C. Allery, A. Hambouni, D. Ryckelynck, and N. Verdon, A priori reduction method for solving the two-dimensional Burgers??? equations, Applied Mathematics and Computation, vol.217, issue.15, pp.6671-6679, 2011.
DOI : 10.1016/j.amc.2011.01.065

URL : https://hal.archives-ouvertes.fr/hal-00585095

M. Arnst, R. Ghanem, and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, vol.229, issue.9, pp.3134-3154, 2010.
DOI : 10.1016/j.jcp.2009.12.033

URL : https://hal.archives-ouvertes.fr/hal-00684317

J. A. Atwell and B. B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations, Mathematical and Computer Modelling, vol.33, issue.1-3, pp.1-19, 2001.
DOI : 10.1016/S0895-7177(00)00225-9

K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, 1976.

G. Berkooz, P. Holmes, and J. L. Lumley, The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annual Review of Fluid Mechanics, vol.25, issue.1, pp.539-575, 1993.
DOI : 10.1146/annurev.fl.25.010193.002543

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, vol.230, issue.6, pp.2345-2367, 2011.
DOI : 10.1016/j.jcp.2010.12.021

G. Box and G. M. , Time Series Analysis: Forecasting and Control, 1970.
DOI : 10.1002/9781118619193

G. P. Brooks and J. M. Powers, A Karhunen???Lo??ve least-squares technique for optimization of geometry of a blunt body in supersonic flow, Journal of Computational Physics, vol.195, issue.1, pp.195-387, 2004.
DOI : 10.1016/j.jcp.2003.08.030

E. A. Christensen, M. Brons, and J. M. Sorensen, Evaluation of Proper Orthogonal Decomposition--Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows, SIAM Journal on Scientific Computing, vol.21, issue.4, pp.1419-1434, 2000.
DOI : 10.1137/S1064827598333181

S. Das, R. Ghanem, and S. Finette, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, Journal of Computational Physics, vol.228, issue.23, pp.8726-8751, 2009.
DOI : 10.1016/j.jcp.2009.08.025

C. Desceliers, R. Ghanem, and C. Soize, Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, vol.11, issue.6, pp.978-1001, 2006.
DOI : 10.1002/nme.1576

URL : https://hal.archives-ouvertes.fr/hal-00686154

C. Desceliers, C. Soize, and R. Ghanem, Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests, Computational Mechanics, vol.60, issue.5, pp.831-838, 2007.
DOI : 10.1007/s00466-006-0072-7

URL : https://hal.archives-ouvertes.fr/hal-00686150

R. G. Ghanem and A. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, vol.217, issue.1, pp.63-81, 2006.
DOI : 10.1016/j.jcp.2006.01.037

S. P. Huang, S. T. Quek, and K. K. , Convergence study of the truncated Karhunen???Loeve expansion for simulation of stochastic processes, International Journal for Numerical Methods in Engineering, vol.8, issue.9, pp.1029-1072, 2001.
DOI : 10.1002/nme.255

E. T. Jaynes, Information theory and statistical mechanics, The Physical Review, pp.620-630, 1963.

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, vol.90, issue.1, pp.117-148, 2001.
DOI : 10.1007/s002110100282

O. P. Le-maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, 2010.
DOI : 10.1007/978-90-481-3520-2

L. Li, K. Phoon, and S. Quek, Comparison between karhunen-loève expansion and translation-based simulation of non-gaussian processes, Computers and Structures, pp.264-76, 2007.

X. Ma and N. Zabaras, Kernel principal component analysis for stochastic input model generation, Comptes rendus de l'Académie des sciences de Paris, p.220, 1945.

Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, AIP Conference Proceedings, pp.560-586, 2007.
DOI : 10.1063/1.2149785

H. G. Matthies, Stochastic finite elements: Computational approaches to stochastic partial differential equations, Zamm-Zeitschrift für, pp.849-873, 2008.

R. G. Miller, The jackknife -a review, Biometrika, pp.61-62, 1974.

A. Nouy and O. P. Le-maître, Generalized spectral decomposition for stochastic nonlinear problems, Journal of Computational Physics, vol.228, issue.1, pp.202-235, 2009.
DOI : 10.1016/j.jcp.2008.09.010

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of polynomial chaos representations in high dimension from a set of realizations Karhunen-loève expansion revisited for vector-valued random fields: scaling, errors and optimal basis, Track irregularities stochastic modeling, Probabilistic Engineering Mechanics, pp.2917-2945, 2012.

K. K. Phoon, S. P. Huang, and S. T. Quek, Implementation of Karhunen???Loeve expansion for simulation using a wavelet-Galerkin scheme, Probabilistic Engineering Mechanics, vol.17, issue.3, pp.293-303, 2002.
DOI : 10.1016/S0266-8920(02)00013-9

K. K. Phoon, S. P. Huang, and S. T. Quek, Simulation of strongly non-Gaussian processes using Karhunen???Loeve expansion, Probabilistic Engineering Mechanics, vol.20, issue.2, pp.188-198, 2005.
DOI : 10.1016/j.probengmech.2005.05.007

N. T. Quan, The prediction sum of squares as a general measure for regression diagnostics, Journal of Business and Economic Statistics, vol.6, issue.4, pp.501-504, 1988.

C. Schwab and R. A. Todor, Karhunen???Lo??ve approximation of random fields by generalized fast multipole methods, Journal of Computational Physics, vol.217, issue.1, pp.100-122, 2006.
DOI : 10.1016/j.jcp.2006.01.048

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.1583-1611, 2008.
DOI : 10.1002/nme.2385

URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, International Journal for Numerical Methods in Engineering, vol.80, issue.21-26, pp.939-970, 2010.
DOI : 10.1002/nme.2712

URL : https://hal.archives-ouvertes.fr/hal-00684322

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-gausian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, pp.199-2150, 2010.

P. D. Spanos, M. Beer, and J. , Karhunen???Lo??ve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel, Journal of Engineering Mechanics, vol.133, issue.7, pp.773-779, 2007.
DOI : 10.1061/(ASCE)0733-9399(2007)133:7(773)

P. D. Spanos and B. A. Zeldin, Galerkin Sampling Method for Stochastic Mechanics Problems, Journal of Engineering Mechanics, vol.120, issue.5, pp.1091-1106, 1994.
DOI : 10.1061/(ASCE)0733-9399(1994)120:5(1091)

G. E. Uhlenbeck and L. S. Ornstein, On the Theory of the Brownian Motion, Physical Review, vol.36, issue.5, pp.823-841, 1930.
DOI : 10.1103/PhysRev.36.823

B. Wen and N. Zabaras, A multiscale approach for model reduction of random microstructures, Computational Materials Science, vol.63, pp.269-285, 2012.
DOI : 10.1016/j.commatsci.2012.06.021

P. Whittle, Hypothesis testing in time series, 1951.

P. Whittle, Prediction and Regulation by Linear Least-Square Methods, 1983.

M. M. Williams, The eigenfunctions of the Karhunen???Loeve integral equation for a spherical system, Probabilistic Engineering Mechanics, vol.26, issue.2, pp.202-207, 2011.
DOI : 10.1016/j.probengmech.2010.07.009

S. Q. Wu and S. S. Law, Statistical moving load identification including uncertainty, Probabilistic Engineering Mechanics, vol.29, pp.70-78, 2012.
DOI : 10.1016/j.probengmech.2011.09.001