
HAL Id: hal-01065492
https://hal.science/hal-01065492

Submitted on 18 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entropy propagation analysis in stochastic structural
dynamics: application to a beam with uncertain cross

sectional area
Anas Batou, T. G. Ritto, Rubens Sampaio

To cite this version:
Anas Batou, T. G. Ritto, Rubens Sampaio. Entropy propagation analysis in stochastic structural
dynamics: application to a beam with uncertain cross sectional area. Computational Mechanics,
2014, 54 (3), pp.591-601. �hal-01065492�

https://hal.science/hal-01065492
https://hal.archives-ouvertes.fr


Computational Mechanics manuscript No.
(will be inserted by the editor)

Entropy propagation analysis in stochastic structural

dynamics: Application to a beam with uncertain

cross sectional area

A. Batou · T.G. Ritto · Rubens Sampaio

Received: date / Accepted: date

Abstract This paper investigates the impact of different probabilistic mod-
els of uncertain parameters on the response of a dynamical structure. The
probabilistic models of the uncertain parameters are constructed using the
Maximum Entropy principle, where different information is considered, such
as bounds, mean value, etc. Nested probabilistic models are constructed with
increasing information; as the information given increases, the level of entropy
of the input model decreases. The response of the linear dynamical model is
given in the frequency domain, and the propagation of the input uncertainty
throughout the computational model is analyzed in terms of Shannon’s en-
tropy. Low and high frequencies are analyzed because uncertainties propagate
differently depending on the frequency band. A beam discretized by means of
the finite element method with random cross sectional area (random field) is
the application analyzed.
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1 Introduction

This research concerns the prediction of the dynamical response of a structure
in the presence of parameter uncertainties. These uncertainties are related to
the variability appearing during the manufacturing process or during the cycle
life (uncontrolled damages) of the structure. These uncertainties propagates
into the response of the structure yielding more or less uncertainties in the
quantities of interest. If these output uncertainties are non-negligible, then
they have to be taken into account in order to predict the dynamical response
and support decision makers.

In the context of the probabilistic methods for uncertainty quantification,
the uncertain parameters are replaced by random variables. Then, the first
step consists in constructing a probabilistic model for these parameters, i.e.,
construct the probability density functions (pdf) for the random variables
modelling the uncertain parameters. The Shannon entropy [15] measures the
relative uncertainty associated to a pdf. The Maximum Entropy (MaxEnt)
principle [15,4,5] in the context of Information Theory is a powerful method
which allows the pdf of a random variable to be constructed from a set of
available information. This method consists in choosing the pdf which max-
imizes the entropy (and thus the uncertainty) under the constraints defined
by the available information. Therefore, the entropy (uncertainty) level in the
input parameters depends on the amount of information available for the un-
certain parameters. It is then interesting to analyse how this level of entropy
propagates into the quantities of interest.

Usually, the propagation of uncertainties is analysed through the observa-
tion of the input/output variance. Indeed, in general, the variance increases
if the uncertainty related to a probability distribution increases. Neverthe-
less, in some specific cases (for instance, a bi-modal distribution for which the
distance between the two peaks is large), a probability distribution with low
uncertainty can have a large variance. Then for these specific cases, the vari-
ance is not a reliable measure of uncertainty. For this reason entropy-based
sensitivity indexes have been introduced in [10] as an alternative to the clas-
sical Sobol indexes [16] which are variance-based. Entropy measures were also
recently used for identification of structural dynamics and damage detection.
In [12] the transfer entropy measure was used for damage detection in a simple
discrete dynamical system and in [1] a relative entropy measure was used to
perform an inverse problem in a beam structure.

In the present paper, we provide a general methodology to analyze the
input-entropy propagation into the dynamical response of a structure. Such
an analysis is important in order to quantify the effects of the probabilistic
modelling of the input parameters on the uncertainty related to the output
quantities of interest. Then such an analysis can provide important information
related to (1) the sensitivity of the outputs with respect to the variability of the
inputs (this information can be obtained using a classical variance-based sen-
sitivity analysis) and (2) the robustness of the output variability with respect
to the choice of the input probability model. If this robustness is good enough
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then a coarse probabilistic modelling of the input parameters is sufficient in
order to predict the random dynamical response with a good robustness. This
latter point is important in order to determine the quantity of information
that is needed for the construction of the input probability model. For in-
stance, if a uniform distribution and a beta distribution for the inputs have
the same effect on the output then the uniform distribution will be preferred
since it only require the bounds of the inputs (given by the manufacturing
tolerances). On the contrary, if the effect of the input probability model on
the output variability is not negligible, then it is important to analyze if the
decrease of the input entropy induces a decrease or an increase of the output
entropy. In the latter case a fine input probability model (constructed using a
large amount of information) is required in order to avoid an underestimation
of the output uncertainty (measured by the output entropy).

