V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translation, 1965.

M. Maiti and S. S. Palit, Somigliana's method applied to plane problems of elastic half-spaces, Journal of Elasticity, vol.40, issue.4, pp.429-439, 1976.
DOI : 10.1007/BF00040902

J. O. Watson, Advanced implementation of the boundary element method for two-and three-dimensional elastostatics. in Developments in boundary element methods 1, pp.31-63, 1987.

M. Bonnet, Boundary Integral Equations Methods for Solids and Fluids, 1999.

C. Constanda, ON NON-UNIQUE SOLUTIONS OF WEAKLY SINGULAR INTEGRAL EQUATIONS IN PLANE ELASTICITY, The Quarterly Journal of Mechanics and Applied Mathematics, vol.47, issue.2, pp.261-268, 1994.
DOI : 10.1093/qjmam/47.2.261

C. Constanda, Direct and indirect boundary integral equation methods, Monographs and surveys in pure and applied mathematics N107, 1999.

P. Schiavone and C. Q. Ru, On the Exterior Mixed Problem in Plane Elasticity, Mathematics and Mechanics of Solids, vol.1, issue.3, pp.335-342, 1996.
DOI : 10.1177/108128659600100305

G. Hsiao and R. C. Maccamy, Solution of Boundary Value Problems by Integral Equations of the First Kind, SIAM Review, vol.15, issue.4, pp.687-705, 1973.
DOI : 10.1137/1015093

M. H. Aliabadi, The Boundary Element Method, 2002.
DOI : 10.1007/978-94-011-3360-9_4

Y. Z. Chen and X. Y. Lin, Regularity condition and numerical examination for degenerate scale problem of BIE for exterior problem of plane elasticity, Engineering Analysis with Boundary Elements, vol.32, issue.10, pp.811-823, 2008.
DOI : 10.1016/j.enganabound.2008.02.004

A. Corfdir and G. Bonnet, Validity conditions of the direct boundary integral equation for exterior problems of plane elasticity, Comptes Rendus M??canique, vol.335, issue.4, pp.219-224, 2007.
DOI : 10.1016/j.crme.2007.03.010

URL : https://hal.archives-ouvertes.fr/hal-00146763

M. A. Jaswon, Integral Equation Methods in Potential Theory. I, Proceedings of the Royal Society of London A275, pp.23-32, 1963.
DOI : 10.1098/rspa.1963.0152

P. K. Banerjee and R. Butterfield, Boundary element methods in engineering science, 1981.

Y. Z. Chen, X. Y. Lin, and Z. X. Wang, Numerical solution for degenerate scale problem for exterior multiply connected region, Engineering Analysis with Boundary Elements, vol.33, issue.11, pp.1316-1321, 2009.
DOI : 10.1016/j.enganabound.2009.05.005

G. Hsiao, On the stability of integral equations of the first kind with logarithmic kernels, Archive for Rational Mechanics and Analysis, vol.177, issue.2, pp.179-192, 1986.
DOI : 10.1007/BF00280433

J. T. Chen, S. R. Kuo, and J. H. Lin, Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity, International Journal for Numerical Methods in Engineering, vol.12, issue.12, pp.1669-1681, 2002.
DOI : 10.1002/nme.476

J. T. Chen, W. C. Chen, S. R. Lin, and I. L. Chen, Rigid body mode and spurious mode in the dual boundary element formulation for the Laplace problems, Computers & Structures, vol.81, issue.13, pp.1395-1404, 2003.
DOI : 10.1016/S0045-7949(03)00013-0

J. T. Chen, S. R. Lin, and K. H. Chen, Degenerate scale problem when solving Laplace's equation by BEM and its treatment, International Journal for Numerical Methods in Engineering, vol.15, issue.2, pp.233-261, 2005.
DOI : 10.1002/nme.1184

R. Vodicka and V. Mantic, On Invertibility of Elastic Single-Layer Potential Operator, Journal of Elasticity, vol.74, issue.2, pp.147-173, 2004.
DOI : 10.1023/B:ELAS.0000033861.83767.ce

R. Vodicka and V. Mantic, On solvability of a boundary integral equation of the first kind for Dirichlet boundary value problems in plane elasticity, Computational Mechanics, vol.66, issue.6, pp.817-826, 2008.
DOI : 10.1007/s00466-007-0202-x

