}) \), for \(k \in \{0, \ldots, n\} \), can be recomputed without any supplementary call to \(g \), thanks to an importance sampling mechanism. Indeed, as the subspaces \((\bar{k}, \hat{k}) \) remain dominated whatever the choice made on input distributions in the physical space, then

\[
\bar{p}_{k,\epsilon} = \int_{F^{-1}(\bar{\epsilon})} dF_\epsilon(\mathbf{y}) \quad \text{and} \quad \hat{p}_{k,\epsilon} = 1 - \int_{F^{-1}(\hat{\epsilon})} dF_\epsilon(\mathbf{y}),
\]

which can be computed by a simple Monte Carlo method. In such future studies, we suggest that the progressive bounds could be defined as robust if they remain true whatever the fluctuations of \(F_\epsilon \) in a well-funded variational class around \(F \).
Exploring other forms of stochastic DOEs. — A keypoint of future works will be to elaborate unbiased estimators from sequential stochastic designs of experiments with non-asymptotic properties. Indeed, the asymptotic variance of the MLE reaches the Cramer-Rao bound $J_n^{-1}(p)$. Therefore any unbiased estimator based on sequential uniform sampling, especially those defined by $\hat{p}_n = \sum_{k=1}^n \omega_k p_k$ where the ω_k are now deterministic weights, independent on p and summing to 1, will never reach a lower variance than $J_n^{-1}(p)$, even though the ω_k are optimized to this aim. Improving the Monte Carlo acceleration $n J_n^{-1}(p)/(p(1-p))$ will only be possible using less naive strategies than uniform samplings. The problem of defining such samplings so that an unbiased estimator of p has better statistical properties will be the subject of a future paper, whose theoretical aspects should benefit from the probabilistic arguments used here to study the asymptotic behavior of the MLE.

Towards partial monotonicity. — Finally, the practical limits of monotonicity assumptions should be refined. Intuitively, monotonicity as a building hypothesis seems antagonist to high-dimensional structural safety problems, and could mainly characterize the behavior of g as a function of its most prominent input variables (as it could be measured through global sensitivity analysis). Indeed, the real examples treated by de Rocquigny (2009); Limbourg et al. (2010) and Rajabalinejad et al. (2011) do not go beyond dimension 4. Partial monotonicity, as defined by Daniels & Velikova (2010), seems a more appealing and realistic property, for which the methods developed in a pure monotonicity context should be adapted in the future.

7. Acknowledgements

E. de Rocquigny (École Centrale de Paris) must be thanked to have drawn my attention to this topic. I am especially grateful to all members of the MRI/T56 group at EDF Research & Development and Prof. Fabrice Gamboa and Dr. Thierry Klein (Institut de Mathématiques de Toulouse), for their support during this work. Finally, I am thankful to an anonymous reviewer who deeply read this article and made comments, critics and useful suggestions which greatly helped to improve it.

References

239–249.
Appendix A

Proofs

Proof of Lemma 2 — An infinite uniform sampling on provides on the open sets \(-\infty, +\) two topologies constituted by the collections of open subsets \(-\infty, \infty, \infty, \ldots\) and \(0, \infty, \infty, \ldots\). Hence the sequence \((-\infty, +\)) define two covers (exhaustions) of \((-\infty, +\)). Then

\[
U_\infty^- = \bigcup_{k=0}^\infty U_k^- = -, \quad U_\infty^+ = \bigcup_{k=0}^\infty U_k^+ = +
\]

and \(\lim_{n\to\infty} p_n^- = \lim_{n\to\infty} P(X < -n) = P(X < U_\infty^-) = p \) by inclusion. Similarly, \(\lim p_n^+ = p\).

Furthermore, given \(p_0^+, p_n^+, 1 - p_n^+\) are adapted submartingales bounded in \(p, \forall p \geq 1\). Then, from Doob’s theorem (Meyer, 1972), the bounds converge almost surely to \(p\). \(\square\)

Proof of Proposition 3.1 — One may write \(\ell''_n(p) = \sum_{k=1}^n \tilde{\omega}_k (p) S_k (p)\) with

\[
S_k (p) = -1 + (pk - p) \tilde{\omega}_k (p) (2p - p_{k-1}^+ - p_{k-1}^-),
\]

\[
= -\tilde{\omega}_k (p)(p - pk)^2.
\]

Hence \(\ell''_n(p) < 0\) in \((p_n^-, p_n^+).\) Besides, \(\lim_{p \to p^-} \ell'_n(p) = \infty\) and \(\lim_{p \to p^+} \ell'_n(p) = -\infty.\)

