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ITO SDE-BASED GENERATOR FOR A CLASS OF NON-GAUSSIAN
VECTOR-VALUED RANDOM FIELDS IN UNCERTAINTY
QUANTIFICATION*

JOHANN GUILLEMINOT AND CHRISTIAN SOIZE}

Abstract. This paper is concerned with the derivation of a generic sampling technique for
a class of non-Gaussian vector-valued random fields. Such an issue typically arises in uncertainty
quantification for complex systems, where the input coefficients associated with the elliptic opera-
tors must be identified by solving statistical inverse problems. Specifically, we consider the case of
non-Gaussian random fields with values in some arbitrary bounded or semi-bounded subsets of R™.
The approach involves two main features. The first one is the construction of a family of random
fields converging, at a user-controlled rate, towards the target random field. Each of these auxialiary
random fields can be subsequently simulated by solving a family of It6 stochastic differential equa-
tions. The second ingredient is the definition of an adaptive discretization algorithm. The latter
allows refining the integration step on-the-fly and prevents the scheme from diverging. The proposed
strategy is finally exemplified on three examples, each of which serving as a benchmark, either for
the adaptivity procedure or for the convergence of the diffusions.

Key words. random field, It6 stochastic differential equation, adaptive algorithm, uncertainty
quantification

1. Introduction.

1. Notation. For later reference, the following matrix sets are introduced:
) M, (R) is the set of all the (¢ x ¢) real matrices.
) M2 (R) is the set of all the (¢ x ¢) symmetric real matrices.

For x and y in R", we denote by (x,y) = >, 7;y; and ||z|| = (z, x)/? the Euclidean
inner product and the associated norm, respectively. Let {e!,...,e"} be the canonical
basis of R”. The null and identity (¢ x ¢) matrices are denoted by [0,] and [I,]. Let
a Ab = min(a,b) and a V b = max(a,b). Notations ¢, ¢, and ¢, are used to denote
normalization constants, the values of which may vary from line to line. Let E denote
the mathematical expectation.

Let {E(x), = € R}, d > 1, be a second-order mean-square continuous cen-
tered homogeneous R™-valued Gaussian random field, defined on a probability space
(©,T,P) by a continuous M, (R)-valued normalized correlation function (x,2’) —
[Rz(x — )] such that

[Re(z — )] = diag(Ri(z — '),..., Rp(x — '), Y(z,z') e RIxRY, (1.1)

wherein each normalized correlation function @ +— 9R;(z) is defined from RY into
[—1,1] and is such that :%;(0) = 1 for 1 < ¢ < n (hence, the components of {E(x), x €
R?} are mutually independent Gaussian random fields). We denote by = — E(=x, 6,
the r-th independent realization of this Gaussian random field. Accordingly, and for
any fixed value of @, E;(0,) denotes the r-th realization of the R"-valued Gaussian
random variable B, = Z(x).

*PREPRINT VERSION (SEE SIAM J. SCI. COMPUT. 2014 SOCIETY FOR INDUSTRIAL
AND APPLIED MATHEMATICS VOL. 36, NO. 6, PP. A2763-A2786).
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1.2. Preliminaries. This work addresses the random generation of a large class
of random fields with values in some subset of R™. Specifically, it is concerned with
the simulation of a class of random fields:

e That are non-Gaussian and of second-order.
e For which the family of first-order marginal probability distributions (m.p.d.f.)
and spatial correlation lengths must be prescribed.
e That contains the particular case of homogeneous random fields (for the trans-
lation in RY).
Models belonging to such a class are referred to as Prior Algebraic Stochastic Models
(PASMS) in the literature of uncertainty quantification (UQ) and are typically devoted
to identification solving underdetermined statistical inverse problems [47] [40]. In
order to fix the main ideas and concepts that will be discussed throughout, we first
denote by {A(x),z € Q} the non-Gaussian random field, defined on (©,7,7P), to be
generated. It is assumed that this random field takes its values in some set S € R™
and is indexed by an open bounded domain € in R%. Let S°, S and S = S\S° denote
the interior, closure and boundary of S, respectively. The notation « | S means that
x approaches the boundary 9S8 from S°. Let {p'(-;@)}zcq be the prescribed family
of first-order m.p.d.f. For most UQ applications, the aforementionned random field
corresponds to a vector-valued representation of a random field with values in some
set Ml (R) € MJ(R) (with n < ¢(¢ + 1)/2), the matrix-valued random field being
typically interpreted as the stochastic coefficient of an elliptic operator.

As a matter of illustration, let {[A(x)],z € 2} be a random field with values in

M (R) € M3 (R) such that:

A1($) AQ(QZ‘) 0
[A(z)] = |Aso(®) As(x) 0 |, YzeQ. (1.2)
0 0 A4(£IJ)

Let a = (a1,a2,a3,a4) € R: The random field {A(z),z € Q} such that A(x) =
(A1(x), As(x), As(x), Ag(x)) for all x in Q thus takes its values in

S={acR*|a;>0,a3>0,a1a3 —a3 >0 ,a4 >0}, (1.3)
and
§:{a€R4|a120,@320,@@3—@%20,@420}. (1.4)

This basic example shows that even for a simple case, the boundary dS can be rather
complex, and it is worth mentioning that this complexity can fairly be expected to
grow significantly as the dimension n increases.

1.3. Overview of the approach. The generation of non-Gaussian stochastic
processes or random fields has been extensively discussed in the literature, at least for
the case S = R™. A first class of algorithms is based on the construction of nonlinear
memoryless transformations acting on Gaussian models (see [3] [42] for a recent survey,
among others). Such transformations can be defined, for instance, through Hermite
series expansions (see [18] [22] [41] and the references therein). The parameters of
the underlying Gaussian model(s), as well as the coefficients of the expansions, are
then numerically calibrated so that the image by the nonlinear mapping exhibits some
target probabilistic properties — in most cases, a target marginal distribution and a
specified correlation structure. In the present case where only the system of first-order
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marginal distributions is concerned, and since A(x) is a second-order vector-valued
random variable, a convenient way to define such a mapping is to have recourse to a
pointwise polynomial Chaos expansion (PCE) [20] (see also [46] and [32]):

+o0o
A(x) = Z ao(®)ha(Bs), Ve, (1.5)
a,|a|=0
in which a = (o,...,a,) € N is a multi-index with modulus | = ), ; and

{ha}a are the multidimensional Hermite polynomials. In effect, the mean-square
convergent expansion defined by Eq. (1.5) is truncated after polynomials of degree
Npece, that is:

Npce
A@)~ Y a®@)ha(Es), VoeQ. (1.6)

a,|al=0

From a random generation point of view, the use of such an expansion is certainly
very efficient, as it can easily be implemented using fast matrix-based operations. In
addition, the generation of a realization of {A(x),z € Q} requires the simulation of a
single realization of the Gaussian random field {E(x), = € R?} only — as opposed to
the second class of algorithms detailed below. However, one should note that the use
of PCE rises some practical numerical difficulties which may degrade the sampling
quality, among which the identification of the deterministic fields { — a,(x)}, (even
for moderate values of n) and numerical convergence issues to name a few.

