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Abstract—In this work, we propose a new Predictive-based
Mobile Target Tracking Algorithm for Wireless Multimedia
Sensor Networks called PMT 2. Resource management being a
critical feature of this kind of networks, the main aim of PMT 2

is to handle the trade-off between the accuracy of the tracking
and the energy conservation. Prediction approach seems to be
the best candidate to reach this objective. For this purpose,
we introduce an enhanced version of the Extended Kalman
Filter combined with a change detection mechanism named
CuSum for Cumulative Summary. We also propose a deployment
strategy to improve the efficiency of the tracking algorithm. Using
simulations, we show the performances of the proposed coupled
mechanism in the trajectory prediction and in the reactivity to
abrupt direction changes. Moreover, we perform a comparative
study between PMT 2 and existing works: 1) BASIC where all
the Cameras Sensors are always in active mode; 2) OCNS for
Optimal Camera Node Selection, a cluster-based solution with a
probabilistic sensor selection; 3) PTA, another predictive solution
based on standard Kalman Filter. The obtained results illustrate
that PMT 2 improves the quality of tracking by up to 35%
compared to existing works, while reducing energy consumption
by up to 55%.

I. INTRODUCTION

Recent advances in wireless communication and micro-
electronics have allowed the emergence of low-power mul-
timedia sensors. These multimedia sensors can be fitted with
small microphones and cameras in order to handle multimedia
content. Wireless Multimedia Sensor Networks (WMSN) are
a set of tiny interconnected Multimedia Sensors scattered in
a region of interest to handle specific tasks. Applications of
WMSN are typically target tracking, multimedia surveillance,
habitat and health care monitoring [1]. WMSN have specific
characteristics such as QoS requirements, and adjustable fields
of view.

In this work, we investigate the problem of single mobile
target tracking using WMSN. Specifically, we focus on non-
cooperative target, where no communication is possible be-
tween the target and network infrastructure (e.g. humans, an-
imals). Multimedia target tracking consists in finding target’s
location in consecutive camera frames. Having the coordinates
of the dynamic target, and thus, the record of displacement
can be very useful for many security applications. However,
performing target tracking on WMSN has some limitations:
wireless links are not reliable and image capture and trans-
mission are greedy processes in term of energy. To overcome

this power limitation, only the nodes on target pathway should
be activated, the rest should stay in idle mode. Therefore,
we propose PMT 2: a Predictive Mobile Target Tracking for
WMSN.

PMT 2 is a predictive, distributed and cooperative algo-
rithm. It is composed of five main steps (see Fig.2): Wake
up, detection, localization, prediction and finally, next sensor
selection. Prediction is the most important step in our algo-
rithm. It serves as a basis to choose the node to wake up. It is
performed using an Enhanced version of the Extended Kalman
Filter (EKF). Unlike standard Kalman filter, EKF is designed
for non linear systems. Therefore, it allows to handle more
realistic target trajectories. It is usually described as a two steps
algorithm: prediction and update. Based on a target mobility
model, we have added a verification step in its process. This
third step aims to enhance trajectory prediction by checking
if the predicted target location belongs to the target mobility
graph. This graph is designed by using Voronoi diagram
[2]. Moreover, we coupled the enhanced EKF with a change
detection mechanism Cumulative Summary (CuSum). CuSum
is in charge of detecting abrupt target direction changes.

The performance of PMT 2 is closely related to the deploy-
ment strategy. For this purpose, we have proposed a deploy-
ment strategy in addition to the tracking algorithm. We have
enhanced Virtual Forces Algorithm [3] for weighted areas.
In real indoor environment, some areas are more important
to monitor than others. For example in a building, entrances,
exits and corridors have higher priorities than individual of-
fices. These important areas are weighted according to their
importance. In summary PMT 2:

• Implements a deployment strategy for weighted areas.
• Improves the EKF in order to increase prediction accu-

racy.
• Uses CuSum to detect and relay sudden and abrupt

direction changes.

The rest of this paper is organized as described below: In
the next section, we present an overview of existing works.
In section III, we introduce the proposed algorithm PMT 2.
Simulation set up and results are discussed in section IV.
Finally, section V concludes the paper.



II. RELATED WORK

Existing works about target tracking in Wireless Sensor
Networks (WSN), can be classified in three classes: cluster-
based, structure-less and predictive-based. The two first classes
are related to network architecture while the last one is related
to tracking relaying strategy.