Hence, by twice continuity and differentiability of \(\ell_n(p)\), the mean value theorem implies the existence and unicity of a MLE \(\hat{p}_n\) in \([p_{n-1}, p_n^+].\) \(\square\)

Proof of Lemma 3 — We shall proceed by induction. Since \(p_0^- < p < p_n^+, (5)\) and (7) hold for \(n = 0\). Denote \(\eta_n = 1/(p - p_n^-)^2\). For \(n \geq 1\), it is assumed that \(E[\eta_n] < \infty.\) Then

\[
E[\eta_{n+1}] = E[\eta_n E[1 - \xi_{x_{n+1}} | F_n]] + E\left[\xi_{x_{n+1}} / (p - p_n^- - \text{Vol}_{x_{n+1}})^2 | F_n\right]
\]

with \(\text{Vol}_{x_{n+1}} = \int_{n\cap} - \{x \leq x_{n+1}\} dx\) the additive volume of formerly non-dominated failure points in \(n\) that are now dominated by the failure point \(x_{n+1}\). By hypothesis, the first term is always finite. Furthermore, with

\[
\text{Vol}_{x_{n+1}} \leq \sup_{x_n \in n\cap} \int_{n\cap} - \{x \leq x_n\} dx = \sup_{x_n \in S} \int_{n\cap} - \{x \leq x_n\} dx,
\]

(2) implies that \(\text{Vol}_{x_{n+1}} < p - p_n^-\). Since \(p_n^- = p_{n-1}^- + \text{Vol}_{x_{n}}\), etc., one has \(\sum_{k=1}^{n+1} \text{Vol}_{x_{k}} < p - p_0^-\).

Then

\[
E\left[\left[\xi_{x_{n+1}} / (p - p_n^- - \text{Vol}_{x_{n+1}})^2 | F_n\right]\right] = E\left[\xi_{x_{n+1}} / (p - p_0^- - \sum_{k=1}^{n+1} \text{Vol}_{x_{k}})^2\right] < \infty.
\]

The same rationale applies to \(1/(p_n^+ - p)^2\), by symmetry, since \(p_n^+ = p_n^+ - \text{Vol}_{x_{n+1}}\) with \(\text{Vol}_{x_{n+1}} = \int_{n\cap} + \{x \leq 1 - x_{n+1}\} dx\). \(\square\)
Proof of Proposition 3.2 — One has $E[L'_n(p)] = \sum_{k=1}^{n} E[\tilde{\omega}_k(p)E[p_k - p|\mathcal{F}_{k-1}]] = 0$ since $\tilde{\omega}_{n+1}$ depends only on \mathcal{F}_n, hence the Fisher information $J_n(p) = \text{Var}[L'^2_n(p)] = E[L'^2_n(p)]$ is equal to $-E[L'_n(p)]$ by twice differentiability and continuity of $\ell_n(\cdot)$, similarly to a classic iid. case. Assumption 4 implies that $\forall n < \infty$, $p_{n-1}^- < p < p_{n-1}^+$, i.e. p cannot be reached in any finite number of iterations, so that these quantities are well defined. With $-S_n(p) = \tilde{\omega}_n(p)(p - p_n)^2$ $\forall n \geq 0$ from (14),

$$J_n(p) = \sum_{k=1}^{n} E[\tilde{\omega}_k(p)\text{Var}[p_k|\mathcal{F}_{k-1}]] = \sum_{k=1}^{n} E[\tilde{\omega}_k(p)]$$

since

$$\text{Var}[p_n|\mathcal{F}_{n-1}] = (p_{n-1}^+ - p_{n-1}^-)^2 E[\xi_n|\mathcal{F}_{n-1}] - (p - p_{n-1}^-)^2,$$

$$= (p_{n-1}^+ - p_{n-1}^-) (p - p_{n-1}^-) - (p - p_{n-1}^-)^2,$$

$$= \tilde{\omega}_{n-1}^{-1}(p).$$

Inequality (14) is a simple consequence of Jensen’s inequality: since $E^{-1}[\tilde{\omega}^{-1}_k(p)] \leq E[\tilde{\omega}_k(p)]$, then $J^{-1}_n(p) \leq \left(\sum_{k=1}^{n} E^{-1}[\tilde{\omega}^{-1}_k(p)]\right)^{-1} = \frac{p(1-p)}{\sum (1 - c_{k-1})^{-1}}.$