A second general class of techniques involves transformations with memory and
essentially relies on the construction of stochastic differential equations. The algo-
rithm which is proposed and numerically studied in this paper belongs to this second
class of numerical strategies and is devoted to the case where S is any bounded or
semi-bounded part of R™. Broadly speaking, the approach consists in prescribing
the family of target first-order marginal probability distributions as the family of
invariant measures associated with a family of diffusion processes, the latter being
defined as the stationary solutions of a family of Itd stochastic differential equations
(ISDEs). Conceptually, such an approach amounts to alternatively define the random
field {A(x), x € Q} through the following mapping:

A(z) = Ho (W (r,z), r>01) , VYoeQ, (1.7)

with H a nonlinear operator and {W(r,x), r > 0} a R"-valued normalized Wiener
process defined on (©,7,P). The family {{W (r,x), r > 0}},cq of Wiener processes
thus introduced will be defined more precisely in § 2.1.

1.4. Outline. The outline of the paper, along with the intended contributions
of this work, are as follows:

e In § 2, the theoretical background used for constructing each ISDE in the
so-called free case (that is, for S = R™) is first recalled for completeness.
Specifically, we propose a particular definition of a family of Wiener pro-
cesses that allows to generate spatial dependendies while solving the family
of ISDEs. The definition of the latter is further addressed, and general as-
sumptions related to the existence and uniqueness of invariant measures are
recalled.
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e Section 3 is concerned with the constrainted situation where S is any part of
R™. In order to handle this case, an approximating family of non-Gaussian
random fields, the definition of which is provided in § 3.2, is introduced.
The strategy involves the construction of a family of approximating potential
functions through a regularization procedure defined in § 3.3.

e In § 4, we propose a novel adaptive integration algorithm for the family of
ISDEs. The adaptation is performed on-the-fly, depending on the current
values of the drift coefficients. It prevents from using a too small integration
step — while ensuring a reasonably fast convergence towards the stationary
solutions.

e The proposed numerical strategy is finally exemplified through three appli-
cations in § 5. The first one deals with the restriction of a Gaussian bivariate
random variable to a compact support. The latter, as well as the imposed
variances, are calibrated such that the particle reaches the boundary of admis-
sible domain S with a quite large probability, hence providing a benchmark
for the regularization and adaptivity procedures. The second application
addresses a regularization on a matrix manifold. In particular, a reference
generator is used to illustrate the convergence in probability distribution for
the proposed algorithms. The last exemple exemplifies the simulation of a
non-Gaussian random field with values in the positive-definite cone.

2. Theoretical background for the free case.

2.1. Definition of a family of Wiener processes. Let W = {W(r,z) =
(Wi(r,x),... . Wy(r,z)), r € RT, & € Q} be a R"-valued centered second-order
Gaussian random field such that:

(i) For all  in Q, W(0,x) = 0 a.s.

(ii) The generalized r-derivative D, W of W is the cylindrical normalized Gaus-

sian white noise N (see e.g. [8]).
The covariance generalized function [Cn] of N is written as

V(z,2)eQxQ, VreR, [Cn(z,z' t+T,t)] =70 (7)Rn(z,x)], (2.1)

where dp is the Dirac generalized function at the origin of R. In Eq. (2.1), [Rn]
denotes the continuous M, (R)-valued function defined on  x Q as

Ry (z,2')] = [R=(z — z')] (2.2)

where [Rg]| is the correlation function of the homogeneous Gaussian random field
{E(zx),x € R?} defined in § 1.2. It follows that for all = fixed in Q, {W (r,x),r > 0}
is a normalized R"-valued Wiener process, that is, {W (r,x),r > 0} satisfies the
following properties:
(i) The n real-valued stochastic processes {W1(r,x),r > 0}, ..., {W,(r,x),r >
0} are mutually independent.
(ii) W(0,z) =0 a.s.
(iii) The process {W (r,x),r > 0} has independent increments.
(iv) For all 0 < s < t < +o00, the increment AW (s,t,x) = W (t,x) — W(s,x) is
a R™-valued second-order random variable which is Gaussian, centered and
whose covariance matrix reads as (t — s)[I,].
Note that {W (r, z), = € R?} is then a homogeneous colored Gaussian stochastic field
for any fixed value of r € RT.



GENERATION OF NON-GAUSSIAN RANDOM FIELDS 5

2.2. Construction of a family of ISDEs. Throughout this section, we set
S = R". Tt is assumed that for all x in €, each element p*(-;x) of the family of
prescribed m.p.d.f. takes the following algebraic form:

p'(u;x) = ¢ exp{—®(u;x)}, YuecR", (2.3)

in which {®(-;x)}zeq is a family of continuous real-valued functions defined on R™.
In what follows, those functions are classically referred to as the potential functions.