A. Structure-less class

In structure-less approach, no network organization is set up.
All the nodes have the same level with no hierarchy between
them. The tracking is performed in reactively manner at each
stage of target evolution inside the region of interest. In [4], the
authors propose a Collaborative Tracking Algorithm (CTA) in
Wireless Sensor Networks. The main contribution of this work
is that the algorithm runs on Heterogeneous WSN composed
of two types of sensors: Motion Sensors and Camera Sensors.
When a Motion Sensor detects the target, it computes the prob-
ability of its detection by a Camera Sensor. If this probability
is higher than a predefined threshold, the concerned Camera
Sensor is activated to handle the localization. Although CTA
presents good results, the heterogeneous network is not easy
to set up.

In [5], the authors proposed Dynamical Object Tracking
(DOT). A mobile node is in charge of tracking process. Two
phases are implemented: target discovery and tracking. In the
first one, the mobile node requests all the sensors. The nodes
closer to the target replies with tracking information as target
position. These closer sensors are kept active. In the second
phase, when a sensor detects the target, it sends to the mobile
node a message containing target information.

B. Cluster-based class

In cluster-based class, the network is organized in clusters
of nodes. A cluster is composed of a cluster head and cluster
members. In [6] the authors study the trade off between energy
consumption and tracking precision in WSN. For that purpose,
they propose a hierarchical, distributed and cluster network
architecture. When a node detects the target, it reports its
location and the sensed signal strength to the cluster head.
Based on the received information, the cluster head selects the
three sensors with top signal strength to perform localization.
In [7] Bayesian estimation via Quantized Variational Filtering
is used to choose the cluster head at each step of tracking
process. Once the cluster head is chosen, it selects a group of
candidate nodes using a Multi-Objective Genetic Algorithm.
This group is in charge of estimating the target position. The
main disadvantage of the solutions proposed in [6] and [7], is
that too many nodes are involved in the localization process.

In [8], a collaborative algorithm to address the node selec-
tion problem in WMSN is proposed. The main goal of this
algorithm is to keep the desired density of active nodes while
the others remain in sleeping mode. The algorithm starts when
the target is detected by a Camera Sensor; it broadcasts its own
location to the sensors within its transmission range. Then,
each of them computes the probability of detecting the target.
If the probability reaches a predefined threshold, the sensor

Fig. 1. Imote2 and Camera Sensor’s FoV

activates its camera to handle the localization phase. The main
drawback of cluster-based approach is that the clusters may
overlap each other. Indeed, a cluster member can have more
than one cluster head causing unnecessary and redundant data.

C. Predictive-based class

In predictive-based class, models or mechanisms are used
to proactively estimate and predict the target movement. This
approach can be established on cluster-based or structure-less
classes. The solution proposed in [9] aims to conserve energy
by limiting the number of active nodes, and decreasing the
transmission distance between transmitter and receiver nodes.
For that purpose, a predictive-based method is implemented. It
consists in a set of linear equation that predicts the upcoming
target location based on previous and current ones. Due to
the linearity of the proposed predictive method, realistic target
movement cannot be captured. In [10], a mobility model based
on Autoregressive model is proposed. It allows an accurate
prediction of target displacement in wireless networks. This
solution requires training data to initialize some parameters of
the equation model. This phase has a non-negligible cost.
PMT 2, assumes predictive-based approach and is not de-

pendent of a specific topology. It is a complete tracking
algorithm which uses a solution for every step of the tracking
process.

III. PMT 2: A PREDICTIVE MOBILE TARGET TRACKING
ALGORITHM IN WMSN

In this section, we present our proposed tracking algorithm.
We start by specifying the application environment. Then, we
present the algorithm.

A. Preliminaries and Assumptions

The assumptions made by PMT 2 are enumerated below:
The network is composed of a set of Wireless Multimedia
Sensors embedding cameras, named Camera Sensors (CS).
Each sensor has a conical and directional Field of View
(FoV) with opening angle 2α, video sensing radius RV ,
and communication range RT . As an example of existing
CS: MEMSIC (formally CrossBow) [11] proposes the imote2
sensor which embed a low-resolution (640x480) camera. An
imote2 and its FoV are represented in Fig.1. All the deployed
CSs have the same transmission and sensing characteristics.