Proof of Proposition 3.3 — Using the notation $S_k(p)$ defined in (14),

$$J_n(p) = -E[p(1-p)\sum_{k=1}^{n} \tilde{\omega}_k(p) S_k(p)] = n^{-1} \frac{\tilde{J}_n(p)}{\text{Var}_{MC}'(p)}$$

with

$$\tilde{J}_n(p) = E\left[\sum_{k=1}^{n} p(1-p) (p_{k-1}^+ - p_{k-1}^-)^2 \xi_{sk} - 2 (p - p_{k-1}^-)^{-2} \xi_{sk}\right],$$

which can be rewritten as

$$\tilde{J}_n(p) = \sum_{k=1}^{n} \left\{ E[\xi_{sk} \left(\frac{p(1-p)}{(p - p_{k-1}^-)^2}\right)] + E[1 - \xi_{sk} \left(\frac{p(1-p)}{(p_{k-1}^+ - p_{k-1}^-)^2}\right)]\right\}.$$

Since $p^{-1} ((p_{k-1}^+ - p) + (p - p_{k-1}^-)) \leq p_{k-1}$, then

$$p_{k-1}^+ - p \leq p(p_{k-1} - 1) + p_{k-1}^- \leq p(p_{k-1} - 1) + p = pp_{k-1},$$

$$p - p_{k-1}^+ \leq p(p_{k-1} + 1) - p_{k-1}^+ \leq p(p_{k-1} + 1) - p = pp_{k-1}. $$

Hence

$$\frac{p(1-p)}{(p_{k-1}^+ - p)^2} \geq \frac{1-p}{p^2} \text{ and } \frac{p(1-p)}{(p - p_{k-1}^-)^2} \geq \frac{1-p}{p^2}.$$
Consequently,
\[
\tilde{J}_n(p) \geq \frac{1 - p}{p} \sum_{k=1}^{n} \mathbb{E} \left[\frac{1}{\rho_{k-1}^n} (\xi_{x_k} + 1 - \xi_{x_k}) \right],
\]
\[
\geq \frac{1 - p}{p} n \mathbb{E} \left[\frac{1}{\rho_0^n} \right],
\]
since \((\rho_n)\) is a strictly decreasing positive process. Since \((p_n^-, p_n^+)\) are predictable processes, \(p_0^-\) and \(p_0^+\) are deterministic quantities, then
\[
\mathbb{E} \left[\frac{1}{\rho_0^n} \right] = \left(\frac{p_0^-}{p_0^+ - p_0^-} \right)^2 = 1/\gamma_0,
\]
and \(\tilde{J}_n(p) \geq n \left(\frac{1 - p}{\gamma_0 p} \right)\) which proves (10).

Proof of Theorem 3.1 — Given the strong consistency of \(\hat{p}_n\), its asymptotic normality can be established using arguments studied by Crowder (1975, 1983). Showing that \(\ell'_n(p)\) is a \(\mathcal{F}_{n-1}\)-adapted martingale is a classic result:

\[
\mathbb{E} \left[\ell'_{n+1}(p) - \ell'_n(p) \mid \mathcal{F}_n \right] = \tilde{\omega}_{n+1}(p) \mathbb{E} [p_{n+1} - p \mid \mathcal{F}_n] = 0.
\]

Furthermore \(J_n(p) < n \mathbb{E} [\tilde{\omega}_n(p)] < \infty\) under Assumption 4 (cf. Lemma 3). Hence \(\ell'_n(p)\) is square integrable. Denoting \(\Delta_n(p) = \ell'_n(p) - \ell'_{n-1}(p)\), then \(\Delta_n^2(p) = \tilde{\omega}_n^2(p)(p_n - p)^2\) and

\[
\mathbb{E} \left[\Delta_n^2(p) \mid \mathcal{F}_{n-1} \right] = \tilde{\omega}_n^2(p) \text{Var} [p_n \mid \mathcal{F}_{n-1}] = \tilde{\omega}_n(p).
\]

Then \(\langle \ell'(p) \rangle_n = \sum_{k=1}^{n} \tilde{\omega}_k(p)\) denotes the increasing (or bracket) process of \(\ell'_n(p)\). The proof can be achieved in three steps.