Let F'SPE be a family of It6 stochastic differential equations indexed by = € €,
each element of which writes for r» > 0:

dU (r,x) = V(r,x) dr,

dV(r,x) = (—Vu(I)(U(r, xT);xT) — %V(r, :c)) dr +/fz AW (r, ) (2.4)

where { fo }xcq is a family of free RT-valued parameters, U (0, ) = U2 and V (0, z) =
V) almost surely (a.s.) and {W(r,z), x € Q, r € R} is the Gaussian random
field defined in § 2.1. The probability distribution Pyo vo(du,dv;x) of (U, V)
is assumed to be known. Note that a deterministic initialization vector (u2,v2) €
R" xR™ can be used, in which case Pyo, vo(du,dv;x) = do(u—uy)Q@d(v—ov3), with
o the Dirac measure at the origin of R”. We denote by {bz : R™ x R" — R?"}_q
and {[oz] € M5 (R)}zeq the families of drift vectors and diffusion matrices associated

with the family of solution diffusion processes, defined for any « fixed in €2 as

by (u,v) = [ V() - f?% 1 (2.5)
and
(00] = anllaa]T . [as] = [ . } (2.6)

for all (u,v) € R" xR™. We first assume that each ISDE of the family FSPE admits a
unique solution which is defined almost surely for all » > 0 and that for r — +o00, there
is an asymptotic stationary solution which is denoted as {(U*®(r,x), V*(r,x)),r > 0}.
We denote as {P*(, ;) }zcq the family of invariant measures associated with the
family of stationary solutions {{(U®(r,x), V*(r,x)),r > 0}}zecq and introduce the
family {p*(-, ;) }xcq of probability density functions such that for x fixed in Q:

P*(du,dv; x) = p°(u,v;x) du dv . (2.7)

The construction of a unique asymptotic stationary second-order solution for any
x € Q requires the family {®(-;x)}zcq to satisfy a few properties. Specifically, each
element of the the family {®(-;x)}zcq of potential functions is assumed to satisfy
the following properties, for any « fixed in €2

(H1) u— V4u®(u;z) is a locally bounded function from R™ into R™.

(H2) inf  ®(u;x) — 400 as R — +oo.

[lu|lgn >R

(H3) inf ®(ujx)=omn  min c R,
ueR”

(H) [ IVub(uio)p (wa)du < 4.
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Under the above assumptions, each element p°(-;x) of the family {p°(-;x)}rcq is
the unique solution of a steady-state Fokker-Planck equation [48], hence implying the
existence and uniqueness of the associated invariant measure P5(-,-; x) (see Eq. (2.7)).
It can further be shown! [45] that for all = in Q:

; 1
PP(u,v;x) = ¢y exp{—§||v\|2 —®(u;x)}, V(u,v) e R" xR". (2.8)
Therefore, one has
pi(u;x) = / p’(u,v;z) dv, VYueR" (2.9)

in view of Eq. (2.3). It follows that for any « fixed in Q,

TEIJPOOU(T, x) = A(x) (2.10)
in probability distribution. It can be deduced that solving the family of ISDEs allows
sampling a family {U®(r*, €} zcq (with 7* sufficiently large) of random variables which
defines a non-Gaussian random field admitting {p*(- ; @) }zeq as its family of first-order
m.p.d.f. and whose correlation structure results from the nonlinear transformation of
the n correlation functions {Ry, ..., R, }.

3. Theoretical background for the constrained case. Let us now consider
the general situation where § is any part, bounded or semi-bounded, of R™. In this
case, the potentiel functions of the family {¥(-;x)}zcq do not satisfy assumption
(H;p). We first provide in § 3.1 a typical example where such a situation is met in
practice. The proposed strategy is then outlined in § 3.2. In effect, it relies on the
definition of regularized potential functions, the construction of which is addressed in
§ 3.3.

3.1. An illustrative example in stochastic linear elasticity. In the frame-
work of uncertainty quantification, the development of PASMs has been pioneered in
[44] for the class of elliptic operators, opening up the way for extensions and gen-
eralizations to various situations (such as the modeling of permeability or elasticity
tensor random fields with symmetry constraints) in [9] [10] [11] [12] [13]. Such models
are intended to ensure that the modeled random quantity does satisfy all the required
fundamental mathematical properties (e.g. positive-definiteness) and are tailored to
allow for an inverse identification through a limited parametrization. In this context,
one is typically concerned with the construction of the family {pa(z)}zcq of first-order
m.p.d.f. associated with the S-valued random field {A(z),z € Q}, with? S C R™.
Following [44], a convenient way to achieve such a construction is to invoke the ma-
ximum entropy (MaxEnt) principle [23] [24]. The available information on random
variable A(x) is then assumed to be synthesized by the following constraint (which
does not include the normalization condition):

E{g(A(x))} =hy, YxreQ, (3.1)

n order to avoid any possible confusion, it is recalled here that cz denotes a normalization
constant whose value may vary from line to line.

2For some particular cases, one may recover a free case construction by using an alternative
algebraic construction based on the exponential map; see [12] for instance.
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in which a — g(a) is a measurable mapping defined from a given set V O S into
R™ m > 1, and {hg}zcq is a family of vectors in R™. It can be shown that the
MaxEnt-based p.d.f. @ — pa(z)(a) takes the form:

Pa@) (@) = 1s(a) ¢z exp{—(Az,g(a))} , Ve, (3.2)

wherein a — 1s(a) is the indicator function for the support S of po() and {Ag }zeq is
a family of vector-valued parameters defined on a subspace H of R™, the definition
of which ensures the integrability of the p.d.f. given by Eq. (3.2). It is seen that
the obtained p.d.f., defined by Eq. (3.2), takes a form that is similar (except for the
presence of the indicator function) to the one stated by Eq. (2.3).

3.2. Definition of an approximating family for the non-Gaussian ran-
dom field {A(z),z € Q} using the free space construction. Following the above
discussion, let us consider the situation where each element p*(-;x) of the family of
prescribed marginal p.d.f. takes the form

pi(u;x) = ¢ exp{—-V(u;z)}, YucS, (3.3)

in which S denotes a semibounded (or bounded) subset of R™. We assume the follow-
ing algebraic form (which is algebraically similar to the one derived from a MaxEnt
approach; see Eq. (3.2)) for the potential function ¥(-;x):

U(u;z) = —log(ls(u)) + (Az,g9(u)) , VueS, (3.4)

with A € Hy a given vector and g : V — R™ a measurable mapping. The target
p-d.f. thus reads as:

p'(wz) = 1s(u) ca exp{—(Az.g(u))}, Yues. (3.5)

Because of the indicator function, the potential function defined by Eq. (3.4) cannot
be readily handled by using the derivations introduced in § 2 and necessitates the
development of a specific methodology. For this purpose, we propose to proceed in
two steps.