A single and dynamic target is expected to cross the region
of interest. It moves in random manner through the graph
designed using obstacle mobility model [2]. In this model, the



topology of the area is considered in modeling the target move-
ment path. Topology includes real world obstructions such
as buildings, walls and other structures which are considered
as barriers to target movement. Once positions, shapes and
sizes of the obstacles are entered, Voronoi Diagram is used
to determine the pathways between the obstacles. It is known
that Voronoi Diagram is a fundamental graph constructor. In
2D plane, considering a set of location points, this algorithm
divides the plane into a group of convex polygons cells, such
as all points inside a cell are closest to only one location point.
The resulting topological graph summarizes possible target
trajectories. It is used in target prediction phase, to check if
the target belongs to the designed graph.

B. Deployment strategy

The network is deployed following a Virtual Force Al-
gorithm (VFA) [3]. VFA attempts to enhance the sensors
sensing coverage. Repulsive and attractive forces are utilized
to determine the new position of sensors. We assume that
the deployment algorithm is executed on a powerful device,
without energy constraint. Then, we use the algorithm’s out-
puts to deploy the sensors in the real area. We consider that
priori informations about the covered area are available, and
consequently, we choose a planned initial deployment instead
of random one. In planned deployment, the nodes are placed
regularly following the topology, avoiding obstructions.

Let our WMSN consists of N Cameras Sensors with IDs
{CS1, CS2, ..., CSn}. After a planned deployment, each CSi

computes its total Force ~Fi. ~Fi represents the total repulsive
and attractive forces applied on CSi. In the initial work, the
sensors have omnidirectional sensing field represented by a
circle (360◦). However, in our work, we assume directional
and limited one. Indeed, as mentioned in the previous sub-
section, the CS’s visual sensing field is represented by a cone
(60◦).

Thus, ~Fi is applied on the gravity center of this FoV instead
on the center of the circle. In this case, the movement of the CS
includes both re-positioning and re-orientation. ~Fi is calculated
as follow:

~Fi =

N∑
j=1
j 6=i

~Fij + ~Fobs (1)

Where ~Fij is the force between CSi and CSj . ~Fobs repre-
sents the total repulsive forces applied on CSi by the obstacles.
We specify then how to calculate ~Fij :

~Fij =


(WA(dij − dth, αij)), if dij > dth

0, if dij = dth
(WR

1
dij
, αij + π) if Otherwise

(2)

Where WA and WR are respectively the measure of attrac-
tive and repulsive forces. αij represents the direction of ~Fi. dij
is the Euclidean distance between the gravity centers of CSi

and CSj while dth is the threshold distance which controls
how close CSs get to each other. Its value is determined based

Fig. 2. The Predictive Mobile Target Tracking algorithm process

on the sensing range RV . With a similar computing principle,
~Fobs is calculated based on the distance between the sensor
CSi and the center of obstacles.

In addition to the VFA proposal, we introduce the critical
sub-area concept: in real indoor environment, some areas are
more important to cover than other. They are selected follow-
ing their priority in a particular environment. For example in a
building, entrances, exits and corridors have higher priorities
than individual offices. The critical sub-areas are weighted
according to their importance. In this work, we do not study
how to weight the critical sub-areas; this is designed by an
expert such as a security system designer or an architect.
The weight attribute to each critical sub-area is considered in
deployment process. Therefore, in our work, ~Fi is as follow:

~Fi =

N∑
j=1
j 6=i

~Fij + ~Fobs +Wgt
~Fcsa (3)

~Fcsa is the total attractive of repulsive forces assigned on
CSi by the critical sub-areas. Wgt is the weight assign to each
one. With this new proposed approach, we have enhanced VFA
to W-VFA which handles directional sensors and weighted
deployment areas.

C. PMT 2: Predictive Mobile Target Tracking algorithm

In this sub-section, we present the proposed algorithm:
PMT 2. Fig.2 summarizes its five main steps.

1) Wake up: in most tracking application, the target irregu-
larly appears in the area. Thus, putting all the nodes in active
mode is unnecessary and too costly. In this work, after the
deployment phase, all the CSs are in sleeping mode (sensing
channel in hibernation). The communication channel is kept
in active mode for communication and collaboration purposes.
Periodically, a sub-set of CSs is chosen to be activated. To
guarantee the quality of monitoring, this sub-set is selected
based on the wake up rate and the number of nodes proposed
in [12]. These values depend on network density. In our work,
we consider CS’s location and orientation in selection process.
CSs near the border are given priority over sensors closer to
the center of the deployment area. Finally, when a selected
sub-set returns in sleeping mode; another relevant one wakes
up.