The objectives and contributions of the present papers are: (1) provide a
general methodology to analyze the propagation of uncertainty throughout a
linear dynamical structure in terms of input/output entropy, (2) analyze how
increasing entropy in the probabilistic model of the parameters affects the
entropy of the response; for this purpose, nested input probabilistic models
are constructed using the Maximum Entropy principle, and (3) analyze the
uncertainty propagation in low and high frequencies to highlight the stochastic
homogenisation that can occur for the random response in the low frequency
band.

This paper is organized as follows. In Section 2, the reduced-order nominal
computational model is constructed. Then, Section 3 is devoted to (1) the
construction of the stochastic computational which is derived from the reduced
nominal computational model and (2) the estimation of the output entropy.
Finally, in Section 4, an application related to the random response of an Euler
beam with random cross sectional area (random field) is presented.

2 Reduced nominal computational model

In this section the reduced nominal computational model is constructed using
the Finite Element method and the model reduction is performed using a
classical modal analysis.

2.1 Nominal computational model

We are interested in the dynamical response of a three-dimensional damped
structure having a linear behavior. This structure is made up of a linear dissi-
pative elastic medium occupying an open bounded domain Ω, with boundary
∂Ω = Γ0 ∪Γ . Let x be the coordinates of a point in Ω. The external unit nor-
mal to ∂Ω is denoted by n. Let u(x, ω) be the displacement field defined in the
frequency domain with values in C3. We assume that u = 0 on part Γ0 and,
consequently, there is no rigid body displacements. Let the vector f surf(x, ω)
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denote the surface force field applied on the boundary Γ and let the vector
f vol(x, ω) denote the volume force field applied in Ω. We are interested in the
linear response around a static equilibrium considered as the reference config-
uration defined by Ω. The boundary value problem in the frequency domain
is written, for all ω, as

−ω2ρu− divσ = f vol in Ω ,
u = 0 on Γ0 ,

σ n = f surf on Γ ,
(1)

where ρ(x) is the mass density and σ(x, ω) is the second-order stress tensor,

in which {divσ(x, ω)}j =
∑3

k=1 ∂σjk(x, ω)/∂xk. The stress tensor σ(x, ω)
will be related to the strain tensor ε(x, ω) by a constitutive equation which
is written for a non-homogeneous anisotropic dissipative elastic medium as
σhℓ(x, ω) = ahℓjk(x) εjk(x, ω) + iω bhℓjk(x) εjk(x, ω) in which ahℓjk(x) and
bhℓjk(x) are the fourth-order real tensors related to the elastic and dissipative
parts and which must satisfy symmetry and positiveness properties.

In this paper, in order to improve the readability, we are analyzing only one
parameter field of interest which is denoted by x 7→ h(x). The generalization
for several parameter fields is straightforward. The parameters can be material
parameters such as the mass density or the Lame parameters, or other model
parameters such as the section for a beam model, the thickness for a plate
model, etc.

The computational model is constructed using the finite element (FE)
method applied to the weak formulation of the dynamical problem defined
by Eq. (1). Let x1, . . . ,xN be the set of the N positions where the field h(x)
is discretized. These positions can correspond to the integration points of the
FE model. If the mesh is sufficiently fine the field h(x) can be assumed as
constant in each element and the discretizations points are the barycenters
of the elements. Let h = (h(x1), . . . , h(xN )) ∈ RN be the vector of the dis-
cretized system parameters, that latter will be replaced by a random vector
(see Section 3).

We are interested in the frequency response of the structure on the fre-
quency band of analysis B = [0, ωmax]. Let m be the total number of degrees-
of-freedom in the FE model. For all ω ∈ B, the vector y(ω) ∈ Rm of the m
degrees-of-freedom is the solution of the following matrix equation

(−ω2[M(h)] + iω[D(h)] + [K(h)])y(ω) = f̃ (ω) , (2)

in which [M(h)], [D(h)] and [K(h)] are the (m×m) mass, damping and stiffness

matrices and where f̃ (ω) is the vector of the external forces.

2.2 Reduced-order nominal computational model

The reduced nominal computation model is constructed using the modal anal-
ysis reduction method. Let Ch be the admissible set for the vector h. Then for
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all h in Ch, the n first eigenvalues 0 < λ1(h) ≤ λ2(h) ≤ . . . ≤ λn(h) associated
with the elastic modes {φ1(h), φ2(h), . . . , φn(h)} are solutions of the following
generalized eigenvalue problem

[K(h)]φ(h) = λ(h)[M(h)]φ(h) . (3)

The reduced-order nominal computation model is obtained by projecting the
nominal computation model on the subspace spanned by the n first elastic
modes calculated using Eq. (3). Let [Φ(h)] be the m×n matrix whose columns
are the n first elastic modes. We then introduce the approximation

y(ω) = [Φ(h)]q(ω) , (4)

in which the vector q(ω) is the vector of the n generalized coordinates and is
the solution of the following reduced matrix equation