First of all, an additional family {U.(-;x)}zcq of potential functions, with 0 <
€ < 1, is introduced. Specifically, this family is such that for all « in 2, each function
U (52):

(i) Is defined by

U (u;z) = —log (15(w)) + (Az,g(u)) , Yu eV, (3.6)

where 15 denotes a positive regularized indicator function (defined in § 3.3)
such that lim.jo 15 = 1s and V is defined more precisely in the assumption
below.
(ii) Satisfies hypotheses (H1—Hy).
(iii) Is such that lim. o ¥ (-;2) = ¥(-; ) in S°.
Throughout the paper, it is assumed that the family {U(-;x)}zcq satisfies the fol-
lowing assumption.

Assumption 1. Let @ be fized in Q. The potential function U(-;x) defined by
Eq. (3.4) is assumed to be:
e Fither repulsive on 9S, in which case it is further assumed that the mapping
g is defined on V = S°.
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e Or non-repulsive on 0S, in which case it is assumed that g is defined on
V =R" and such that:

/ exp{—Y.(u;xz)}du < +oo, Ve>0. (3.7
Let A.(x) denote the random variable defined by the p.d.f.
pi(usx) = ¢, exp{—V (u;z)}, YueV, (3.8)
such that:
limpf(; @) =p'(5@), Veel. (3.9)

For any fixed value of ¢, we then consider solving a family FSPE of ISDEs whose
elements read as

dU.(r,x) = V(r,x)dr ,

dV (r,x) = (—Vuklle(Ue(r, xT);T)— ];mV;(nw)) dr 4+ \/fedW (r,x) (3.10)

for r > 0 and « fixed in Q. Eq. (3.10) is supplemented with suitable initial conditions.
All the parameters (initial conditions, and so on) associated with the above family

FISPE are denoted using notations similar to those introduced in § 2, except for the
subscript e. For any fixed value of € and following the derivations in § 2, one has:
lim U (r,x) =A(x), VeeQ. (3.11)
r——4o0

Thus, the family {UZ(r*,x}zcq defines, in the stationary regime (i.e. for a suffi-
ciently large value of r*), a non-Gaussian random field {A.(x), xz € Q} that exhibits
{pt(-; ) }acq as its family of first-order m.p.d.f. The nonlinear transformation (see
e.g. Eq. (1.7) for the free case) and the correlation function of the centered Gaussian
random field {E(x), = € R?} completely define the system of marginal distributions
of random field {A.(x),x € Q}. When the first-order m.p.d.f. is invariant under
translation in R¢, this mapping is independent of & and random field {A.(z),z € Q}
is homogeneous for the translation in R?. Finally, for all = fixed in Q, if Eq. (3.9)
holds, then the sequence {A.(x)}.>o converges (in probability distribution) towards
A(x) as e | 0.

In a second step detailed in § 4, the use of an adaptivity procedure for the dis-
cretization of each ISDE is investigated. To this aim, we build on the algorithm
proposed by Lemaire in [31] for the approximation of diffusion processes with non-
globally Lipschitz drift vector fields. A key feature of the algorithm (which is detailed
in § 4) is that the stochastic time step is automatically refined whenever the current
state goes closer to the boundary of the admissible space, hence avoiding the use of a
too small integration step that may slow down the convergence towards the stationary
solution (and thus, increase the global CPU-time). At this stage, it should be noted
that this paper is not concerned with the general study of some optimal adaptation
mechanism or scheme for the discretization of stochastic differential equations (the
optimality being understood in the sense of some error metric, e.g. a Ly norm). The
interested reader is referred to the large literature on this topic; see for instance [26]
[27] [38] for the definition of algorithms in the case of scalar stochastic differential
equations with an additive noise; see e.g. [28] and the references therein for a discus-
sion and the derivation of an alternative adaptation approach controlled by the drift
coefficient.
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Remark 1. The first case in Assumption 1 is especially relevant to physically
sound UQ analysis, in which one is usually concerned with the modeling of random
variables with values in M; (R). In this case, it is usually required that the vector
representations A(x) and A(xz)~! are both second-order random variables, that is,

E{||A(z)|?} < +oo, E{[|A(x) |?} <400, VxecQ. (3.12)

It can then be shown that a sufficiently fast decrease of the probability measure
near the origin 0 € 9§ of R™ is required for Eq. (3.12) to hold [43], meaning that
the gradient of the potential function significantly increases in the neighbourhood
of S. This important feature, combined to the additional repulsion generated by
the regularized indicator function, makes the associated potential function strongly
repulsive near 0S8, so that U is trapped inside the admissible domain S and never
reaches the boundary in practice (see § 5.2). For V = R", the point U is allowed to
go beyond 9S (in a way that depends on the selected value of €) and is then pulled
back into § in finite time by the repulsion generated by the sole regularized indicator
function (see § 5.1), hence avoiding the use of a rejection-like generation algorithm.
This repulsive effect allows, through a simple particle tracking, to accomodate the
case where the generator is subsequently plugged into a formulation which requires
that U € S° or U € S almost surely at any point 2 in Q. The tracking procedure may
for instance consists in selecting, for each simulation run, a time instant ¥* > r* such
that U(7*,z) € 8° (or U(7*,z) € S) for all z in Q — such a strategy may, however,
increase the computational time for simulations performed over large lattices.

Remark 2. Below, we briefly discuss an alternative approach following a strat-
egy similar to that introduced above, except that the formulation is based on a clas-
sical Metropolis-Hastings algorithm [35] [25]. Assume first that the random field
{A(x),z € Q} under consideration has been discretized and must be accordingly
sampled over a grid defined by a set {z!,..., 2V} of N non-overlapping points. Upon
using the same generation structure as the one followed for the discretization of each
ISDE (see § 4), a Metropolis-Hastings-like generation scheme for the random field can
be readily obtained as

A(z') = lim UF@'), Vie{l,...,N}, (3.13)
k—+oco
where
Uk+1(mz) - Uk(ml) +on H 1[0;IIliIl(1,q;k+1))] (a.§k+1)) Ew(i) (0k+1) ) (314)
j=1

and U°(x?) = uom,;, with ug an arbitrary initialization vector in §°. In Eq. (3.14),

on > 0 denotes the standard deviation for the Gaussian transition kernel (see [39]
for a discussion regarding the tuning of this parameter), {a;kﬂ) ;\/:1 is a set of N
independent realizations of a random variable that is uniformly distributed over [0, 1]
and