1. — With \(J_n(p) = \mathbb{E} [\langle \ell'(p) \rangle_n]\) and \(\lim_{n \to \infty} J_n(p) = \infty\) from (10), establishing asymptotic normality first requires to prove the following law of large numbers (LLN)

\[
M_n(p) = J_n^{-1}(p) \langle \ell'(p) \rangle_n - 1 \xrightarrow{\mathbb{P}} 0.
\]

Denote \(W_n(p) = \sum_{k=1}^{n} (\tilde{\omega}_k(p) - \mathbb{E} [\tilde{\omega}_k(p)])\) Then, \(\forall \epsilon > 0\),

\[
P (|M_n(p)| > \epsilon) = P \left(J_n^{-1}(p) |W_n(p)| > \epsilon \right),
\]
\[
\leq P \left(V_{n \text{MC}}(p) \frac{p \gamma_0}{1 - p} |W_n(p)| > \epsilon \right) \quad \text{from (10)},
\]
\[
\leq P \left(\frac{1}{n} |W_n(p)| > \epsilon' \right) \quad \text{with} \quad \epsilon' = \epsilon/(p^2 \gamma_0),
\]

which tends to 0 under (1) and proves (16).
2. — For all \(k \in \{1, \ldots, n\}, \) denote \(\Gamma_{k,n} = J_n^{-1/2}(p) |\Delta_k(p)|. \) The second requirement of asymptotic normality is proving the following Lindeberg condition: \(\forall \epsilon > 0, \)

\[
\frac{1}{J_n(p)} \sum_{k=1}^{n} E \left[\Delta_k^2(p) \mid \{\Gamma_{k,n} > \epsilon\} \right] \xrightarrow{p} 0. \tag{17}
\]

A Lyapunov condition is often used instead of (17), but requires \(2+\delta \)-order moment assumptions on \(\hat{\omega}_k(p) \). An alternative approach is the following. From Markov’s inequality and since the \(\hat{\omega}_k(p) \) are increasing functions of \(k, \)

\[
P(\Gamma_{k,n} > \epsilon \mid \mathcal{F}_{k-1}) \leq \frac{\hat{\omega}_n(p)}{\epsilon^2 J_n(p)} \leq \frac{\hat{\omega}_n(p)}{\epsilon^2 J_n(p)}. \]

It follows from (16) that

\[
\frac{\hat{\omega}_n(p)}{J_n(p)} + \frac{1}{J_n(p)} \sum_{k=1}^{n-1} \hat{\omega}_n(p) = \frac{\hat{\omega}_n(p)}{J_n(p)} + \left(\frac{J_{n-1}(p)}{J_n(p)} \right) \left(\frac{\epsilon |\Delta_k^2(p)\mid \Gamma_{k,n} > \epsilon}{J_{n-1}(p)} \right),
\]

\[
 \xrightarrow{p} 1.
\]

However, by Lemma \(\delta \) \(E[\hat{\omega}_n(p)] < \infty \) which means that \(J_n(p) \sim J_{n-1}(p). \) Necessarily, \(\hat{\omega}_n(p)/J_n(p) \xrightarrow{p} 0 \) and

\[
L_{k,n} = E \left[\{\Gamma_{k,n} > \epsilon\} \right] \xrightarrow{p} 0. \tag{18}
\]

Note besides that

\[
E \left[\Delta_k^2(p) \mid \mathcal{F}_{k-1} \right] \leq E \left[\Delta_k^2(p) \mid \mathcal{F}_{k-1} \right] E \left[\{\Gamma_{k,n} > \epsilon\} \right] + \text{Cov} \left[\Delta_k^2(p), \{\Gamma_{k,n} > \epsilon\} \mid \mathcal{F}_{k-1} \right],
\]

\[
\leq \hat{\omega}_k(p) L_{k,n} + \hat{\omega}_k^2(p) \sqrt{\text{Var} \left[(p_k - p)^2 \mid \mathcal{F}_{k-1} \right]} \sqrt{\text{Var} \left[\{\Gamma_{k,n} > \epsilon\} \mid \mathcal{F}_{k-1} \right]}
\]

from Cauchy-Schwarz inequality. Since \(\text{Var}[X^2] \leq E[X] \) when \(X \in \{0,1\} \), then \(\sqrt{\text{Var}[\{\Gamma_{k,n} > \epsilon\} \mid \mathcal{F}_{k-1}]} \leq \sqrt{L_{k,n}}. \) Furthermore, denote

\[
K_{k,n}(p) = \hat{\omega}_k(p) \sqrt{\text{Var} \left[(p_k - p)^2 \mid \mathcal{F}_{k-1} \right]}
\]