(−ω2[M̃(h)] + iω[D̃(h)] + [K̃(h)])q(ω) = f(ω;h) , (5)

in which [M̃(h)] = [Φ(h)]T [M(h)] [Φ(h)], [D̃(h)] = [Φ(h)]T [D(h)] [Φ(h)] and

[K̃(h)] = [Φ(h)]T [K(h)] [Φ(h)] are the n × n mass, damping and stiffness

generalized matrices, and where f(ω;h) = [Φ(h)]T f̃(ω) ∈ Rn is the vector of
the generalized forces. The random response is calculated at nfreq frequencies
belonging to frequency band B. We then introduce the observation vector
z = OBS(y(ω1), . . . ,y(ωnfreq

)) in Rnobs , where nobs is the number of outputs
observed.

3 Stochastic computational model

In this section, the stochastic computational model is derived from the reduced-
order nominal computational model introduced in the previous section. The
random variables, the random vectors and the random fields are denoted us-
ing uppercase letters. The uncertain parameter field of the dynamical system
is modeled by a random field, which means that the field {h(x),x ∈ Ω} is
modeled by the random field {H(x),x ∈ Ω}. Furthermore, it is assumed that
the random field {H(x),x ∈ Ω} is homogeneous. Therefore, in the context of
the FE discretization introduced in the previous section, the vector h which
corresponds to the spatial discretization of h(x), is modeled by a random vec-
tor H. The probabilistic model of this random vector is constructed using the
MaxEnt principle. Finally, the stochastic reduced-order computational model
is presented.

3.1 Probabilistic model of uncertainties

In this section, the probability distribution of the random vector H is con-
structed using the MaxEnt principle. Two general cases are considered. For
the first case, the available information is introduced independently for each
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component of the random vector H yielding independent components for the
random vector H. For the second case, additional constraints related to the
correlation between components are introduced yielding a dependence between
these components.

3.1.1 Independent information case

For this particular case, the random variable H is denoted Hnc. The available
information is introduced independently for each component of the random
vector Hnc. Since it is assumed that the random field {H(x),x ∈ Ω} is homo-
geneous, the available information is the same for all the components of the
random vector Hnc. The support of the pdf of each component Hnc

i is denoted
by K such that K ⊂ R. The available information for the components Hnc

i are
related to physical properties or available statistics on this components. For
each component, Hnc

i , i = 1, . . . , N , the available information is written as the
following µ constraints

E{g(Hnc
i )} = f , (6)

in which h 7→ g(h) is a given function from R into Rµ, E{.} is the mathematical
expectation, and f is a given vector in Rµ. Equation (6) can be rewritten as

∫

R

g(hi)phnc
i
(hi)dhi = f . (7)

An additional constraint related to the normalization of the joint pdf
pHnc(h) is introduced such that

∫

RN

pHnc(h)dh = 1 . (8)

It should be noted that the available information in Eq. (6) is restricted to
expectations of given functions. Therefore, the MaxEnt principle does not
allow taking into account almost sure properties of given realizations of the
random variables. The Shannon entropy of the joint pdf h 7→ pHnc(h) is defined
by

S(pHnc) = −
∫

RN

pHnc(h) log(pHnc(h))dh , (9)

where log is the natural logarithm. This functional measures the uncertainty
associated with pHnc(h). Let C be the set of all the pdf defined on RN with
values in R+, verifying the constraints defined by Eqs. (7) and (8). Then
the MaxEnt principle consists in constructing the probability density function
h 7→ pHnc(h) as the unique pdf in C which maximizes the entropy S(pHnc).
By introducing a Lagrange multiplier λ0 in R+ associated with Eq. (8) and N
Lagrange multipliers λi associated with Eq. (7) and belonging to an admissible
open subset Lµ of Rµ, it can be shown [4,5] that the MaxEnt solution, if it
exists, is defined by



Title Suppressed Due to Excessive Length 7

pHnc(h) =

N∏

i=1

{1lK(hi)} csol0 exp(−
N∑

i=1

〈λsol
i ,g(hi)〉) , (10)

in which the indicator function hi 7→ 1lK(hi) is such that it is equal to 1
if hi ∈ K and is zero otherwise. In Eq. (10), csol0 = exp(−λsol0 ), 〈x,y〉 =
x1y1+ . . .+xµyµ and λsol0 and λsol

i are respectively the values of λ0 and λi for
which Eqs. (7) and (8) are satisfied. Equation (10) shows that the components
hi of the the random vector H are independent random variables for which
the pdfs are given for i in {1, . . . , N} by

pHnc
i
(hi) = 1lK(hi) c

sol
i exp(−〈λsol

i ,g(hi)〉) . (11)