2) Detection: when a CS is in active mode, it captures
images of the region of interest. Afterward, using the back-
ground subtraction method [13], it checks if the target is in



its FoV. Let us remind that this method consists in comparing
the background frame, captured during the deployment phase,
and the current one. If the moving object has a different color
and shapes than the background, the CS concludes that there
is a target in its FoV. If the target is detected, the next phase
starts. Otherwise, the CS returns to the sleeping mode.

3) Localization: in most tracking solutions in WSN, local-
ization is inferred using the Received Signal Strength Indicator
(RSSI) from at least 3 nodes [6] [7]. In our work, we use an
image processing solution [14]. When a CS detects the target,
it captures images, and uses them to perform localization.
For that purpose, it computes the size of the target on the
captured frame by using CS features such as dimensions and
focal length. Then, based on its own location it calculates the
distance between the target and itself and thus, target location.

4) Prediction: in our tracking algorithm, prediction is the
most important step. Target movement is anticipated, and
tracking process is relayed from node to node. To accom-
plish this task, the current activated CS uses the proposed
enhanced Extended Kalman Filter (EKF) coupled with a
change detection mechanism. The EKF is an extension of the
standard Kalman Filter for non-linear models. It is an efficient
mathematical tool which uses current information to predict
future ones. Usually, it is described as a system state (4) and
measurement update model (5).

Xt+1 = ft(Xt) + wt (4)

Zt = ht(Xt) + vt (5)

Where Xt+1 is the mobility state vector at time t+ 1:

Xt+1 = [xt+1, vxt+1
, axt+1

, yt+1, vyt+1
, ayt+1

]′

xt+1 and yt+1 are target’s 2D coordinates at time t+1. vxt+1

and vyt+1
specify its velocity while axt+1

and ayt+1
denote its

acceleration. Zt is the measurement update vector:

Zt = [xzt , yzt ]
′

Where xzt and yzt specify the measured target coordinates.
ft(.) is a nonlinear representation and ht(.) is a nonlinear
observation function. wt and vt are white Gaussian noise with
zero mean and respectively Qwt

and Qvt variance. We assume
that they are independent of each other. EKF [15] is divided
in two main steps: prediction and update steps. In this work,
we have added another step: verification (Fig.2).

a) Prediction step: During this phase, X̂t+1|t which is
the estimated mobility state vector at time t+ 1 is computed
using equation (6). Also Pt+1|t, the covariance matrix associ-
ated to the predicted mobility state vector is evaluated from the
previous estimated Pt|t and process noise covariance matrix
Qwtusing equation (7).

X̂t+1|t = ftX̂t|t (6)

Pt+1|t = FtPt|tF
′
t +Qwt (7)

Where Ft is the Jacobian matrix of the state transition
function ft. We obtain it as described below:

Ft =
∂f

∂X
|X̂t|t

b) Verification step: The main objective of the verifica-
tion step is to check if the predicted coordinates, obtained in
the previous step, belong to the topological graph constructed
using Voronoi Diagram. This graph is constructed as described
in section III.A. To achieve this task, we must determine if the
predicted coordinates belong to one of the edges which form
the graph. Each edge being a straight line, this amounts to
check if one point belongs to one of the straight lines. If this
is true, we directly perform update step. Otherwise, we correct
these coordinates by replacing them by the closest coordinates
on the graph.

c) Update step: This step aims to correct the predicted
coordinates. While in the verification step, the coordinates
are corrected following the mobility graph. In this step, the
coordinates are corrected based on the measurement of real
target location. We firstly compute Kt+1, which represents
the Kalman gain.

Kt+1 = Pt+1|tH
′
t+1[Ht+1Pt+1|tH

′
t+1 +Qvt+1 ]

−1 (8)

Where Ht is the Jacobian matrix of observation function
ht. We obtain it as described below:

Ht =
∂h

∂X
|X̂t|t+1

Finally, X̂t+1|t+1, the mobility state estimate, and Pt+1|t+1,
the corresponding covariance matrix are calculated by correct-
ing the predicted ones as follow:

X̂t+1|t+1 = X̂t+1|t +Kt+1[Zt+1 −Ht+1X̂t+1|t] (9)

Pt+1|t+1 = [I −Kt+1Ht+1]Pt+1|t (10)

As we said previously, we have associated to the EKF
a change detection mechanism. In such realistic deployment
area, where obstacle exists, abrupt and sudden target direction
changes may occur. Therefore, we propose to use CuSum [16]
for Cumulative Summary, a change detection mechanism, to
detect and relay them. We use CuSum test instead of another
detection change mechanism for its efficiency in our tracking
context with numerous obstacles.