From Lemma \(\gamma \) below and under (ii), then \(K_{k,n}(p) \xrightarrow{p} 0. \) Therefore, one may write

\[
E \left[\Delta_k^2(p) \mid \{\Gamma_{k,n} > \epsilon\} \mid \mathcal{F}_{k-1} \right] \leq \hat{\omega}_k(p) \beta_{k,n}
\]

with \(\beta_{k,n} = L_{k,n} + K_{k,n}(p) \sqrt{L_{k,n}} \xrightarrow{p} 0 \) from (18). Then

\[
\frac{1}{J_n(p)} \sum_{k=1}^{n} E \left[\Delta_k^2(p) \mid \{\Gamma_{k,n} > \epsilon\} \mid \mathcal{F}_{k-1} \right] \leq \frac{\epsilon |\Delta_k^2(p)\mid \Gamma_{k,n} > \epsilon}{J_n(p)} \beta_{k,n}
\]

\[
\xrightarrow{p} \frac{\sum_{k=1}^{n} \hat{\omega}_k(p) \beta_{k,n}}{\sum_{k=1}^{n} \hat{\omega}_k(p)} \tag{19}
\]
and given \(\ell_n \), Toeplitz lemma proves \(\beta_n \). Finally, \(\gamma \) and \(\beta_n \) prove the two martingale central limit theorems \(\text{Bercu, 2008} \):

\[
\begin{align*}
J_n^{-1/2}(p)\ell_n'(p) &\xrightarrow{\mathbb{L}} N(0, 1), \\
\sqrt{J_n(p)} \ell_n'(p) &\xrightarrow{\mathbb{L}} N(0, 1).
\end{align*}
\]

(20)

(21)

Lemma 4. — If \(\exists \gamma \) such that \(0 < \gamma < \infty \) and \(\frac{p-n-p}{p-p_n} \xrightarrow{\mathbb{P}} \gamma \), then, \(\forall k \geq 1 \),

\[
\text{Var} \left[\bar{\omega}_n(p_k - p)_2 \left| \mathcal{F}_{k-1} \right. \right] \xrightarrow{\mathbb{P}} \gamma + 1/\gamma - 2.
\]

Proof. — One may write

\[
\bar{\omega}_n(p_k - p)_2 = (1 - \xi_{\bar{\omega}})^{p-p_k} + \xi_{\bar{\omega}}^{p_k-p}
\]

\[
\xi_{\bar{\omega}} \left(\bar{\omega}_n(p_k - p)_2 - (p-p_k)_2 \right) + \frac{p-p_k}{p_k-p}.
\]

With \(\xi_{\bar{\omega}} \sim \mathcal{B}(\gamma) \) and from \(\left(4 \right) \), then

\[
\text{Var} \left[\bar{\omega}_n(p_k - p)_2 \left| \mathcal{F}_{k-1} \right. \right] = \frac{\bar{\omega}_n(p)}{(p_k-p_k)_2} \left[(p_k-p_k)_2 - 2 \right] \xrightarrow{\mathbb{P}} \gamma + 1/\gamma - 2.
\]

(22)

(23)

3. — A last condition is required to transfer the asymptotic normality from \(\ell_n'(p) \) to \(\hat{p}_n - p \).

Since \(p_n < \hat{p}_n < p_n \), for any \(n \) there always exists an open neighborhood \(\mathcal{V}_{\hat{p}_n} \) of \(p \) containing \(\hat{p}_n \). From twice differentiability of \(\ell_n'(p) \) and continuity of \(\ell_n'(p) \) in \(\mathcal{V}_{\hat{p}_n} \), the mean value theorem implies there exists some intermediate point \(\bar{p}_n \in \mathcal{V}_{\hat{p}_n} \) between \(p \) and \(\hat{p}_n \) such that

\[
\ell_n'(\hat{p}_n) = 0 = \ell_n'(p) + (\hat{p}_n - p) \ell_n''(\bar{p}_n)
\]

and moreover \(\hat{p}_n \xrightarrow{a.s.} p \). Thus, with \(\ell_n''(\hat{p}_n) \neq 0 \),

\[
(\hat{p}_n - p) = \ell_n'(p) (\ell_n''(\hat{p}_n))^{-1}
\]