(k+1) _ P (U*(@) + 07 B (Bk41))
% LU (a)) ’

Besides its simplicity (for implementation in particular), the main advantage of such
a strategy is that it can readily handle any type of target m.p.d.f. without requiring

Vjie{l,...,N}. (3.15)
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the convergence of a sequence of approximating solutions to be studied. Nevertheless,
it should be pointed out that such an algorithm necessitates the acceptance of the
states at all the points ', ..., " (i.e. that at least, U*(x’) + 0, B, (Ory1) € S for
all jin {1,...,N}) for a new sample to be generated (see Eq. (3.14)), hence resulting
in a cumbersome computational effort for typical values of N. In practice, such a
scheme may thus be restricted to the case where S occupies a large region of R™ (so
that the probability of reaching OS is reasonably small), as well as to moderate values
of N.

3.3. Construction of the approximating family {VU.(-; x)}zcq of potential
functions. Following § 3.2, let {U(;x)}zcq be the family of potential functions such
that for all  in Q:

V(usz) = —log (1s(u)) + Az, g(u)) , Vues. (3.16)
Let 15 be the regularized indicator function defined as
15 =K x1s , (3.17)

in which z — K.(z) is a regularizing kernel on R", parametrized by 0 < ¢ < 1, and
* denotes the convolution operator:

15(u) = A K (z)ls(u—2z)dz, YueR". (3.18)

Here, and without loss of generality, a regularization by a centered Gaussian kernel

K. (z) = éexp 1 =] Vz € R" (3.19)
‘ €n(2m)n/2 2 e |’ ’ '

is used. It can be deduced that 1§ equivalently reads as
15(u) =E{ls(u— Z.)} , YueR", (3.20)

where Z, is a R™-valued centered Gaussian random variable whose p.d.f. is given
by the right-hand side of Eq. (3.19). The approximating family {¥.(-;@)}zeq of
potential functions is then defined by:

U (u;x) = —log (15(w)) + Az, g(uw)) , YueV. (3.21)

Remark 3. Several approaches can be pursued in order to compute the indicator
function 15. A brute-force approach consists in evaluating the regularization given
by Eq. (3.17), regardless of the current value of w. From a computational standpoint,
it is clear that such a strategy is certainly not optimal, unless the neighborhood of
boundary 0S is expected to be reached with a quite large probability. One may
alternatively choose to compute the regularized function only when the state w is
“sufficiently” close to dS. However, one should note that the numerical expense
induced by such a strategy, which requires the distance between w and its projection
onto S to be computed, is conditionned by the nature of the boundary.

4. Definition of a discretization scheme with a stochastic adaptive step
sequence. For k > 0, we let U*(x) = U.(ry, ), VF(z) = Vi.(rg, x) and WF(z) =
W (ry,x), where {rg, ..., 75} constitutes some stochastic discretization (see § 4.2) of
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time interval [0;T], with T = rj;. For z fixed in Q and k > 0, we denote as L*(x)
the R™-valued random variable defined as:

vie{l,...,n}, (Lk(x))j:—{(W} . (4.1)

Similarly, (L¥(zx)); denotes the j-th component of the gradient of W.(-;x) evaluated
at w = UF(z). When a comparison between either numerical schemes or several
parametrizations is performed (at a given point ), we use the same initial conditions
and the same sample path for the increments of the normalized Wiener processes.

4.1. Numerical comparison between the explicit Euler and Stérmer-
Verlet schemes for the free case construction. Before proceeding to the con-
struction of the general algorithm, we numerically compare below the convergence
of the explicit Euler and Stormer-Verlet (SV) schemes, the former serving as a basis
for Lemaire’s derivations [31]. Details about the SV algorithm for the integration of
ordinary differential equations can be found in [17] — see also [14] [16] [36] for surveys
about geometric integration; see [37] and e.g. [30] for geometric integration applied to
Langevin-type equations. For illustration purposes, we consider a potential function
derived in [45] (with S = RT) for the MaxEnt-based probabilistic modeling of a band
M (R)-valued random matrix [A].

4.1.1. Definition of the target probability distribution. Let A be the R"-
valued random variable corresponding to a vector representation (see below) of the
nonzero entries of [A]. Let pa denote its p.d.f., obtained by invoking the MaxEnt
principle. Let u — e(u) and u +— [G(u)] be the two unique non-linear deterministic
mappings defined from R” into R” and from R” into M (R) respectively, such that
Yu € R7,

e(u) = (u‘ll, U%UQ, u% + ué, u%u;;, ui + ug, uguﬁ, ug + u‘%) (4.2)

and [G(u)] = [L(w)]" [L(u)], with

u% u 0 0

10 ud oug O
L@l=]g ¢ (4.3)

0 0 0 u?

It is assumed that the available information on random vector A takes the form:
E{e(A)} =e, E{[[G(A)lF}=78575, E{[[G(A)] 'z} =56, (4.4)

with e = (1,0,1,0,1,0,1). The associated potential function ® : R” — R such that
pa(a) =c exp{—®(a)} for all @ in R” is then given by:

®(u) = AV, e(w)) + AP [[G)][F + AP [G(w)] IF . VueRT. (4.5)

In Eq. (4.5), the Lagrange multipliers A() € R7, A® ¢ R} and \®) € R are
such that the constraints given by Eq. (4.4) are fullfiled and are found to be (see
[45)): A = (0.7381,4.1697,1.2465, —0.9248, 0.8998, 4.2584,0.8714), A(?) = 2.2293
and \®) = 1.7749.
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4.1.2. Discretization schemes and numerical results. Let U' = u and

V! = vy, where ug and vy are two given deterministic vectors in R7. For k =
1,..., M — 1, the explicit Euler scheme reads as
Uttt = U + Ar VP, (4.6)
A
Vi = (1 S T) VF 4 Ar LF + /f AWFEFL (4.7)

where the increment AW*+1 = Wkt1 — Wk of the normalized Wiener process W is
a second-order Gaussian centered R™-valued random variable with covariance matrix

Ar[I,].
For k=1,...,M — 1, the SV scheme is defined as
Ar

Utz _ gk 4 2y 4.8
SV (43)