This result is obvious and could be stated at the beginning by applying the
MaxEnt principle on each component independently. Using the normalization
condition, the parameter csoli can be eliminated and Eq. (11) can be rewritten
as

pHnc
i
(hi) = 1lK(hi) ci(λ

sol
i ) exp(−〈λsol

i ,g(hi)〉) , (12)

in which ci(λi) is defined by

ci(λi) =

{∫

K

exp(−〈λi, g(hi)〉) dhi
}−1

. (13)

The N Lagrange multipliers λi are then calculated using Eqs. (7), (12) and
(13). The integrals can be calculated explicitly for some particular cases of
available information. Since, the dimension of these integrals is one, they can
be calculated using any numerical integration method.

If we consider that the support K is compact then, if no available infor-
mation is introduced, the MaxEnt distribution is the uniform distribution.
Hence, if an available information is added, a constraint is added and the re-
search manifold for the maximum of the entropy is reduced yielding a smaller
maximum. More specifically, if we introduce the two random variables H1 and
H2, with the same support, for which the available information are respectively
defined by

E{g1(H1)} = f1 , (14)

E{g1(H2)} = f1 , E{g2(H2)} = f2 , (15)

in which the functions g1 and g2 are independent. Then the available infor-
mation related to H1 is included in the available information related to H2.
Let S1 be the maximum entropy related to H1 with the constraint defined by
Eq. (14) and S2 be the maximum entropy related to H2 with the constraint
defined by Eq. (15). We then have

S1 ≥ S2 . (16)

By proceeding this manner, it is possible to create nested probabilistic
model with increasing information (decreasing entropy).
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3.1.2 Dependent information case

For this case, a correlation structure is introduced for the random field {H(x),x ∈
Ω} and, therefore, for the random vector H. This correlation structure can be
introduced through the Pearson correlation coefficient [6] defined by

r̃H(x,x
′) =

CH(x,x
′)√

CH(x,x)CH(x′,x′)
, (17)

in which CH(x,x
′) is the covariance between H(x) and H(x′) defined by

CH(x,x
′) = E{(H(x)−mH(x)) (H(x′)−mH(x′))} in whichmH(x) = E{H(x)}.

We then have r̃H(x,x) = 1 for all x in Ω. Since it is assumed that the random
field {H(x),x ∈ Ω} is homogeneous, the correlation coefficient is rewritten as

rH(x− x′) =
CH(0,x− x′)

σ2
H

, (18)

in which σ2
H = CH(0,0). In most of the correlation model that can be found

in the literature, the correlation coefficient is isotropic and, therefore, only
depends on the distance between x and x′. For instance, the exponential cor-
relation model is given by

rH(x − x′) = exp

(
−‖ x − x′ ‖

l2

)
, (19)

in which l is a positive real variable. Now, let [TH ] be the matrix defin-
ing the correlation coefficients for the N points where the stochastic process
{H(x),x ∈ Ω} is discretized. We then have

[TH]i j = rH(x
i − xj) . (20)

The matrix [TH ] completely defines the correlation structure of the random
vector H. In this paper, we will consider only cases where this matrix is
positive-definite, although it can be positive semi-definite. The possible zero
eigenvalues can be eliminated by introducing the regularization [T reg

H ] = [TH ]+
α[IN ] in which [IN ] is the identity matrix and where 0 < α ≪ 1. The diagonal
elements of matrix [TH ] are equal to one and the other entries are lower than
one. Therefore, using Hadamard inequality, it can be shown that

0 < det([TH ]) ≤ 1 , (21)

the equality arising for the uncorrelated case. In this paper, the homogeneous
correlation length following the direction ek is defined by

Lk
c =

∫ +∞

0

| rH(η ek)|dη . (22)

For instance, using the correlation model in Eq. (19) yields L1
c = L2

c = L3
c =√

π l/2. Other definitions of the correlation length can be found in the litera-
ture [8].
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The objective of this section is to take into account a correlation structure
in the construction of the probability model of the random vector H, which
means that H has to verify N (N − 1)/2 additional constraints defined for
1 ≤ i ≤ (N − 1) , i < j ≤ N by

E{(Hi −mHi
) (Hj −mHj

)} = σ2
H [T g

H]i j , (23)

in which the matrix [T g
H] is the target value for [TH] and where mH = E{H}.

There are several ways to take into account these constraints. Let us analyze
three different ways.

(1) The first one consists in directly imposing the constraints defined by
Eq. (23) in the construction of the MaxEnt distribution. This way is numer-
ically prohibitive in high-stochastic dimension because it yields N (N − 1)/2
additional Lagrange multipliers to be identified. Furthermore the components
of the random vector H would be dependent and then the integrals involved
in Eqs. (7), (12) and (13) could not be calculated using a numerical integra-
tion method. It should be noted that a new algorithm (see [18,2]) has recently
been developed in order to address this problem in a relatively high stochastic
dimension (N < 10, 000).

