N. Agmon, Y. Alhassid, and R. Levine, An algorithm for finding the distribution of maximal entropy, Journal of Computational Physics, vol.30, issue.2, pp.250-258, 1979.
DOI : 10.1016/0021-9991(79)90102-5

G. Ahmadi, Generation of artificial time-histories compatible with given response spectra -a review, Solid Mechanics Archives, vol.4, issue.3, pp.207-239, 1979.

D. Boore and J. Boomer, Processing of strong-motion accelerograms: needs, options and consequences, Soil Dynamics and Earthquake Engineering, vol.25, issue.2, pp.93-115, 2005.
DOI : 10.1016/j.soildyn.2004.10.007

P. Cacciola, A stochastic approach for generating spectrum compatible fully nonstationary earthquakes, Computers & Structures, vol.88, issue.15-16, pp.15-16889, 2010.
DOI : 10.1016/j.compstruc.2010.04.009

P. Cacciola and I. Zentner, Generation of response-spectrum-compatible artificial earthquake accelerograms with random joint time???frequency distributions, Probabilistic Engineering Mechanics, vol.28, pp.52-58, 2012.
DOI : 10.1016/j.probengmech.2011.08.004

A. Giaralis and P. Spanos, Derivation of response spectrum compatible non-stationary stochastic processes relying on monte carlo-based peak factor estimation, Earthquake and Structures, vol.3, pp.3-4581, 2012.

A. Golan, G. Judge, and D. Miller, Maximum entropy econometrics: robust estimation with limited data A record-based method for the generation of tridirectional uniform hazard-response spectra and ground motions using the hilbert-huang transform, Bulletin of the Seismological Society of America, vol.97, issue.5, pp.1539-1556, 1996.

J. Hancock, J. Watson-lamprey, N. Abrahamson, J. Bommer, and E. Markartis, An improve method of matching response spectra of recorded earthquake ground motion using wavelets, Journal of Earthquake Engineering, vol.10, pp.67-89, 2006.

W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.57-97, 1970.
DOI : 10.1093/biomet/57.1.97

R. Iyengar and P. Rao, Generation of spectrum compatible accelerograms, Earthquake Engineering & Structural Dynamics, vol.237, issue.3, pp.253-263, 1979.
DOI : 10.1002/eqe.4290070305

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1954.
DOI : 10.1103/PhysRev.106.620

J. Kapur, H. D. Kevasan, E. Katsanos, A. Sextos, and G. Manolis, Entropy Optimization Principles with Applications Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective, Soil Dynamics and Earthquake Engineering, vol.10, pp.157-169, 1992.

C. Lin and J. Ghaboussi, Generating multiple spectrum compatible accelerograms using stochastic neural networks, Earthquake Engineering & Structural Dynamics, vol.1, issue.7, pp.1021-1042, 2001.
DOI : 10.1002/eqe.50

S. Mukherjee and V. Gupta, Wavelet-based generation of spectrum-compatible time-histories, Soil Dynamics and Earthquake Engineering, vol.22, issue.9-12, pp.799-804, 2002.
DOI : 10.1016/S0267-7261(02)00101-X

F. Naeim, A. Alimoradi, and S. Pezeshk, Selection and Scaling of Ground Motion Time Histories for Structural Design Using Genetic Algorithms, Earthquake Spectra, vol.20, issue.2, pp.413-426, 2004.
DOI : 10.1193/1.1719028

A. Preumont, A method for the generation of artificial earthquake accelerograms, Nuclear Engineering and Design, vol.59, issue.2, pp.357-368, 1980.
DOI : 10.1016/0029-5493(80)90205-8

A. Preumont, The generation of non-separable artificial earthquake accelerograms for the design of nuclear power plants, Nuclear Engineering and Design, vol.88, issue.1, pp.59-67, 1985.
DOI : 10.1016/0029-5493(85)90045-7

S. Razaeian, D. Kiureghian, and A. , A stochastic ground motion model with separable temporal and spectral nonstationarities, Earthquake Engineering & Structural Dynamics, vol.76, issue.13, pp.1565-1584, 2008.
DOI : 10.1002/eqe.831

R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method Estimation of response spectra and simulation of nonstationary earthquake groung motions, pp.337-352, 1996.

C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

M. Shrinkhande and V. Gupta, On generating ensemble of design spectrumcompatible accelerograms, European Earthquake Engineering X, issue.3, pp.49-56, 1996.

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.1583-1611, 2008.
DOI : 10.1002/nme.2385

URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, Information Theory for Generation of Accelerograms Associated with Shock Response Spectra, Computer-Aided Civil and Infrastructure Engineering, vol.32, issue.5, pp.334-347, 2010.
DOI : 10.1111/j.1467-8667.2009.00643.x

URL : https://hal.archives-ouvertes.fr/hal-00684314

P. Spanos and L. Loli, A statistical approach to generation of design spectrum compatible earthquake time histories, International Journal of Soil Dynamics and Earthquake Engineering, vol.4, issue.1, pp.2-8, 1985.
DOI : 10.1016/0261-7277(85)90029-4

P. Spanos, A. Giaralis, and N. Politis, Time???frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition, Soil Dynamics and Earthquake Engineering, vol.27, issue.7, pp.675-689, 2007.
DOI : 10.1016/j.soildyn.2006.11.007

I. Zentner and F. Poirion, Enrichment of seismic ground motion databases using Karhunen-Lo??ve expansion, Earthquake Engineering & Structural Dynamics, vol.126, issue.12, pp.1945-1957, 2012.
DOI : 10.1002/eqe.2166