2M2  iBQM Q7 bT2+i mMK@+QKT iB#H2 ++2F
BM7Q 'K iBQM i?2Q" v
Mb" iQm-*?"BbiB M aQBx?2

hQ +Bi2 i?Bb p2 ' bBQM,

Mb"iQm- *?"BbiB M aQBx2X :2M2" iBQM Q7 bT2+i mK@+QKT iB#H?2
i?72Q°vX oB2MM *QM; 2bb QM _2+2Mi /p M+2b BM 1 i?[m F2 1M;BM2.
kyRjUolla. kyRjV- oB2MM IMBp2 bBiv Q7 h2+?MQHQ;v- m; kyRj- oB2
? H@yy3eRkNd

> G A/, ? H@yy3eRkNd
2iiTh,ff? HO@mMT2+@mMT2KX “+?Bp2b@Qmp2 i2bX7" f
am#KBii2/ QM Rk a2T kyR]j

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal-upec-upem.archives-ouvertes.fr/hal-00861297
https://hal.archives-ouvertes.fr

Vienna Congress on Recent Advances in
Earthquake Engineering and Structural Dynamics ZUVEESD 2013)
C. Adam, R. Heuer, W. Lenhardt & C. Schranz (eds)
28-30 August 2013, Vienna, Austria
Paper No. 121

Generation of spectrum-compatible accelerograms usg information
theory

A. Batou', C. Soizé

! Université Paris-Est.aboratoire Modélisation et Simulation Multi EcleelMSME UMR 8208 CNRS, 5 |
Descartes, 77454 Marne-la-Vallée, France

Abstract. The research addressed here is devoted to theagjeneof seismic accelerograms compatible with a
given response spectrum and other associated piepefrhe time sampling of the stochastic accelenog
yields a time series represented by a random ventdrigh stochastic dimension. The probability dgns
function (pdf) of this random vector is constructasing the Maximum Entropy (MaxEnt) principle under
constraints defined by the available informationtHis research, a new algorithm, adapted to thk siochastic
dimension, is proposed to identify the Lagrangetipligrs introduced in the MaxEnt principle to tak#o
account the constraints. This novel algorithm igedigped in the context of the methodology based19rthe
minimization of an appropriate convex functionatig) the construction of the probability distrilout defined

as the invariant measure of an Ité Stochastic Rifféal Equation (belonging to the class of MCMCthaels) in
order to estimate the integrals in high dimensidnthe problem. The algorithm is validated through a
application for which the available information rislative to the variance of each component of #redom
vector representing the accelerogram, statisticihenresponse spectrum such as the mean valuehand t
envelopes, statistics on the Peak Ground Acceter§dRGA) and the velocity and displacement trabesigvior

of the signals at the final time) .

Keywords: Seismic accelerogram; Maximum Entropyélple; ISDE; PGA.

1 INTRODUCTION

This research is devoted to the generation of $eiaotelerograms which are compatible with some
design specifications such as the Velocity Resp&@peetrum, the Peak Ground Acceleration (PGA),
etc. The Maximum Entropy (MaxEnt) principle (Kapand Kevasan 1992) is a powerful method
which allows us to construct a probability disttibn of a random vector under some constraints
defined by the available information. This methaak hrecently been applied (Soize 2010) for the
generation of spectrum-compatible accelerogramgragsctories of a non-Gaussian non-stationary
centered random process represented by a high-dialerandom vector for which the probability
density function (pdf) is constructed using the HEakprinciple under constraints relative to (1) the
mean value, (2) the variance of the components(@8phdhe mean value of the Velocity Response
Spectrum (VRS).

The objective of this paper is to take into accadditional constraints which characterize the radtu
features of a seismic accelerogram. To achievedibisctive, the methodology proposed by (Soize
2010) is extended to take into account constralttive to statistics on (1) the end values fa th
velocity and the displacement, (2) the PGA, (3) Beak Ground Velocity (PGV), (4) the envelop of
the random VRS and (5) the Cumulative Absolute 8y CAV). The MaxEnt pdf is constructed and
a generator of independent realizations adaptéetbigh-stochastic dimension of an accelerogram is
proposed. Furthermore an adapted method for thetifidation of the Lagrange multipliers is
developed.