(2) The second one consists in constructing the random vector H as a
transformation of the independent (thus uncorrelated) random vector Hnc,
obtained in Section 3.1, in the following way. Let the autocorrelation matrix
of random vector Hnc be E{(Hnc − mHnc) (Hnc − mHnc)T } = σ2

H [IN ]. The
transformation is defined by

H = [V ](Hnc −mHnc) +mHnc , (24)

in which mHnc = E{Hnc} and the matrix [V ] is related to the Cholesky fac-
torization of matrix [TH ], i.e, [TH ] = [V ][V ]T . Then it can be verified that
E{H} = mH = mHnc and E{(H−mH) (H−mH)T } = σ2

H [TH ] and, there-
fore, Eq. (23) is verified. Nevertheless, the random vector H constructed using
Eq. (24) does not verify the constraints defined by Eq. (6) which is verified
only by the random vector Hnc. Furthermore, the transformation also modify
the support of the probability distribution. Therefore, if the correlation be-
tween the components is strong, the construction defined by Eq. (24) is not
adapted.

(3) The third way, which is the one adopted in the present work, consists
in introducing a Nataf transformation [11,9,17] of the random vector H. This
transformation consists in introducing the following change of variable for each
component of random vector H

Hi = F−1
Hnc

i
(Φ(Ui)) , (25)

in which U1, . . . , UN are the components of the Gaussian centered random
vector U for which the covariance matrix is denoted by [CU ]. In Eq. (25), the
function u 7→ Φ(u) is the cumulative distribution function of the normalized
Gaussian random variable and the function v 7→ F−1

Hnc
i
(v) is the reciprocal

function of the cumulative distribution of the random variable Hnc
i which is
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the ith component of the random vector Hnc constructed following Section
3.1. By construction, the random vector H verifies the constraints defined by
Eq. (6). It can be shown that the joint probability density function of the
random vector H is such that

pH(h) =
1√

det([CU ])
exp

(
−u(h)T ([CU ]

−1 − [IN ])u(h)

2

)
pHnc(h) , (26)

in which u(h) = (Φ−1(FHnc
1
(h1), . . . , Φ

−1(FHnc
N
(hN )) and where the function

h 7→ pHnc(h) is the probability density function of random vector Hnc con-
structed following the Section 3.1, which can be rewritten as

pHnc(h) =

N∏

i=1

pHnc
i
(hi) , (27)

in which the pdf h 7→ pHnc
i
(h) is defined by Eq. (12). The correlation matrix

[CU ] has to be calculated such that the constraints defined by Eq. (23) is veri-
fied, yielding an inverse problem which is difficult to solve [9]. The direct choice
[CU ] = [TH ] generally gives very good results. For the classical pdfs, a correc-
tion of [CU ] in order to improve the verification of Eq. (12) can be constructed
[9] if necessary. It can be noted that the Pearson correlation coefficients for
the random vector H and U are different but the Spearman rank correlation
coefficients [6] for the random vectors H and U, which are defined as the Pear-
son correlation coefficients for the random vectors (FHnc

1
(Hnc

1 ), . . . , FHnc
N
(Hnc

N ))
and (Φ(U1), . . . , Φ(UN )), respectively, are equal by construction. In the rest of
this paper, the approximation [CU ] = [TH ] is chosen. Then, it can be proven
that the entropy S(pH) of the pdf pH is such that

S(pH) = S(pHnc) +
1

2
log(det([TH ])) . (28)

Thus, using Eq. (22) it can be verified that

S(pH) ≤ S(pHnc) , (29)

the equality arising for the uncorrelated case. This means that even if the
correlation has not been introduced directly during the construction of the
MaxEnt distribution, it induces a decrease of the entropy anyway, as it cor-
responds to an additional information. In general, the value of log(det([TH ]))
depends on the correlation coefficient model and on the correlation length. For
the 1-D version of the exponential correlation model introduced in Eq. (19)
for a domain [0, 1] discritized into 100 regularly spaced points, the function
Lc 7→ log(det([TH(Lc])) is plotted on Fig. 1. It can be seen that this function
decreases very rapidly, which means that as the correlation increases, the en-
tropy decreases. This corresponds well to the intuition that the information of
the probabilistic model increases when the correlation length increases.

Finally, generators of independent realization of random vector H can eas-
ily be constructed using Eq. (25) and classical generators of Gaussian centered
random vectors.
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Fig. 1 Graph of the function Lc 7→ log(det([TH (Lc])).