CuSum test is described as follow:

gt+1 = gt + St+1 − v (11)

As initial condition gt+1 = 0. St+1 is the normalized innova-
tion process of the EKF. In our work, we define it as described
below:

St+1 =
Zt+1 −Ht+1X̂t+1|t√

(Pt+1|t +Qwt)H2
t +Qvt

(12)

There are two important parameters in CuSum test, the
drift parameter v and the alarm threshold h. The value of
v is subtracted at each iteration to prevent positive drifts, that
may yield a false alarm. h is called alarm threshold because



a direction change is detected when gt+1 > h. This condition
is considered as the stopping rule of the CuSum test. After
an alarm, the value of gt+1 is reset to zero. The smaller the
values of v and h, the more sensitive the test is. Their values
is chosen according to the application context.

Two particular cases may occur. The first one is an error
in next target location prediction. The second one is a target
which enters in a CS’s FoV and stays static for a certain period
of time. The solution for both cases is to send back a Re-Wake
up message to the last CS which detects and observes the
target. At the end of this phase, the upcoming target location is
available. Using this information, the current active CS selects
the succeeding one.

5) Next sensor selection: once the future target location
is predicted; the next sensor selection phase starts based on
two criteria: location and orientation angle. In this phase, the
objective is to relay the tracking from node to node until the
target leaves the area. To be chosen, a CS must satisfy Target
in Sector (TIS) test [17]:{

diT ≤ Rv

β ∈ [−α, α] (13)

Where diT denotes the distance between the node i and the
target T . β is the angle between ~iT and ~v. ~v is a sensing vector
which divide the FoV into half (see Fig.1). 2α represents the
opening angle of the CS. The sensor with the smallest value
of diT , which means is closest to the target, is selected to
be the succeeding one. As we said previously, initially all the
CSs are in idle mode. Then, the active CS, which has already
detected the target and computed its future location, activates
the succeeding one by sending a Wake up message. A Wake up
message includes sender ID. Each target coordinates captured
by a CS are sent to the sink which reconstitutes the target
pathway.

TABLE I
PARAMETERS VALUES OF THE SIMULATION

Mac Layer protocol IEEE 802.15.4
Access Mode CSMA/CA non-beaconed

Area size 100m x 100m
Target speed 1.38 m/s (pedestrian)

Number of nodes 10, 20, 30, 40, 50
Simulation Time 200 s

Transmission range (RT ) 30 m
Depth of view (RV ) of CS 20 m
Angle of view of CS (2 α) π/3

Size of messages 100 bytes
Height of CS 2 m

TABLE II
ENERGY MODEL PARAMETERS (IMOTE2 [11])

Initial node energy 3 AAA
Active power 0.279 Joule/Second

Idle power (Radio on Camera off) 0.226 Joule/Second
Sleep power (Radio off Camera off) 0.015 Joule/Second
rx/tx Power (Frequency 104 MHz) 0.078 Joule/Second

Camera Power 0.044 Joule/Second

Fig. 3. Indoor deployment area (part of Paris-Est research laboratory)
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IV. PERFORMANCE EVALUATION

In this section, simulation setting, evaluation metrics and
results are discussed. In order to evaluate PMT 2, we have
used NS-2 simulator [18]. Table 1 summarizes the simulation
parameters used. The values of RT , RV and 2α are selected
according to Imote2 features [11]. Based on preliminaries
simulations, the configuration parameters for CuSum test are
fixed to v = 0.5 and h = 5. We choose these values because
they better handle the trade-off between the tracking accuracy
and energy consumption.

We start by evaluating the deployment strategy. Then,
we evaluate the proposed tracking algorithm PMT 2. Fig.3
illustrates the deployment area (Paris-Est computing research
laboratory) used to achieve these tasks. Based on this indoor
environment, five random target trajectories with frequent
and sudden direction changes are generated and used for the
evaluation. Three metrics are used as well: tracking accuracy,
energy consumption and number of exchanged messages. We
compare the performance of our proposed algorithm to three
other ones: 1) BASIC, as its name suggests it is a basic scheme
where all the Camera nodes are always in active mode, the
localization is performed using an image processing solution
[14], 2) the cluster-based solution OCNS described in [8],
more details are given in section II, and 3) PTA, another
predictive-based algorithm where the standard Kalman Filter
for linear systems is used [19].