In Section 2, the MaxEnt principle is used to candtthe pdf of the acceleration random vector unde
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constraints defined by the available informatiam.Section 3, the available information relative to
seismic accelerograms is presented. Finally, @edtiis devoted to an application of the methodplog
for which the target VRS is constructed followiing tEurocode 8.

2 CONSTRUCTION OF THE PROBABILITY DISTRIBUTION

The MaxEnt principle is a powerful method to coustrthe probability distribution of a random
vector associated with a sampled stochastic praseder some constraints defined by the available
information. The random acceleration of the soihisdeled by a non-Gaussian second-order centered
stochastic proce{A(t),t € [0,T]}. A time sampling, witlt; = jAt, j=1,...,N andT = N x At, of

this stochastic process is introduced yieldingreetserie{ 4, ..., Ay} with A; = A(t;) and for which

the random vectcA = (4,,..., Ay) is associated with. Finally, we have to constthet probability
distribution of random vectcA such that

E{g(A)} = f, 1

in which g(A) is a given function and whejais a target vector. Equation (1) can be rewritten a

Jex g(a)pa(a)da = f. 2)
An additional constraint relative to the normaliaatof the pdf is introduced such that
Jevpa(a)da=1. (3)
The entropy of pdp 4 is defined by

S(pa) = — Jgn pa(a)log(pa(a))da, 4)
Then the MaxEnt principle consists in constructimg pdfp 4 as the unique pdf which maximizes the

entropy. Then by introducing a Lagrange multip a&ssociated with Eq. (2), it can be shown that the
MaxEnt solution, if it exists, is defined by

pala) = exp(—(A*, g(a))), (5)

in which¢e' (A% is a normalization constant and wt(.,)denotes the Euclidean inner product. The
Lagrange multipliex*®! is calculated by minimizing the following functiain(Golan et al. (1996))

LX) = (A, f) —log(co(A)) .- (6)
The optimal value is calculated iteratively usihg Newton method
AL = A — o [HA)]"E V(M) (7)

in whicra is an under-relaxation parameter and wVvI'(A) and[H ()] are respectively the gradient
vector and the Hessian matrixI'(\) with respect tc\, and are respectively written as

VI(A) = f — E{g(Ax)}, (8)

[H(N)] = E{g(Ax)g(Ax)T} — E{g(Ax)} E{g(Ax)}T. 9)
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The calculation oVI'(A) and[H (A)] requires the estimation of integrals in high disien. In general,
these integrals cannot explicitly be calculated aadnot be discretized. In this research, these
integrals are estimated using the Monte Carlo sittart method for which independent realizations of
the random vectcA are generated using an algorithm belonging tavBMC class which is adapted
to the high dimension, as proposed in (Soize 200}y algorithm consists in constructing the pdf of
random vectoA as the density of the invariant measure associaittdthe stationary solution of a
second-order nonlinear 1té Stochastic differergliation (ISDE).

3 AVAILABLE INFORMATION RELATIVE TO SEISMIC ACCELEROG RAMS

3.1. Mean Value

The seismic accelerogram is modelled by a centathastic process. Therefore the ve Adras to
be centered. We then have the constraint

E{A} =0. (20)
3.2. Variance of the components
This constraint allows the envelop of the acceleanyto be specified and therefore the strong motion
duration to be fixed. Since random vector must dr@ered, it is equivalent to impose the variance of
the components or their second-order moments; = {1,..., N}, these constraints are defined by
2y _ 2
E{A}} =05 < +00. (11)
3.3. Mean value of the random VRS