1-p Ar i
Vk+1 Vk Lk+1/2 4+ Y Awarl 4.9
1+p 1+p 1+p (4.9)
Uk+1 — Uk:+1/2 + Ai Vk‘-‘,—l (4 10)

2 ’ '

with 8 = fAr/4.
In order to provide a convergence analysis of the two above schemes, we introduce
the function Conv : N — RT defined as:

k|2
Conv (M, =i ZHU 12, VYM.>1. (4.11)

This function measures the convergence of the ergodic estimator for the second-order
moment of ||[U¥||. We then consider the following error function ErrConv : N — R*:

ErrConv(M,) = |Conv(M,) — myt|/m5* VM, > (4.12)
in which mf denotes the reference value for the second-order moment of U. In prac-
tice, such a value is obtained by using the explicit Euler scheme (with a sufficiently
small time step, e.g. Ar = 107°) and an ergodic estimator over a large integration
interval (typically M. = 10). The precision and rate of convergence (towards the
stationary solution) are then illustrated below by studying the convergence of map-
ping M. — ErrConv(M,). This convergence is displayed in Fig. 4.1 for several values
of the integration step Ar and for the two different schemes defined by Egs. (4.6) and
(4.8). As expected, it is seen that for large values of Ar, the Stormer-Verlet scheme
yields a better approximation than the explicit Euler one, whereas the approximations
coincide for a sufficiently small time step. These results, together with other numer-
ical evidences which are not reported here for brevity, motivate the combination of
Lemaire’s adaptivity strategy with the SV scheme for the random field case.

4.2. Construction of an adaptive Stormer-Verlet scheme. The aim of this
section is to propose an adaptive discretization algorithm for solving the family FSPE
of ISDEs (the parameter € being fixed) introduced in § 3.2. This scheme involves (i)
a specific definition of the family of Wiener increments (in accordance with § 2.1) and
(ii) a stochastic step sequence which essentially depends on two different ingredients,
namely:
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FIG. 4.1. Convergence analysis: graph of the mapping M. +— ErrConv(M,) for Ar = 1.5x 1073
(left panel) and Ar = 0.5 x 10™3 (right panel). Solid line: explicit Euler scheme. Dashed line:
Stérmer- Verlet scheme.

- a dominating deterministic nonincreasing step sequence, which is used when-
ever the current state is “far enough” from 0S.

- astochastic counterpart that prevents the scheme from diverging and controls
the adaptivity procedure as the particle reaches the neighbourhood of the
boundary 9S.

Following [31], let (vx),~, be a positive nonincreasing sequence such that:

W=y kT, VE>1, (4.13)

where vy > 0 is a parameter corresponding to the initial time step and 7 € N, is a
free parameter controlling the rate of decay for the deterministic step sequence (see
the remark below). From Eq. (4.13), it is readily seen that

lim ~, =0 (4.14)

k—+oco

and

> =00 (4.15)

E>1

Furthermore, we introduce a family of stochastic processes {{x4,k > 1}}__, defined
for all = as

2 Uk@), VA )
Xe = oy UF@), Va@ P vi® P21 (116

In Eq. (4.16), V, is the Lyapunov function defined at point x as [34]

fa

fz fa~
16

Ve (u,v) = Hye(u,v) + 1

(u,v) + lul?+1, Y(u,v)eVxR" (4.17)

in which H, is the following Hamiltonian:

He(uw,v) = ||[v||?/2+ ¥ (w;z) , VY(u,v) €V xR". (4.18)
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The stochastic step sequence (Vx+1)x>0 is then defined as
Tepr =min (yes1 Axg) » V=1, (4.19)

with 79 = 9. For any « in Q and k = 1,..., M — 1, the adaptive explicit Stérmer-
verlet (ASV) scheme then reads as:

U (@) = Ul @) + V@) | (4.20)
1-p V+1 Jz

M (g) = — % Vv — L2 AWHH! 4.21

VI @) = Tt V@) 1 I @)+ 1 AW @) (421)

U @) = U 2(@) + 2 VI (@) | (4.22)

with By = fzYk+1/4. For any @ fixed in © and following § 2.1, the increment of the
normalized Wiener process {W (r,x),r > 0} between time instances r, and ri4q is
finally defined as:

AW (@) = W (@) - W (@) = (F51)"? Zo(bhi1) - (4.23)

It is worth noticing that such a definition allows spatial dependencies to be introduced
while solving the family of ISDEs and is therefore well-adapted to the generation of
the class of random field prior models.

Remark 4. From Eq. (4.13), it is seen that setting a large value of 7 amounts
to consider a very slowly decreasing deterministic counterpart in the step sequence.
In effect, this allows for a fast exploration of the admissible space S, but might slow
down the convergence towards the stationary regime when the neighborhood of 9§ is
reached with moderate to large probabilities. Conversely, retaining a small value of 7
decreases the number of stochastic refinements (in the transient regime in particular)
and yields a better (asymptotic) approximation of the invariant measure [29].

5. Numerical experiments. In this section, we illustrate the proposed ap-
proach through three applications. The first two applications do not address the
random field case (the spatial indexation is then temporarily dropped in § 5.1 and
§ 5.2) and specifically investigate the behavior of the algorithm for two different kinds
of supports. An application to the random field case is finally provided in § 5.3, where
a homogeneous system of first-order m.p.d.f. is considered.

Assuming that the random field is sampled at N non-overlapping points (), ..
(N) ' let Conv be the following function:

b

xr
1 &
COHV(MC,:I:(i);E) = M.~ Z %ﬂHUekil(w(i))Hz ;o VMe>1, (5.1)
Zk;MO Tk k=,

where My > 1 may be selected to speed up the convergence by removing the transient
part in the ergodic estimator. For an homogeneous system of first-order m.p.d.f. and
when a reference value mi! for the second-order moment of U is known, the conver-
gence is characterized by using the following error function M, — ErrConv(M,;€):
ErrConv(M,;¢) = max |Conv(Me, ;) — mief| /mict VM, >1, (5.2)
X

with Conv given by Eq. (5.1).

All routines are programmed in C, making use of the FFTW library [19] for FFT
computations. The underlying random generator is the 64-bit Mersenne Twister
generator from Matsumoto and Nishimura [33].
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5.1. Application 1.