A. Deployment strategy

The deployment strategy is evaluated by comparing the
coverage rate of the area before and after the deployment
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algorithm. We compare the performance of the proposed
deployment strategy vs. random and planned ones. In the
Random deployment, the CSs are scattered with random
location and orientation, while in the Planned deployment the
CSs are placed regularly following the topology of the area.
Fig.4. shows the coverage rate vs. the number of Camera
Sensors. We observe that W-VFA, the proposed VFA algorithm
for weighted critical-sub-areas, has the best coverage perfor-
mances. Indeed, the proposed strategy based on attractive and
repulsive forces, allows to calculate both the new location and
orientation of the CSs. W-VFA covers up to 12% more than
Planned deployment and up to 27% more than Random one.

B. Tracking accuracy

We calculate tracking accuracy in two different ways. In the
first one, we consider the number of location points captured
along a defined pathway. Based on the size of the area of
interest, target speed, the maximal number of deployed nodes
and their sensing range, the best tracking precision (100%) is
reached when one location point is reported every five meters.
Fig.5 shows the average number of location points captured
vs. the number of Camera Sensors. Due to the Cameras, which
are always kept active, BASIC solution has better results than
OCNS and PTA. Nevertheless, it is outperformed by PMT 2.
Indeed, PMT 2 has the best results. It reaches 95% for 30
nodes. The Enhanced Extended Kalman Filter coupled with
CuSum allows to predict realistic target behavior, with possible
sudden direction changes.
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Moreover, unlike PMT 2, where the CSs are deployed
following W-VFA strategy, in BASIC solution as well as
OCNS and PTA, the CSs are scattered in random manner. We
conclude, that the deployment strategy has a positive impact
on the quality of tracking. This impact is more important than
the number of active CSs. OCNS has the worst results because
of the wake up and relaying strategy. A target can enter the
area of interest without being detected immediately.

The second way to calculate the tracking accuracy is to
compare the predicted target trajectory to the real one. The
results are obtained by computing the mean error distance
between them. Fig.6 summarizes the obtained results. Only
predictive algorithms are concerned by this metric. Thus,
BASIC and OCNS are not represented on the figure. We
observe that the predicted trajectory by PMT 2 is closer to
the real one, compared to the trajectory predicted by PTA.
Indeed, PTA is designed for linear systems. It cannot handle
non-linear and realistic target trajectory.

C. Energy consumption

The energy consumption is evaluated based on NS-2 energy
model [20] and Imote2 [11] [21] power consumption summa-
rized in Table II. To evaluate energy consumption, we calculate
the energy cost of cameras activation, active period duration,
predictive algorithm computation, and communication. Fig.7
shows the mean energy consumption of the whole network
in Joule (J) during one simulation (150 seconds) depending
on the number of Camera Sensors. Obviously, BASIC is an
unrealizable solution. Because of the permanent active state



of CSs, it consumes up to 1568.77 J. Due to the proposed
predictive mechanism, PMT 2 consumes up to 567.29 Joules
less than OCNS. Thanks to the coupled predictive mechanism,
only the nodes that are on target pathway are activated.
Furthermore, the node selection process in OCNS has a non
negligible communication cost. Due to the nearly similar
processing and communication principal, PMT 2 and PTA
consume approximatively the same energy.

D. Exchanged messages

This metric represents the communication overhead. We cal-
culate it by considering the number of collaborative messages
exchanged during the tracking process. Fig.8 shows the mean
number of exchanged messages vs. the number of Camera
Sensors. BASIC solution is not represented in this figure
because there is no communication between nodes. PMT 2

and PTA have the same communication rules. As explained
in section III.C.5, Wake up messages are exchanged when the
future location of the target is calculated. Therefore, PMT 2

and PTA have approximatively the same communication cost.
PMT 2 outperforms OCNS. Indeed, while in PMT 2 the
only messages exchanged are Wake up ones. In OCNS, two
types of messages are exchanged: Wake up and Collaborative
ones. Collaborative messages are exchanged during the node
election process.

V. CONCLUSION

In this paper, we have tackled the problem of target track-
ing in Wireless Multimedia Sensor Networks. We propose a
Predictive Mobile Target Tracking Algorithm called PMT 2.
Prediction is performed using an Enhanced Extended Kalman
Filter associated with a change detection mechanism called
Cumulative Summary. This combined mechanism allows to
track and capture very realistic target behavior. Based on
the predicted information, PMT 2 reduces the number of
nodes participating in the tracking process, and thus saving
resources. The simulation results show that PMT 2 performs
target tracking with the best results, up to 35% more than
existing works. Moreover, it saves up to 55% more energy
compared to other works. Object identification as well as
multi-target tracking, are left as future work.
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