For 0 < wmin < w < Wmax @NA 0 < &pin < € < &max < 1, the random VRSs(w,¢; A) of stochastic
process{A(t),t € [0, 7]} is defined by (Clough and Penzien 1975)

s(w, &; A) =wmax  ¢eo,7] ’y(t; w, &, A)| ’ (12)

in which the stochastic proce{y(t;w, &, A),t € [0,T]} is defined by

y(t;w, &, A) = [ h(t—Tiw,€) A(T) dr | (13)
where
h(t;w, &) = —]1[0#00[(75)0“/%? exp{—€wt}sin{w/1— €2t} (14)

in which the functionl, ;. .(¢) is equal tol if ¢ < [0,400[ and is equal tc otherwise. Let
{wi,...,w,, } be a sampling of interviwyin, wmax] (SUch thaw,, < =/At) and let{¢;,... ¢} be a
sampling of interval&min, {max)- L€t bex =k, x ke. The discretization of Egs. (12), (13) and (14)
yields the random VRS vectS = s(A) in whichs = (sy,...,s,) is @ nonlinear mapping such that

sj(a) = s(w,&a) for (w,§); in {wi,...,wk,} X {fl,...,fﬁf}, (15)

in which
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S(“?ﬁaa’):wmaxﬂyl(wagaa”""’|yN(w7£’a)‘} ) (16)
with
yi(w’€7 Cl,) = {[B(w,g)]a},, (17)

and wheréB(w, £)] is a(N x N) real matrix defined by

[B(w )]s = 57t exp{—(i=j)éw At} sin{(i—j)wy/1 - € At} (18)
The available information relative to the mean eahf the random VRS is defined, for jlin
{1,...,k}, by

E{sj(A)} = s;, (19)
wheres = (s,,...,s,) is the mean VRS which is chosen as the target.

3.4. Variability of the random VRS

The constraint defined in Section 3.3, which consghe mean value of the random VRS, does not
allow us to control the statistical fluctuations the random VRS around its mean value. In this
section, the variability of the random VRS is cotied by introducing a constraint relative to the
probability that the random VRS belongs to a reglelimited by two given envelops. The VRS upper
envelope is defined by the vecs™ = (s]?,...,s") and the VRS lower envelope is defined by the

vectors!ov = (slov, ..., slv). We then introduce the following constraint

'YK

P({sllow <s1(A) < slfp, .. slov < sk(A) < s5”}) =po, (20)

which can be rewritten as

E{H?ﬂ 1 [show,s7P] (SJ(A))} =DPo- (21)

3.5. Variance of the end-velocity and the end-disptement

This constraint is introduced in order to contiud £nd-velocity and the end-displacement which are
assumed to be zero. In this paper, this correcsiahrectly taken into account in the constructain
the pdf. LetV'(¢) andD(t) be the velocity and the displacement stochasticgsses indexed {0, 7.
Assuming thaV (0) = D(0) = 0 almost surely, it can easily be proven that

V(t) = [y A(r)dr, D(t)= [{V(r)dr. (22)
Performing an integration by parts in the right-thaide of Eq. (22) yields,

D(t) = [i(t—7)A(r)dT. (23)

Using the time samplint; = j At for j =1,...,N and the corresponding samplid; = A(t;), the
following discretization of Eq. (22) is then intnackd,

IV (A) = V() ~ ALY, A;, (24)
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LP(A) = D(ta) =~ (A2 Y0 (n—j +1) A;, (25)

in whichA = (4,,...,Ay). The zero end-velocity](v”(A) = V(ty) and the zero end-displacement,
1P (A) = D(ty), are then specified in writin7{"’(4) = 0 and(?(A) = 0. These properties should be
verified almost surely, which means that all thewdated trajectories of the acceleration stochastic
process should verify this property. In this papbese constraints are imposed in the mean-square
sense and not almost surely. Since random viAiercentered, then random variabIJ(V”(A) and
Jﬁ\?)(A) are also centered. We then introduce the followimgstraint,