3.2 Random response of the stochastic computational model

The stochastic computational is derived from the reduced nominal computa-
tional model introduced in Section 2.2, for which the deterministic vector h

of the discretization of the uncertain fields is replaced by the random vector
H. Then, the n first random eigenvalues 0 < Λ1(H) ≤ . . . ≤ Λn(H) associ-
ated with the random elastic modes {ψ1(H), . . . , ψn(H)} are solutions of the
following random eigenvalue problem

[K(H)]ψ(H) = Λ(H)[M(H)]ψ(H) . (30)

Then for all ω in B, the random response Y(ω) of the stochastic reduced-order
computational model, is written as

Y(ω) = [Ψ(H)]Q(ω) , (31)

in which the random vector Q(ω) of the random generalized coordinates, is
the solution of the following random reduced-order matrix equation,

(−ω2[M̃(H)] + iω[D̃(H)] + [K̃(H)])Q(ω) = f(H) . (32)

This equation can be solved using the Monte Carlo simulation method [13].
The pdf of the random observation vector Z = OBS(Y(ω1), . . . ,Y(ωnfreq

)) is
denoted by pZ, and the observation entropy is defined by S(pZ) = −

∫
Rnobs

pZ(z) log(pZ(z))dz.
Let Z1, . . . ,Zns

be ns independent realizations of the random observation vec-
tor Z. Then, the observation entropy S(pZ) can be estimated using the plug-in
estimator [3]

Ŝ(pZ) = − 1

ns

ns∑

i=1

log(p̂Z(Zi)) , (33)
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in which p̂Z is a multi-dimensional kernel density estimator for the random
variable Z. If nobs = 1, then the entropy can also be estimated using a nu-
merical integration of the integral −

∫
A⊂R

log(p̂Z(Z))p̂Z(Z)dZ, in which the
compact support A can be delimited by the extremal values of the sampling
(Z1, . . . ,Zns

) for instance. For large values of nobs the estimation of p̂Z using
a multi-dimensional kernel density estimator becomes difficult. In this case,
other estimators such as the nearest neighbour estimator [7] can be used. An-
other approach consists in introducing the variable Znc = [V ]−1Z, in which
the matrix [V ] is related to the Cholesky factorization of the covariance ma-
trix of random vector Z, i.e, E{ZZT } = [CZ] = [V ][V ]T . Then, the entropy of
random vector Z is such that

S(pZ) = S(pZnc) +
1

2
log(det([CZ])) . (34)

It can be verified that the covariance matrix of Znc is the identity matrix and
then the components of Znc are uncorrelated but dependent. By neglecting the
dependence of the components of Znc, the entropy S(pZ) of random vector Z

can be approximated by a pseudo-entropy S̃(pZ) defined by

S̃(pZ) =

nobs∑

j=1

S(pZnc
j
) +

1

2
log(det([CZ])) , (35)

which can be estimated using the plug-in estimator

̂̃
S(pZ) = − 1

ns

nobs∑

j=1

ns∑

i=1

log(p̂Znc
j
(Znc

j,i)) +
1

2
log(det(

1

ns

ns∑

i=1

ZiZ
T
i )) (36)

in which p̂Znc
j

is a one-dimensional kernel density estimator for the random
variable Znc

j . It should be noted that for Gaussian random vectors, the non-
correlation implies the independence and, therefore, the entropy and the pseudo-
entropy are equals, i.e., S(pZ) = S̃(pZ).

4 Application

A clamped-clamped Euler-Bernoulli beam is considered for the application of
entropy propagation. The beam has 1 meter length, diameter of 1 × 10−2 m,
and material with Elastic Modulus of 210 GPa and density of 7850 kg/m3.

First, the nominal model and its deterministic response are presented, then
the stochastic model is constructed from the nominal model and entropy prop-
agation is analyzed.
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4.1 Nominal model

The nominal computational is constructed as described in Section 2. The beam
is discretized into 500 finite elements and Hermitian shape functions have been
used. The frequency band of analysis is B = [0, 314] kHz. Then the reduced-
order model is constructed using 75 normal modes so that a good convergence
of the response in frequency band B is reached. A proportional damping model
with damping rate 0.01 has been used to construct the generalized damping
matrix.

The first natural frequency of the structure is about 45 Hz. A vertical
point force equal to one in the frequency band B is applied at x = 0.70 m.
The frequency response in velocity {ω 7→ iω × y(ω), ω ∈ B}, with i2 = −1,
is calculated using Eqs.( 4) and (5). The observation vector is the modulus
of the transversal frequency response in velocity observed at x = 0.40 m and
calculated for nfreq = 20, 000 frequencies regularly spaced in the frequency
band B. Figure 2a shows the values of this observation vector, and Fig. 2b
shows a zoom in the low frequency band [0, 3] kHz.

