L. Ambrosio, Transport equation and Cauchy problem for BV vector fields and applications, Journ??es ??quations aux d??riv??es partielles, vol.158, pp.227-260, 2004.
DOI : 10.5802/jedp.1

L. Ambrosio, M. Colombo, and A. Figalli, Existence and uniqueness of maximal regular flows for non-smooth vector fields, Archive Rational Mech, Anal, vol.218, pp.1043-1081, 2015.

L. Ambrosio, M. Colombo, and A. Figalli, On the Lagrangian structure of transport equations: the Vlasov-Poisson system, 2014.

L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport equations and multi-D hyperbolic conservation laws, 3-57, Lect. Notes Unione Mat. Ital, vol.5, 2008.

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.144, issue.06, pp.1191-1244, 2014.
DOI : 10.1017/S0308210513000085

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, Journal of Differential Equations, vol.25, issue.3, pp.342-364, 1977.
DOI : 10.1016/0022-0396(77)90049-3

J. Batt and G. Rein, Global classical solutions of a periodic Vlasov-Poisson system in three dimensions, C.R. Acad. Sci. Paris, vol.313, pp.411-416, 1991.

A. Bohun, F. Bouchut, and G. Crippa, Lagrangian flows for vector fields with anisotropic regularity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.33, issue.6, 2015.
DOI : 10.1016/j.anihpc.2015.05.005

URL : https://hal.archives-ouvertes.fr/hal-01097370

F. Bouchut, Global weak solution of the vlasov???poisson system for small electrons mass, Communications in Partial Differential Equations, vol.307, issue.8-9, pp.1337-1365, 1991.
DOI : 10.1002/mma.1670010410

F. Bouchut and G. Crippa, Equations de transportàtransportà coefficient dont le gradient est donné par une intégralesingulì ere, 2007.

F. Bouchut and G. Crippa, LAGRANGIAN FLOWS FOR VECTOR FIELDS WITH GRADIENT GIVEN BY A SINGULAR INTEGRAL, Journal of Hyperbolic Differential Equations, vol.10, issue.02, pp.235-282, 2013.
DOI : 10.1142/S0219891613500100

URL : https://hal.archives-ouvertes.fr/hal-00724586

G. Crippa and C. , De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math, vol.616, pp.15-46, 2008.

L. Desvillettes, E. Miot, and C. Saffirio, Polynomial propagation of moments and global existence for a Vlasov???Poisson system with a point charge, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.32, issue.2, pp.373-400, 2015.
DOI : 10.1016/j.anihpc.2014.01.001

R. Diperna and P. Lions, Solutions globales d'´ equations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math, vol.307, pp.655-658, 1988.

R. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, pp.511-547, 1989.
DOI : 10.1007/BF01393835

R. Diperna and P. Lions, Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino, vol.46, pp.259-288, 1990.

I. Gasser, P. Jabin, and B. Perthame, Regularity and propagation of moments in some nonlinear Vlasov systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.130, issue.06, pp.1259-1273, 2000.
DOI : 10.1017/S0308210500000676

L. Hörmander, The analysis of linear partial differential operators I, 1983.

E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I general theory, Mathematical Methods in the Applied Sciences, vol.329, issue.5, pp.229-24819, 1981.
DOI : 10.1002/mma.1670030117

P. Jabin, The Vlasov-Poisson system with infinite mass and energy, Journal of Statistical Physics, vol.103, issue.5/6, pp.1107-1123, 2001.
DOI : 10.1023/A:1010321308267

S. N. Kruzkov, FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES, Mathematics of the USSR-Sbornik, vol.10, issue.2, pp.217-243, 1970.
DOI : 10.1070/SM1970v010n02ABEH002156

P. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Inventiones Mathematicae, vol.33, issue.no 1, pp.415-430, 1991.
DOI : 10.1007/BF01232273

A. J. Majda, G. Majda, and Y. X. Zheng, Concentrations in the one-dimensional Vlasov- Poisson equations. I. Temporal development and non-unique weak solutions in the single component case, Phys, pp.268-300, 1994.

A. J. Majda, G. Majda, and Y. X. Zheng, Concentrations in the one-dimensional Vlasov- Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case, Phys, pp.41-76, 1994.

C. Marchioro, E. Miot, and M. Pulvirenti, The Cauchy Problem for the 3-D Vlasov???Poisson System with Point Charges, Archive for Rational Mechanics and Analysis, vol.176, issue.1, pp.1-26, 2011.
DOI : 10.1007/s00205-010-0388-5

C. Pallard, Large velocities in a collisionless plasma, Journal of Differential Equations, vol.252, issue.3, pp.2864-2876, 2012.
DOI : 10.1016/j.jde.2011.09.020

C. Pallard, Moment Propagation for Weak Solutions to the Vlasov???Poisson System, Communications in Partial Differential Equations, vol.313, issue.7, pp.1273-1285, 2012.
DOI : 10.1142/S0218202509003401

C. Pallard, Space Moments of the Vlasov--Poisson System: Propagation and Regularity, SIAM Journal on Mathematical Analysis, vol.46, issue.3, pp.1754-1770, 2014.
DOI : 10.1137/120881178

B. Perthame, Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Differential Equations, vol.21, pp.659-686, 1996.

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Journal of Differential Equations, vol.95, issue.2, pp.281-303, 1992.
DOI : 10.1016/0022-0396(92)90033-J

J. Schaeffer, Global existence of smooth solutions to the vlasov poisson system in three dimensions, Communications in Partial Differential Equations, vol.15, issue.8-9, pp.1313-1335, 1991.
DOI : 10.1002/mma.1670040104

J. Schaeffer, Asymptotic growth bounds for the Vlasov-Poisson system, Mathematical Methods in the Applied Sciences, vol.3, issue.3, pp.262-277, 2011.
DOI : 10.1002/mma.1354

J. Schaeffer, Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior, Kinetic and Related Models, vol.5, issue.1, pp.129-153, 2012.
DOI : 10.3934/krm.2012.5.129

E. M. Stein, Singular integrals and differentiability properties of functions, 1970.

S. Wollman, Global-in-Time Solutions to the Three-Dimensional Vlasov-Poisson System, Journal of Mathematical Analysis and Applications, vol.176, issue.1, pp.76-91, 1993.
DOI : 10.1006/jmaa.1993.1200

X. Zhang and J. Wei, The Vlasov???Poisson system with infinite kinetic energy and initial data in <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>6</mml:mn></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>, Journal of Mathematical Analysis and Applications, vol.341, issue.1, pp.548-558, 2008.
DOI : 10.1016/j.jmaa.2007.10.038

Y. X. Zheng and A. J. Majda, Existence of global weak solutions to one-component vlasov-poisson and fokker-planck-poisson systems in one space dimension with measures as initial data, Communications on Pure and Applied Mathematics, vol.136, issue.10, pp.1365-1401, 1994.
DOI : 10.1002/cpa.3160471004