and it is necessary to prove the LLN

\[
\frac{\ell_n''(\hat{p}_n)}{\ell'(p)} \xrightarrow{\mathbb{P}} 1
\]
to obtain the final result (Theorem 3 in Crowder (1983)), combining (23) with (16) and (20). Based on (iii) this last LLN is straightforward. Indeed, \(\forall k \leq n \),
\[
\frac{|p_k^+ - \tilde{p}_n|}{p_k^+ - p} - 1 = \frac{|\tilde{p}_n - p|}{p_k^+ - p} \leq \frac{|\tilde{p}_n - p|}{p^n_+ - p} \xrightarrow{p} 0.
\]
Similarly \((\tilde{p}_n - p_k^-)/(p - p_k^-) - 1 \xrightarrow{k \to n \to \infty} 0 \). With \(p_{k+1} \in \{p_k^-, p_k^+\} \) then, for \(k \in \{0, \ldots, n-1\} \),
\[
\gamma_{k+1,n} = (\tilde{p}_n - p_{k+1})^2 \tilde{\omega}_{k+1}(\tilde{p}_n) \xrightarrow{p} 1.
\]
Furthermore, some calculus proves that \(\kappa_{k,n} = \tilde{\omega}_{k+1}(\tilde{p}_n)/\tilde{\omega}_{k+1}(p) \xrightarrow{k \to n \to \infty} 1 \). Then, with \(-\ell''_n(p) = \sum_{k=1}^n \Delta^2_k(p) \),
\[
\frac{\ell''_n(\hat{p}_n)}{\ell''(p)} = \frac{\sum_{k=1}^n \tilde{\omega}_k(p)\kappa_{k,n} \gamma_{k,n}}{\sum_{k=1}^n \tilde{\omega}_k(p)} \xrightarrow{k \to n \to \infty} 1 \text{ from Toeplitz lemma.}
\]

Proof of Proposition 3.4 — Using the notations of the previous proof, note that \(\hat{J}_n(p) = \ell''(p) \hat{p}_n \). By twice continuity and derivability of \(\hat{J}_n^{-1}(.) \) in \([\hat{p}_n^-, \hat{p}_n^+] \), a Taylor expansion gives
\[
\hat{J}_n^{-1}(\hat{p}_n) = \hat{J}_n^{-1}(p) - \frac{\hat{J}_n'(p)}{\hat{J}_n^2(p)} (\hat{p}_n - p) (1 + o(1)).
\]
After some calculus,
\[
\frac{\hat{J}_n^{5/2}(p)}{\hat{J}_n'(p)} \left(\hat{J}_n^{-1}(\hat{p}_n) - \hat{J}_n^{-1}(p) \right) = R_n U_n + R_n Z_n
\]
with \(R_n = \sqrt{\hat{J}_n(p)/\hat{J}_n'(p)} \xrightarrow{p} 1 \) from (10), \(U_n = \text{sgn}(\hat{J}_n'(p))\sqrt{\hat{J}_n(p)} (\hat{p}_n - p) (1 + o(1)) \xrightarrow{p} \mathcal{N}(0,1) \) from Theorem 3.1 and
\[
Z_n = \frac{\hat{J}_n^{3/2}(p)}{\hat{J}_n'(p)} \left(\frac{\hat{J}_n(p)}{\hat{J}_n'(p)} - 1 \right).
\]
Thanks to Slutsky’s theorem, it is enough to show that \(Z_n \xrightarrow{p} 0 \) to prove the statement of the proposition. Notice that
\[
\hat{J}_n'(p) = \sum_{k=1}^n \tilde{\omega}_k^2(p) \{2p - (p_{k-1}^+ + p_{k-1}^-)\}.
\]
which is always nonzero assuming (iv). Hölder’s inequality gives

$$\frac{\sum_{k=1}^{n} \tilde{\omega}_k(p)}{\sum \tilde{\omega}_k^2(p) \left\{ 2p - \left(p_{k-1}^+ + p_{k-1}^- \right) \right\}} \leq \frac{\sum \left\{ 2p - \left(p_{k-1}^+ + p_{k-1}^- \right) \right\}^{-1}}{\sum_{k=1}^{n} \tilde{\omega}_k(p)}$$

hence

$$\frac{j_n^{3/2}(p)}{|J_n(p)|} \leq \frac{\sum \left\{ 2p - \left(p_{k-1}^+ + p_{k-1}^- \right) \right\}^{-1}}{\sqrt{\sum_{k=1}^{n} \tilde{\omega}_k(p)}}$$

Another Hölder’s inequality gives

$$\frac{j_n^{3/2}(p)}{|J_n(p)|} \leq \frac{\sum_{k=1}^{n} \left(p_{k-1}^+ - p \right) \left(p - p_{k-1}^- \right)}{2p - \left(p_{k-1}^+ + p_{k-1}^- \right)}$$

and simple calculus shows that each term of the sum is strictly smaller than 1. Then

$$|Z_n| \leq \sqrt{n} \left| \frac{j_n(p)}{J_n(p)} - 1 \right| \leq \frac{2p^2}{\sqrt{n}} \sum_{k=1}^{n} (\tilde{\omega}_k(p) - \mathbb{E} [\tilde{\omega}_k(p)])$$

from (10), then $Z_n \xrightarrow{p^*} 0$ if (i) remains true $\forall \delta \geq 1/2$. \qed
This supplementary section first provides details about the implementation of sweepline algorithms to solve Klee’s measure problem, which allows for an exact computation (modulo rounding errors) of the probability bounds \((p_n^-, p_n^+)\); a pseudo-code is given for direct use. Then a general result is given about the preservation of monotonicity when the uniform input \(x = (x_1, \ldots, x_d)\) results from an inverse transformation of the joint cdf.