S. Christiansen, Integral Equations without a Unique Solution can be made Useful for Solving some Plane Harmonic Problems, IMA Journal of Applied Mathematics, vol.16, issue.2, pp.143-159, 1975.
DOI : 10.1093/imamat/16.2.143

S. Christiansen, Derivation and analytical investigation of three direct boundary integral equations for the fundamental biharmonic problem, Journal of Computational and Applied Mathematics, vol.91, issue.2, pp.231-247, 1998.
DOI : 10.1016/S0377-0427(98)00041-7

J. Chen, C. Wu, K. Chen, and Y. Lee, Degenerate scale for the analysis of circular thin plate using the boundary integral equation method and boundary element methods, Computational Mechanics, vol.38, issue.1, pp.33-49, 2006.
DOI : 10.1007/s00466-005-0719-9

Y. Z. Chen and X. Y. Lin, Degenerate scale problem for the Laplace equation in the multiply connected region with outer elliptic boundary, Acta Mechanica, vol.74, issue.1-4, pp.215-233, 2010.
DOI : 10.1007/s00707-010-0341-6

W. Dijkstra and R. M. Mattheij, A relation between the logarithmic capacity and the condition number of the BEM-matrices, Communications in Numerical Methods in Engineering, vol.21, issue.7, pp.665-680, 2007.
DOI : 10.1002/cnm.917

C. A. Brebbia and P. Georgiou, Combination of boundary and finite elements in elastostatics, Applied Mathematical Modelling, vol.3, issue.3, pp.212-220, 1979.
DOI : 10.1016/0307-904X(79)90053-2

E. Tuck and Y. Stokes, On thin or slender bodies, Australian and New Zealand Industrial and Applied Mathematics Journal, vol.53, pp.190-212, 2012.

E. Chadwick and A. Hatam, Slender body expansions in potential theory along a finite straight line, Zeitschrift fur angewandte Mathematik und Physik, pp.61-493, 2010.
DOI : 10.1007/s00033-010-0065-4

G. I. Sivashinsky, The problem of a slender die, Journal of Elasticity, vol.15, issue.2, pp.161-166, 1975.
DOI : 10.1007/BF01390077

E. Tuck and C. Mei, Contact of one or more slender bodies with an elastic half space, International Journal of Solids and Structures, vol.19, issue.1, pp.1-23, 1983.
DOI : 10.1016/0020-7683(83)90034-3

Y. Yan and I. H. Sloan, On integral equations of the first kind with logarithmic kernels, Journal of Integral Equations and Applications, vol.1, issue.4, pp.549-579, 1988.
DOI : 10.1216/JIE-1988-1-4-549

J. Maxwell, On the electric capacitance of a long narrow cylinder and a disk of sensible thikness, Proceedings of the London mathematical society 9, pp.94-101, 1878.

J. Jackson, Charge density on thin straight wire, revisited, American Journal of Physics, vol.68, issue.9, pp.789-799, 2000.
DOI : 10.1119/1.1302908

S. Falco, G. Panariello, F. Schettino, and L. Verolino, Capacitance of a finite cylinder, Electrical Engineering (Archiv fur Elektrotechnik), vol.85, issue.4, pp.85-177, 2003.
DOI : 10.1007/s00202-003-0160-z

W. Smythe, Charged Right Circular Cylinder, Journal of Applied Physics, vol.27, issue.8, pp.917-920, 1956.
DOI : 10.1063/1.1722514

W. Smythe, Charged Right Circular Cylinder, Journal of Applied Physics, vol.33, issue.10, pp.2966-2967, 1962.
DOI : 10.1063/1.1728544

L. Verolino, Kapazit???t eines Hohlzylinders, Electrical Engineering, vol.7, issue.4, pp.78-201, 1995.
DOI : 10.1007/BF01240223

L. Vainshteyn, Static boundary problems for a hollow cylinder of finite length. Part II, Technical physics-Soviet physics, vol.7, pp.855-860, 1963.

R. Scharstein, Capacitance of a tube, Journal of Electrostatics, vol.65, issue.1, pp.21-29, 2007.
DOI : 10.1016/j.elstat.2006.05.005

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas , Graphs, and Mathematical Tables, 1972.

F. J. Rizzo, D. J. Shippy, and M. Rezayat, A boundary integral equation method for radiation and scattering of elastic waves in three dimensions, International Journal for Numerical Methods in Engineering, vol.37, issue.2, pp.115-129, 1985.
DOI : 10.1002/nme.1620210110