4.2 Stochastic model

The stochastic model is derived from the nominal model introduced in the
previous section and for which the diameter is replaced by a random field
yielding randomness in both the kinetic energy and elastic energy. Several
random field models are successively introduced corresponding to successive
addition of information. Four classes, which will be depicted in the next Sec-
tion, are considered for the input probabilistic model: Uniform independent,
Beta independent, Uniform correlated and Beta correlated.

4.2.1 Construction of the diameter random fields

The random fields are discretized at the middle of each element of the mesh,
thus N = 500. The first diameter random field model corresponds to the
case developed in Section 3.1.1 for which the components of random vector
Hnc are independent. For this first model the available information is only
related to the support K which is constrained to be [blow, bup], in which blow =
0.75 × 10−2 m is the lower bound and bup = 1.25 × 10−2 m is the upper
bound. Then applying MaxEnt principle yields a uniform distribution for the
independent components of random vector Hnc denoted Hnc,unif for this first
model, i.e., for i in {1, . . . , N}

p
H

nc,unif

i

(hi) =
1

|K|1lK(hi) , (37)

in which |K| = 5 × 10−3 m is the size of the support K. The entropy of the
marginal distribution p

H
nc,unif

i

(hi), called marginal entropy in this paper, is
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Fig. 2 Velocity spectrum of the deterministic response at x = 0.40. (a) B = [0, 314] kHz
and (b) B = [0, 3] kHz.

then

S(p
H

nc,unif

i

(hi)) = log(|K|) , (38)

which shows that the entropy (and then the uncertainty) increases as the
length of the support increases. For the application, we then have S(p

H
nc,unif

i

(hi))

≃ −5.298. Since the components of random vector Hnc,unif are independent,
the total entropy of the distribution pHnc,unif of random vector Hnc,unif is
S(pHnc,unif ) = N × S(p

H
nc,unif

i

(hi)) ≃ −2.65× 103.

The second diameter random field model also corresponds to independent
components. For this second model the available information is related to
(1) the support K which is constrained to be [blow, bup], (2) the behaviour
of the pdf in the neighbourhood of the lower bound through the constraint
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E{log(Hnc
i −blow)} = clow < +∞ and (3) the behaviour of the pdf in the neigh-

bourhood of the upper bound through the constraint E{log(bup − Hnc
i )} =

cup < +∞. Then applying MaxEnt principle yield a Beta distribution for the
independent components of Hnc denoted Hnc,beta for this second model, i.e.,
for i in {1, . . . , N}

p
H

nc,beta

i

(hi) =
|K|1−α−β

B(α, β)
1lK(hi) (H

nc
i − blow)

α−1 (bup −Hnc
i )β−1 , (39)

in which α ≥ 1 and β ≥ 1 depend on clow and cup and where B(α, β) is
the classical Beta function. The case α = 1 and β = 1 is a special case
which correspond to the uniform distribution and then corresponds to the
first diameter random fields model. Instead of setting clow and cup, α and β
are directly set to given values . The marginal entropy for p

H
nc,beta

i

(hi) is then

S(p
H

nc,beta

i

(hi)) = log(|K|) + log(B(α, β)) − (α− 1)Ψ(α)

−(β − 1)Ψ(β) + (α+ β − 2)Ψ(α+ β) ,
(40)

in which Ψ is the Digamma function defined by Ψ(x) = d(log(Γ (x )))/dx where
Γ (x) is the classical Gamma function. Then since α ≥ 1 and β ≥ 1, we have
as expected S(p

H
nc,beta

i

(hi)) ≤ S(p
H

nc,unif

i

(hi)). For the application and for

α = 2 and β = 2, we then have S(p
H

nc,beta

i

(hi)) ≃ −5.423. The total entropy

of the distribution pHnc,beta of random vector Hnc,beta is then S(pHnc,beta ) =
N × S(p

H
nc,beta

i

(hi)) ≃ −2.71× 103. 5000 independent realizations of random

vectors Hnc,unif and Hnc,beta have been generated. It can be seen a good
convergence of the plug-in estimators to the theoretical values.

The third diameter random field model corresponds to the case developed
in Section 3.1.2 for which the components of random vector H are dependent.
The available information for the components is the same as for the first di-
ameter random field model. The correlation coefficient model is the Gaussian
exponential one introduced in Eq. (19) with l = 2Lc/

√
π in which Lc is the cor-

relation length. Then the joint pdf of random vector H denoted Hunif for this
third model is given by Eqs. (26) and (27) with pHnc

i
(hi) defined by Eq. (37).

Then the entropy of the marginal distribution are pHnc
i
(hi) = p

H
nc,unif

i

(hi).

The total entropy of the distribution pHunif of random vector Hunif is then
S(pHunif ) = N × S(p

H
nc,unif

i

(hi)) + 0.5× log(det([TH ])) ≤ S(pHnc,unif ).