B.1. A sweepline algorithm to compute volumes of hypercubic unions

Sweepline (or plane sweep) algorithms are commonly used to jointly detect and sort intersections between segments (van Leeuwen & Wood, 1981). The \(d\)-dimensional volume is calculated recursively by exploring all \(n-1\)-dimensional “slices” of the \(d\)-th dimension. See Shamos & Hoey (1976); de Berg et al. (1997) and Chlebus (1998) for more explanations. When segments are parallel or perpendicular such as their intersections define a union of hypercubes sharing the same orthogonal basis, the volume calculation is known as Klee’s measure problem (Erickson, 1998; Chan, 2008). A pseudo-code follows to be used for direct implementation.

Let \(\Delta_n\) be the \(n \times d\) matrix of \(n\) vertexes \((x_1, \ldots, x_n)\) defining the union of hypercubes (for an example, see Figure 1). In the following pseudo-code, the volume considered is \(V_n^-\), also defined by the points of \(\Delta_n\) and the origin \((0, \ldots, 0)\) of the \(-\)space.

Algorithm \(\text{VOL}(\Delta_n, n, d)\).

1. Let \(\Delta_n' = \sigma_{n,d}(\Delta_n)\) be the \(n \times d\) permutation of \(\Delta_n\) arranged in the increasing order of the \(n\)-vector of \(d\)-dimensional components.
2. Remove the \(d\)-dimensional components from \(\Delta_n'\) and denote \(\text{Vol}_n^0 = 0\).
3. For \(i \in \{1, \ldots, n\}\),
 (a) Consider the slice \(\Delta_n^{(i)} = \{x'_1, \ldots, x'_n \in \Delta_n'\}\).
 (b) Denote \(\text{Vol}_n^{(i)}\) the \(d-1\)-dimensional volume of \(\Delta_n^{(i)}\).
 If \(\dim Z_n^{(i)} = 1\),
 \(\bullet\) \(\Delta_n^{(i)}\) is a \(n-i+1\)-vector and \(\text{Vol}_n^{(i)} = \max\{x \in \Delta_n^{(i)}\}\);
 \(\bullet\) force \(i\) to the index of this maximal component in \(\Delta_n'\);
 else \(\text{Vol}_n^{(i)} = \text{VOL}(\Delta_n^{(i)}, n-i+1, d-1)\).
 (c) Let \(\Lambda_i = \Delta_n^*[i, d] - \Delta_n^*[i-1, d]\) the size of \(\Delta_n^{(i)}\) (assuming \(\Delta_n^*[0, d] = 0\)).
 (d) Compute \(\text{Vol}_n^{(i)} = \Lambda_i \cdot \text{Vol}_n^{(i)}\) the \(d\)-dimensional volume.
 (e) Update the total volume \(\text{Vol}_n = \text{Vol}_n + \text{Vol}_n^{(i)}\).

In practice, this algorithm seems to remain little used for dimension \(d\) larger than 2 or 3. This is not surprising because its complexity \(C(n, d)\) (the number of runs for a \(d\)-dimensional hypervolume between \(n\) points) is \(O(n^d)\). This appears when considering the first developments...
ACCELERATED MONTE CARLO UNDER MONOTONICITY

29

of \(C(n, d) \):

\[
C(n, d) = \sum_{k=0}^{n-1} C(n - k, d - 1) = \sum_{k=0}^{n-1} (k + 1)C(n - k, d - 2),
\]

\[
= \sum_{k=0}^{n-1} (\sum_{p=0}^{k-1} p) C(n - k, d - 3),
\]

\[
= \sum_{k=0}^{n-1} \frac{(k + 1)(k + 2)}{2} C(n - k, d - 3),
\]

...

Note however than the fastest version of this algorithm, proposed by Overmars & Yap (1991), runs in time \(O(n^{d/2} \log n) \) for \(d \geq 3 \). An alternative approach was presented by Chlebus (1998) with the same asymptotic performance, although its exposition was restricted to dimensions 3 and 4. At the present time the computational difficulties raised by diminishing the cost still remain open problems, although some slight improvements have recently been found by Chan (2008). Some ideas of possible improvements could possibly come from a parallel with multi-objective optimization contexts (cf. Remark 1 in the article). Indeed, algorithms running in polynomial time \(O(n^{k_1}d^{k_2}) \) to compute hypervolume metrics of Pareto frontiers have already been proposed by Fleischer (2003).

