]. V. Ar, Arnol'd Bounds for Milnor numbers of intersections in holomorphic dynamical systems, Topological methods in modern mathematics (Stony Brook Publish or Perish, pp.379-390, 1991.

]. P. Au and . Autissier, Points entiers sur les surfaces arithmétiques, J. Reine Angew. Math, vol.531, pp.201-235, 2001.

]. M. Bdm, L. Baker, and . Demarco, Preperiodic points and unlikely intersections, Duke Math. J, vol.159, issue.1, pp.1-29, 2011.

. Bp-]-l, Y. Barreira, and . Pesin, Smooth ergodic theory and nonuniformly hyperbolic dynamics, Handbook of Dynamical Systems, vol.1, pp.57-263, 2006.

E. Bedford, M. Lyubich, and J. Smillie, Polynomial diffeomorphisms ofC 2. IV: The measure of maximal entropy and laminar currents, Inventiones Mathematicae, vol.2, issue.67, pp.77-125, 1993.
DOI : 10.1007/BF01232426

E. Bedford, M. Lyubich, and J. Smillie, Distribution of periodic points of polynomial diffeomorphisms of C2, Inventiones Mathematicae, vol.10, issue.1, pp.277-288, 1993.
DOI : 10.1007/BF01232671

J. [. Bedford and . Smillie, Polynomial diffeomorphisms of C2: currents, equilibrium measure and hyperbolicity, Inventiones Mathematicae, vol.36, issue.1, pp.69-99, 1991.
DOI : 10.1007/BF01239509

J. [. Bedford and . Smillie, Polynomial diffeomorphisms ofC 2, Mathematische Annalen, vol.2, issue.1, pp.395-420, 1992.
DOI : 10.1007/BF01934331

E. Bedford and J. Smillie, Polynomial diffeomorphisms of C2: V. critical points and Lyapunov exponents, Journal of Geometric Analysis, vol.42, issue.3, pp.349-383, 1998.
DOI : 10.1007/BF02921791

E. Bedford, J. V. Smillie-2, J. V. Connectivity-of, . Berkovich, . S. Bfj et al., Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys Monographs 33, Amer Solution to a non-Archimedean Monge-Ampère equation Bifurcation measure and postcritically finite rational maps, Complex dynamicsCL06] A. Chambert-Loir. " Mesures etÉquidistributionet´etÉquidistribution sur les espaces de Berkovich " . J. Reine Angew. Math, pp.148-695, 1990.

]. [. Chambert-loirdua and . Duarte, Heights and measures on analytic spaces. A survey of recent results, and some remarks " . In Motivic integration and its interactions with model theory and non-Archimedean geometry Elliptic isles in families of area-preserving maps Ergodic Theory Dynam, London Math. Soc. Lecture Note Ser. Systems, vol.384, issue.28 6, pp.1-50, 2008.

]. A. Duc and . Ducros, La structure des courbes analytiques. Manuscript available at www.math.jussieu.fr/?ducros. [Duj] R. Dujardin " Sur l'intersection des courants laminaires, Pub. Mat, pp.48-107, 2004.

T. [. Favre and . Gauthier, Distribution of postcritically finite polynomials, Israel Journal of Mathematics, vol.173, issue.1
DOI : 10.1007/s11856-015-1218-0

URL : https://hal.archives-ouvertes.fr/hal-00784620

[. Fornaess and N. Sibony, Complex Hénon mappings in C 2 and Fatou- Bieberbach domains " . Duke Math, J, vol.65, issue.2, pp.345-380, 1992.

J. [. Friedland and . Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory and Dynamical Systems, vol.25, issue.01, pp.67-99, 1989.
DOI : 10.1016/0022-4049(86)90044-7

A. Gómez and J. D. Meiss, Reversible polynomial automorphisms of the plane: the involutory case, Physics Letters A, vol.312, issue.1-2, pp.49-58, 2003.
DOI : 10.1016/S0375-9601(03)00605-4

A. Gómez and J. D. Meiss, Reversors and symmetries for polynomial automorphisms of the complex plane, Nonlinearity, vol.17, issue.3, pp.975-1000, 2003.
DOI : 10.1088/0951-7715/17/3/012

. M. Hy, J. Herman, ]. J. Yoccozhu, . Hubbard, . A. Js et al., Generalizations of some theorems of small divisors to non-Archimedean fields The Hénon mapping in the complex domain Chaotic dynamics and fractals Local analytic conjugacy of semi-hyperbolic mappings in two variables, in the non-archimedean setting Dynamics on berkovich spaces in low dimensions, Geometric dynamics Canonical height functions for affine plane automorphisms " . Math. Ann, pp.408-447, 1007.

]. S. Ka13 and . Kawaguchi, Local and global canonical height functions for affine space regular automorphisms, Algebra Number Theory, vol.7, issue.5, pp.1225-1252, 2013.

]. S. La and . Lamy, L'alternative de Tits pour Aut, J.of Algebra, vol.239, issue.2, pp.413-437, 2001.

]. Le and . Lee, The equidistribution of small points for strongly regular pairs of polynomial maps, Mathematische Zeitschrift, vol.4, issue.2, pp.3-4, 2013.
DOI : 10.1007/s00209-013-1169-2

. A. Ms, T. Medvedev, and . Scanlon, Invariant varieties for polynomial dynamical systems, Ann. of Math, vol.179, issue.2 1, pp.81-177, 2014.

]. F. Pa and . Pazuki, Polarized morphisms between abelian varieties, Int. J. Number Theory, vol.9, issue.2, pp.405-411, 2013.

D. [. Pink, ]. A. Roesslerrob, and . Robert, On Hrushovski's proof of the Manin-Mumford conjecture A course in p-adic analysis An afterthought on the generalized Mordell-Lang conjecture " in Model theory with Applications to Algebra and Analysis Automatic uniformity, Proceedings of the International Congress of Mathematicians, pp.539-546, 2000.

. L. Sy-]-a, S. Seigal, and . Yakovenko, Local dynamics of intersections: V. I

]. N. Arnoldsi and . Sibony, Astérisque No 46 Dynamique des applications rationnelles de P k, Dynamique et géométrie complexesSUZ] L. Szpiro, E. Ullmo, and S.-W. Zhang. " ´ Equirépartition des petits points, pp.97-185, 1977.

]. A. Th and . Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non-archimédienne. ApplicationsàApplications`Applicationsà la théorie d'Arakelov. Thèse de l'université de Rennes. tel.archives-ouvertes.fr/tel-00010990 Positivité et discrétion des points algébriques des courbes Dynamical Mordell-Lang conjecture for birational polynomial morphisms on A 2 Dimension, entropy and Lyapunov exponents, Ergodic Theory Dyn. Syst, pp.147-167, 1982.

]. X. Yu and . Yuan, Big line bundles over arithmetic varieties, Invent. Math, vol.173, issue.3, pp.603-649, 2008.

X. Yuan and S. Zhang, The arithmetic Hodge index theorem for adelic line bundles, Mathematische Annalen, vol.4, issue.3
DOI : 10.1007/s00208-016-1414-1

X. Yuan and S. Zhang, The arithmetic Hodge Theorem for adelic line bundles II " . arXiv:1304.3539 Small points and adelic metrics, J. Algebraic Geom, vol.4, issue.2, pp.281-300, 1995.

]. Zh98 and . Zhang, Equidistribution of small points on abelian varieties, Ann. of Math, vol.147, issue.2 1, pp.159-165, 1998.