The fourth diameter random field model is constructed as the third diame-
ter random field model but using marginal available information of the second
diameter random field model. For this fourth model, the joint pdf of random
vector H denoted Hbeta. We then have

S(pHnc,unif ) ≥ S(pHnc,beta ) ≥ S(pHbeta ) . (41)

The same way, if the correlation length increases, the entropy decreases:

S(pHnc,unif ) ≥ S(pHunif,L1 ) ≥ S(pHunif,L2 ) , (42)
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S(pHnc,beta ) ≥ S(pHbeta,L1 ) ≥ S(pHbeta,L2 ) , (43)

where L1 < L2. The objective of the next section is to analyze whether this
ordering is propagated to the stochastic dynamical responses of the beam.
We expect the entropy of the response to increase if the entropy of the input
random field increases.

4.2.2 Analysis of the random frequency responses

Let Znc,unif , Zunif , Znc,beta and Zbeta be the random observation vectors cor-
responding to the four random vectors Hnc,unif, Hunif , Hnc,beta and Hbeta,
respectively.

Concerning random vector Znc,unif , the random response is plotted on
Fig. 3, with the 95% confidence envelope. Fig. 3b shows a zoom in the fre-
quency band [0, 3000]Hz. It should be noted that the peaks of the mean ran-
dom response are translated to the left, comparing with the response of the
nominal model. For example, instead of a peak in about 830 Hz, the mean
peak is about 760 Hz.

Figure 5 compares the marginal entropies for random vectors Zunif and
Zbeta, for different correlation lengths. It can be seen as expected that S(p

Z
nc,unif

i

) ≥
S(p

Z
nc,beta

i

) for almost all frequency ωi. It should be noted that since the ran-

domness introduced in the model translates the frequency response to lower or
higher frequencies, the comparison is not strictly carried out frequency by fre-
quency but peak by peak. For the uniform case, Fig. 4 shows the convergence of
the L1-norm of the entropy response in the frequency band [0, 314] kHz with
respect the spatial discretization. It can be seen on this figure that, as ex-
pected, the convergence is faster for large correlation lengths. For the smallest
correlation length (L = 0.005 m), a good convergence is reached for 500 beam
elements (corresponding to 0.002 m for each beam element). Figure 6 details
this response for different frequency bands. Since the upcoming conclusion is
similar for Zunif and Zbeta, only Zunif is analyzed. Fig. 6a shows that, for low
frequencies, the entropy of the response increases, as the correlation length in-
creases, which is surprising with regard to the relation S(pHnc,unif ) ≥ S(pHunif ).
This result can be explained using stochastic homogenization theory (see [14],
[17]): the size of the Representative Volume Element (RVE) increases with
respect to the spatial correlation length. Therefore, for large wavelengths, the
variability of the response increases with respect to the spatial correlation
length and then the entropy increases. For higher frequencies, Fig. 6b, the
spatial wavelengths of the mode shapes are smaller, therefore, no homogeniza-
tion takes place any more and the expected result S(p

Z
nc,unf

i

) ≥ S(pZunif
i

) is

obtained for each frequency ωi. These results mean that in the low frequency
band, the missing of the correlation structure information related to the input
random fields is not conservative and can lead to an underestimation of the
uncertainty related to the output response of the structure.
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Fig. 3 Modulus of the velocity stochastic response Znc,unif (a) and zoom in the low fre-
quency band [0, 3000]Hz (b).

5 Conclusions

A methodology for the entropy propagation analysis in a dynamical structure
has been presented. This methodology is based on the MaxEnt construction of
the probability distribution of the input parameters with more or less informa-
tion and in the estimation of the resulting entropy for quantities of interest.
Concerning the application: (1) For the case of uncorrelated input random
fields, the sensitivity of the output entropy with respect to the input entropy
is low in the low frequency range but this sensitivity increases with respect to
the frequency due to the decrease of the involved spatial wavelengths for the
random displacement. (2) For the case of correlated input random fields, the
output entropy increases as the correlation length increases (and then input
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Fig. 4 For the uniform case, convergence analysis of the L1-norm of the entropy response in
the frequency band [0, 314] kHz with respect to the number of beam elements: (a) L = 0.3 m
and (b) L = 0.005 m.

entropy decreases) in the low frequency range and decreases as the correlation
length increases for higher frequencies. These results which can be explained
by the stochastic homogenisation which takes place in the low frequency range
show that the correlation structure of the input random fields has to be taken
into account in order to avoid an underestimation of the output entropy. This
result, which is not reachable using a classical variance-based sensitivity anal-
ysis is of primary importance for an engineering point of view and shows that
a missing of information in the construction of the input probability model
can underestimate the output uncertainty and then, in the case of a reliability
analysis of a dynamical structure, the probability of failure can be underesti-
mated.
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correlation lengths.
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