5.1.1. Problem setting. In this first application, we consider a two-dimensional
case, n = 2, and define the target p.d.f. pt as

p'(u)=c exp{-¥(u)} , Yues, (5.3)

in which the potential function is given by

1
U(u) = —log (ls(u)) + §<[K]u7u> , Yues, (5.4)
with S = [-0.5,0.5] x[—0.5,0.5] and [K] = diag(1, 1); hence, V = R2. Such a potential
function corresponds (except for the normalization constant) to the restriction to S of
a R?-valued Gaussian random variable with a null mean vector and with covariance
matrix [[2]. We then introduce the approximation ¥, of ¥ such that

W) = ~log (15(w) + 3 ([Ku,u) , Y R?, (5.5)

where the regularized indicator function 15 is defined by Eq. (3.17). The graph of
u — 15(u) is displayed in Fig. 5.1 for e = 0.01 (left panel) and € = 0.04 (right panel).

1 1
0.6 0.6
= —\
/ — \
04 0.8 04 f 0.8
02 02
0.6 0.6
=0 =0
04 0.4
0.2 -0.2
-04 02 -04 | - ) 02
N =4
-0.6 -0.6
-06 -04 -02 0 02 04 06 0 -06 -04 -02 0 02 04 06 0
u u

1 1

FIG. 5.1. Contour plots of the regularized indicator function w — 1g(u) for e = 0.01 (left
panel) and € = 0.04 (right panel).

5.1.2. Numerical results. Unless otherwise stated, all the results below have
been obtained by setting vo = 278 and 7 = 10. The graph of the error function
n — ErrConv(n) is shown in Fig. 5.2 for € € {0.01,0.04,0.07,0.1}. It is first observed
that the convergence towards the stationary solution is reached for M, > 5 x 10°,
regardless of the value of parameter €. As expected, the relative error decreases as
€ | 0 and is typically less than 5% for ¢ < 0.04. Figure 5.3 displays a sample path
of k — (UF,U¥) for k € [5 x 10°;6 x 10°] and shows how the particle of coordinates
(UF,UY) (at iteration k) fills out the domain (with ¢ = 0.01). Figure 5.4 shows a
sample path k — 5% of the adaptive integration step for k € [5 x 10°;6 x 10°] and
k € [5.013 x 10°;5.017 x 10°]; a graph of a sample path for k — (UF,UF F%) is
shown in Fig. 5.5 (¢ = 0.01). These graphs illustrate how the integration step is
automatically refined (on the fly) each time the particle goes closer to the boundary
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Fi1G. 5.2. Convergence analysis: graph of the mapping M. — ErrConv(M.) for several values
of parameter €, v9 = 278 and 7 = 10. Black line: € = 0.01; red line: € = 0.04; blue line: € = 0.07;
magenta line: € = 0.1.
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F1a. 5.3. Illustration: sample path of k — (UF,U¥) for k € [5 x 10%;6 x 10°].

of the admissible space. Specifically, the adaptive step is refined 36,410 times in
average, out of one million iterations (the average being estimated from a set of 1,000
independent realizations). Note that the number of refinements does not change that
much from one realization to another. A sample path for k — (UF, U¥ %) for e = 0.04
and e = 0.01 is displayed in Fig. 5.6 for a large integration range, hence showing the
incidence of this parameter. The graphs of the p.d.f. py, of random variable U; (in
the stationary regime) are finally shown in Figs. 5.7 and 5.8 for different values of
parameter €, hence illustrating the convergence of the sequence as € | 0.

5.2. Application 2.

5.2.1. Problem setting. This second illustration is concerned with a regula-
rization on the matrix set MZJ" (R). Specifically, we consider sampling from the random

matrix ensemble SG* constructed in [43] (for which a reference generator is available).
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FIG. 5.4. Illustration of the adaptivity procedure: sample path of k — Fy, for k € [5x10%;6x 103
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FIG. 5.6. Illustration: sample path of k — (UF, UX) for k € [5 x 10%;1 x 10°] for e = 0.04 (left
panel) and € = 0.01 (right panel).
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F1G. 5.7. Convergence analysis: graph of the p.d.f. U — py, (U) for e = 0.1 (left panel) and
€ = 0.07 (right panel): theoretical p.d.f. (thick line) and ergodic estimator (thin line).
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F1G. 5.8. Convergence analysis: graph of the p.d.f. U — py, (U) for e = 0.04 (left panel) and
€ = 0.01 (right panel): theoretical p.d.f. (thick line) and ergodic estimator (thin line).

Let [G] € SG* and n = q(q + 1)/2. The target p.d.f. p of [G] is then defined as (see
the reference above)

p([G]) = ¢ exp {-¥([G])} V[G] € M (R) , (5.6)
where the potential function 1 : M;}‘ (R) — R is given by

U(G) = ~1og (Lygs ) (6)) — (A= Do (et ([6]) + T Pac))  (57)

for all [G] in Mf(R). In Eq. (5.7), the scalar parameter A > 0 can be shown to
control the level of statistical fluctuations of the random matrix [G]. Let Mat : R™ D
S — M (R) be the so-called vector-matrix mapping such that for all [G] in M (R),
J u € S such that [G] = [Mat(u)] with

Ui U2 ... Ug(g—1)/24+1

[Mat (u)] = s (5.8)
Sym.

Un
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The admissible space S C R"™ is thus defined as:
S = {u e R" | Mat(u)] € M (R)}. (5.9)
It follows that the potential function ¥ : § — R can be written as
U(u) = —log (1s(u)) +g(u) , (5.10)
with g : S — R such that

3(w) = O~ Dlog (det(Mat(w)]) + 2 Y wppe . (5.0)
k=1

The approximation W, of ¥, parametrized by 0 < ¢ < 1, is then given by:
U (u) =—log(15(u)) +g(u), YueS. (5.12)

For numerical purposes, we let ¢ = 2 (n = 3), A = 3.67 and f = 10. This value of A
corresponds to a large level of statistical fluctuations, that is 6 = 0.6.