E{(IJ(A)2} =0 , E{I(A)*} =0. (26)
3.6. Mean value of the random PGA and mean value tiie random PGV

The PGA characterizes the maximum amplitude ofatbeelerogram. The random PGA, relative to
acceleration proce{A(t),t € [0,T]}, is defined by

PGA(A) =max (o) |A(t)] . (27)

In the regulation codes, this value is used to troosthe target VRS. Nevertheless, even if thermea
VRS of the simulated accelerograms matches peyfdatitarget VRS, the mean PGA of the simulated
accelerograms does not match the PGA which has bset to construct the target VRS. In this
section, we propose to enforce this matching. Usiggtime sampling of Eq. (27), the following
constraint is introduced,

E{max{|A1],...,|An[}} = PGA, (28)
in whichPGA is the target value for the mean value of the PGA.

Concerning the random PGV, which is definedPGV(A) = max{|V (¢)|,t € [0,7T]}, its mean value is
controlled by imposing the following constraint

B{max{|1{"(4)],.... |1 (A)[}} = PGV, (29)

in whichPGYV is the target value for the mean value of the R@&Y wherel;l)(A) is defined by Eq.
(24).

3.7. Mean value of the random CAV

The random CAV is defined as the integral of theollite value of the random acceleration over time
rangelo, 77,

CAV(A) = [T |A(7)|dr . (30)

The CAV is usually used for the risk assessmentunfiear power-plants. Using a discretization of
Eq.(30) the corresponding constraint

E{{At Y3 Juj|}} = CAV, 31)
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in which CAV is the target value for the mean value of the can€CAV.

4 APPLICATION

The acceleration stochastic process is sampled thaththe final timeT =20s. The time step is
DT =0.0125s. We then havN =1600 (we assumeA(0) =0 ms® almost surely). The available
information is relative to the variance of the caments of the random vecAr, the mean value of
the VRS, the envelop of the VRS, the variance ef énd value of the velocity and displacement
random vectors (resulting from two successive nigaklintegrations of the acceleration random
vector A ). The methodology for the construction of the Makpgdf introduced in the previous section
is applied.

Figure 1 compares the target standard deviatidheofomponents with the estimated one.

2
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Figure 1. Standard deviation: Target (thick dashed line) and estimationgolid line).

The target VRS in constructed following the Eurce@®l There are two constraints relative to the
VRS. The first one concerns the mean value andséto®nd one concerns the probability for the
acceleration trajectories of being between two kpge(target VRS +/- 50%). The results are plotted
in Fig .2.
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Figure 2. Random VRS. Left figure: mean value (the target)i{ddsine) and estimation (mixed line). Right
figure: 100 trajectories (thin lines), lower and upper @p (thick lines).

For the velocity and displacement trajectories, ¢inel values are controlled by constraining the
variance of the end value of the velocity and @ispiment random vectors (obtained by two
successive numerical integrations) to be zero. rEigdi shows a simulated accelerogram and the
corresponding velocity time series and displacertigmg series.



A. Batou, C. Soize / VEESD 2013 7

o5
‘Tu)
=
= o
s
=
53
=
—-50 5 15 20

10
Time (s)

Figure 3. A realization of the random acceleration, of the rangelocity and of the random displacement

Finally the mean value for the PGA, the PGV and @AY are also constrained. The results are
reported on Table 1.

Table 1 For the PGA, the PGV and the CAV: comparison ofetsttmated mean value with the target value

Constraint Target Estimation
Mean PGA hs?) 5 5.08
Mean PGV ns?) 0.45 0.46
Mean CAV s 20 19.99

Figures 1 to 3 and Table 1 show a good matchinbeoéstimated values with the target values.

5 CONCLUSION

A new methodology has been presented for the gemeraf accelerograms compatible with a given
VRS and other properties. If necessary, additiac@istraints could easily be taken into. The
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application shows a good matching between the astiivalues and the target values.
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