B.2. Preservation of monotonicity through space transformation

Consider \(\tilde{g} \) a monotonic function with physical input random vector \(y = (y_1, \ldots, y_d) \) and denote \(F \) their joint cumulative distribution function (cdf). The methodology proposed in the article applies using the transformed function \(g = \tilde{g} \circ F^{-1} \), provided \(F^{-1} \) is a globally increasing function of independent uniform inputs \(x = (x_1, \ldots, x_d) \). This is ensured when \((y_1, \ldots, y_d) \) are independent, since \(F^{-1} = (F_1^{-1}, \ldots, F_d^{-1}) \) where \(F_i \) is the \(i \)th marginal cdf. In dependent cases (and possibly when the physical inputs mix continuous and discrete distributions), the generalized Rosenblatt’s transform (Rüschendorf, 2009) may be used if the inputs can be stochastically conditioned, namely they can be sorted to get the explicit writing

\[
F(y_1, \ldots, y_d) = F_1(y_1) \prod_{i=2}^{d} F_{i|1,\ldots,i-1}(y_i|y_1, \ldots, y_{i-1}).
\]

Under this assumption, next lemma provides an intuitive sufficient condition for \(F^{-1} \) to be an increasing function of all \(x_i \sim U[0, 1] \).

Lemma 5. — Assume that for \(i = 2, \ldots, d \), there exists a mapping \(f_i \) and a set of (possibly random) parameters \(\theta_i \) independent of \(Y_1, \ldots, Y_{i-1} \) such that:

(i) \(: Y_i = f_i(Y_1, \ldots, Y_{i-1}, \theta_i) \),

(ii) \(: f_i \) is a globally increasing function of \(Y_1, \ldots, Y_{i-1} \);

then \(F^{-1}(x) \) is an increasing function of \(x \).

Multivariate normal distributions are often selected as approximate ways to tackle the difficulties of assessing correlations between input physical parameters, and therefore deserve particular interest in the field of computer experiments. If Chen (2009) obtained general results about the preservation of monotonicity when these distributions are given under the form of
Gaussian copulas, an immediate corollary of Lemma 5 is to notice that any standard binormal input distribution with positive correlation coefficient μ ensures that $F^{-1}(x)$ is increasing. Indeed, $Y = (Y_1, Y_2)$ where $Y_1 \sim N(0, 1)$ and $Y_2 = \mu Y_1 + \sqrt{1 - \mu^2} \theta$ with $\theta \sim N(0, 1)$. A similar result can be found for the class of elliptical bivariate copulas.

Proof of Lemma 5 — Assume (i). $\forall t \in R$, $\forall k \in \{2, \ldots, d\}$, denote $p^k_{\theta_i}(Y_1, \ldots, Y_{i-1}) = P(f_i(Y_1, \ldots, Y_{i-1}, \theta_i) < t|Y_1, \ldots, Y_{i-1})$. Then, $\forall z \in R$, let $A^t_{Y_1,\ldots,Y_{i-1}}(z)$ denote the event $\{p^k_{\theta_i}(Y_1, \ldots, Y_{i-1}) \leq z\}$. By definition,

$$F_{i|1,\ldots,i-1}^{-1}(z|Y_1,\ldots,Y_{i-1}) = \inf \left\{t \in R \mid P(A^t_{Y_1,\ldots,Y_{i-1}}(z)) = 1\right\}.$$

Assuming (ii), $p^k_{\theta_i}(Y_1, \ldots, Y_{i-1})$ is a globally decreasing function of Y_1, \ldots, Y_{i-1}. Thus, given t, the occurrence of event $A^t_{Y_1,\ldots,Y_{i-1}}(y)$ similarly decreases. Necessarily t increases, hence the minimum value of all $t \in R$ such that $P(A^t_{Y_1,\ldots,Y_{i-1}}(z)) = 1$ increases. Hence $F_{i|1,\ldots,i-1}^{-1}$ is a globally increasing function of Y_1, \ldots, Y_{i-1}, $\forall i \in \{2, \ldots, d\}$. Since $Y_1 = F^{-1}(X_1)$ is naturally an increasing function of X_1, a simple recursive reasoning shows that $F_{i|1,\ldots,i-1}^{-1}$ is an increasing function of X_1, \ldots, X_{i-1}. The statement of the lemma follows. □