5.2.2. Numerical results. The graph of the error function n — ErrConv(n) is
first displayed in Fig. 5.9 for € = 0.01, v* = 276 and 7 = 10°. For this sample path,
223 refinements are performed, out of 80, 000 iterations. It is seen that the convergence

035
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[ e ) B
wn N W [9%)

o
—

. | NJW

| ]
I

005 »\ W

% 1 2 3 4 5 6 71 3

M, x10°

Fic. 5.9. Convergence analysis: graph of the mapping M. +— ErrConv(M.) for ¢ = 0.01,
79 =276 agnd 7 = 109,

towards the stationary solution is reached for M, > 60,000, with a relative error that
is less than 6%. For any k > 1, we further introduce the R -valued random variable
p¥ such that

pF =min & ([Mat(U")]), (5.13)

with &([A]) the spectrum of [A] € MJ(R). At the k-th iteration, p* is used to
quantitatively characterize in part the distance to the boundary dS. Sample paths
of k — p* and k ~— F* are displayed in Fig. 5.10. As for the first application,
it is readily observed that the step is properly refined whenever the current state
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FI1G. 5.10. ITllustration of the adaptivity procedure: sample paths of k — pF (red circles) — left
vertical azis — and k +— F* (black solid line) — right vertical axis — for e = 0.01, 49 = 276 and
T =106.

gets closer to the boundary of the admissable space S. Further, it is seen that the
probability of reaching the boundary OS turns out to be small, with only 1.6% of
the steps being refined for ¢ = 0.01: this property stems from the repulsion of the
potential function in the neighbourhood of S, as discussed in § 3.2. The convergence
of the proposed algorithm is illustrated in Figs. 5.11, 5.12 and 5.13, where the first-
and second-order marginal p.d.f. estimated with both the proposed and reference
generators are displayed. Whereas an overall good match is observed, regardless of
the random variables involved, some small discrepancies still remain for the second
order marginal distributions. This fact may be due to an undersampling of the joint
distributions, which are estimated from a set of 60,000 independent realizations.

0.8

0.6

Py W

041

02

F1G. 5.11. Graph of p.d.f. uw— py, (u) (left panel) and v — py, (u) (right panel): reference
algorithm (solid line) and proposed approach (dashed line).

5.3. Application 3. In this section, we finally exemplify the algorithm on the
M;(R)—valued random field whose first-order marginal p.d.f. is defined through the
potential function given by Eq. (5.12). For simplicity, a two-dimensional domain 2 =
(]0,10[)? is considered and the correlation function [Rg] of the stationary Gaussian
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F1G. 5.12. Graph of p.d.f. u — py,(u) (left panel) and contour plot of (u,v) — py, v, (u,v)
(right panel): reference algorithm (solid/thick line(s)) and proposed approach (dashed/thin line(s)).
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F1G. 5.13. Contour plots of (u,v) — py, us(u,v) (left panel) and (u,v) — py, v, (u,v) (right
panel): reference algorithm (thick lines) and proposed approach (thin lines).

random field {E(z),x € R?} (see § 1.2) is defined by setting:
d ST
! d d A J
V(xz,z') € R x R?, D‘ii(w—w)—jlzllexp (—4 < 5, ) ) ) (5.14)

for all 1 < i < n, £9 being interpreted as the correlation length of the Gaussian
random field {Z;(z),z € Q} along the direction defined by the unit vector e/. The
choice of such a Matérn-type (squared exponential) correlation function follows from
its wide use in applications (especially in geophysics; see [1] for instance), as well as
from the properties (e.g. infinite differentiability) inherited by the associated Gaus-
sian field. Here, the generation of the stationary R-valued Gaussian random fields is
performed by using the circulant embedding method introduced in [6] and [50] (see
also [5]; see [21] [49] for extensions). For illustration purposes, the random field is
sampled over a regular grid with 8 points along each direction and the simulation
is performed with the following parameters: (% =2 for 1 <i <3 and 1 < j < 2
f=10; 7 =105 7% = 278, A convergence analysis (similar to those performed in the
preceding sections; see e.g. § 5.2.2) shows that an independent realization is obtained
after 60,000 iterations. The CPU time required to generate one realization of the
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random field is 15.98 seconds on a 2.8 GHz single core processor — note that this CPU
time mainly depends on the algorithms that are used for simulating a R-valued cen-
tered homogeneous Gaussian random field (which has to be generated at least n x r*
times; see e.g. [21] and the references therein for a discussion about computational
complexity). Since numerical evidences show that the algebraic form of the input
correlation functions is indeed preserved through the nonlinear transformation [12],
the estimated correlation function (along a given direction) can be fitted to a squared
exponential one by a least-square algorithm, hence providing estimates for the cor-
relation lengths associated with the generated fields. The comparison between the
estimated correlation function and its least-square fit in the direction specified by e!
is shown in Fig. 5.14 (left panel) for the random field {Uy(x),z € Q} (the statistical
estimator being computed from a set of 200 realizations). The graphs of the fitted
correlation functions (along the same direction) for the three generated random fields
{U1(z),x € Q}, {Uz(z),x € Q} and {Us(x),x € N} can be found in Fig. 5.14 (right
panel) as well. The correlation length along the considered direction for the random
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F1G. 5.14. Plot of the correlation function along the direction defined by el. Left panel: cor-
relation function associated with {Uy(x),x € Q} (circle marker: estimated values; solid line: least-
square fit). Right panel: fitted correlation functions associated with {U1(x),x € Q}, {Uz(x), z € Q}
and {Us(x),z € Q}.

field {U;(x),x € Q} (resp. {Uz(z),z € Q} and {Us(x),z € Q}) is found to be 1.84
(resp. 1.88 and 1.94).

6. Conclusion. In this work, we addressed the construction of a generator for
a large class of non-Gaussian random fields with values in some subset of R™. The
numerical strategy involves two main ingredients. The first one is the definition,
through a regularization procedure, of a sequence of auxiliary random fields converg-
ing towards the target random field. The second ingredient is the derivation of a
discretization algorithm which is defined by combining an extension of an adaptivity
procedure recently proposed in the literature with an explicit Verlet scheme. The
scheme thus obtained allows refining the integration step on-the-fly, hence preventing
the scheme from diverging as the current state goes closer to the boundary of the
admissible set. The proposed strategy was finally exemplified on three examples that
illustrate both the adaptivity procedure and the convergence of the algorithm.
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