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Calculation of Lagrange multipliers in the construction of maximum entropy

distributions in high stochastic dimension ∗

A. Batou† and C. Soize†

Abstract. The research addressed here concerns the construction of the probability distribution of a random
vector in high dimension using the maximum entropy (MaxEnt) principle under constraints defined
by the available information. In this paper, a new algorithm, adapted to the high stochastic dimen-
sion, is proposed to identify the Lagrange multipliers introduced to take into account the constraints
in the MaxEnt principle. This new algorithm is based on (1) the minimization of an appropriate
convex functional and (2) the construction of the probability distribution defined as the invariant
measure of an Itô Stochastic Differential Equation. The methodology is validated through an ap-
plication devoted to the generation of accelerograms which are physically consistent and spectrum
compatible.

Key words. Maximum Entropy principle; High stochastic dimension; Lagrange multipliers; Accelerograms.

AMS subject classifications.

1. Introduction. The construction of the probability distribution of random vectors un-
der some constraints defined by the available information requires the use of an adapted
method, such as the maximum entropy (MaxEnt) principle, in order to obtain a well-posed
problem. The available information can be obtained from experimental realizations and/or
physical considerations. In the case of an engineering design, this information can also be
provided by specifications. In general, due to the limited number of experimental realizations,
the direct nonparametric statistical estimation of the probability distribution is inaccurate in
high stochastic dimension and a parametric representation is a way to circumvent this diffi-
culty. The parameters of this representation can be estimated using parametric statistics. The
MaxEnt principle [23, 14, 31, 24, 18, 15] is a method which allows such a parametric repre-
sentation to be constructed and if a solution exists, then to uniquely identify the parameters
of the probability distribution (Lagrange multipliers associated with the constraints) using
only the available information. This method has been applied successfully for a large class
of applications, for instance, in image reconstruction and image processing [25], in acoustic
processing [20], for modeling species geographic distributions with presence-only data [21], for
econometric applications [11, 33], for natural language processing [3], for many applications
in the area of physics [16, 17, 32, 8] and mechanics [26, 28, 5], and in many other fields.

Even if the MaxEnt principle allows the construction of the probability distribution to be
carried out, two difficulties remain. The first one concerns the construction of a generator of
independent realizations of the random vector in high dimension. The second one is related
to the estimation of the high-dimension integrals which have to be computed in order to
calculate the optimal value of the Lagrange multipliers. These two difficulties increase with
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†Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5

bd Descartes, 77454 Marne-la-Vallee, France

1



2

the stochastic dimension.
Recently, a new methodology [29], which consists in constructing the MaxEnt probability

distribution as the invariant measure of an Itô Stochastic Differential Equation (ISDE), has
been introduced for the low and high stochastic dimension. This method allows independent
realizations of a high-dimension random vector constructed using the MaxEnt principle to
be generated and then the high dimensional integrals to be estimated using the Monte Carlo
simulation method or using the ergodic method.

The objective of this paper is to improve the methodology introduced in [29] by introducing
a more efficient algorithm for the identification of the Lagrange multipliers. The proposed
algorithm is based (1) on the minimization of the convex cost function introduced by [1], (2)
at each iteration, on the use of an ISDE to construct independent realizations allowing the
gradient and the Hessian to be estimated, (3) on the use of efficient initial conditions for the
ISDE. This algorithm allows the Lagrange multipliers to be identified with a few number of
Newton iterations.

In Section 2, the construction of the MaxEnt probability distribution is briefly summa-
rized. Section 3 is devoted to the identification of the Lagrange multipliers introduced in
this construction. In Section 4, the methodology is validated in high dimension (random
vector with 1, 600 components) through an application which deals with the generation of
accelerograms which are physically consistent and spectrum compatible .

2. Construction of the MaxEnt probability distribution. Let A = (A1, . . . , AN ) be a
R
N -valued second-order random variable. The objective of this section is to construct the

probability density function a �→ pA(a) of the random vector A using the MaxEnt principle
under the constraints defined by the available information relative to random vector A. The
support of the probability density function (pdf) is assumed to be all the set RN .

2.1. Available information. The available information for the random vector A can be
deduced from physical considerations and/or experimental measurements. In some cases, such
as the design of a structure, the available information can also be deduced from engineering
specifications. Let E{.} be the mathematical expectation. We suppose that the available
information is written as

E{g(A)} = f , (2.1)

in which a �→ g(a) is a given function from R
N into R

µ and where f is a given vector in R
µ.

Equation (2.1) can be rewritten as
∫

RN

g(a)pA(a)da = f . (2.2)

An additional constraint relative to the normalization of the distribution pA(a) is introduced
such that

∫

RN

pA(a)da = 1 . (2.3)

It should be noted that the available information type defined by Eq. (2.1) is not a limita-
tion. Indeed, most of the information available in physical phenomena are written or can be
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rewritten in the form defined by Eq. (2.1). As it will be seen in the applications of Section 4,
we can also control each realization of random vector A by imposing appropriate constraints.

2.2. MaxEnt probability distribution. The entropy of the probability density function
a �→ pA(a) is defined by

S(p) = −
∫

RN

pA(a) log(pA(a))da , (2.4)

which is defined as a measure of uncertainty for pA(a) and where log is the natural logarithm.
Let C be the set of all the probability density functions defined on R

N with values in R
+,

verifying the constraints defined by Eqs. (2.2) and (2.3). Then the MaxEnt principle consists
in constructing the probability density function a �→ pA(a) as the unique pdf in C which
maximizes the entropy defined by Eqs. (2.4). Then by introducing a Lagrange multiplier λ0

in R
+ associated with Eq. (2.3) and a Lagrange multiplier λ associated with Eq. (2.2) and

belonging to an admissible open subset Lµ of R
µ, it can be shown (see [14, 15]) that the

MaxEnt solution, if it exists, is defined by

pA(a) = csol0 exp(−〈λsol,g(a)〉) , (2.5)

in which csol0 = exp(−λsol
0 ), 〈x,y〉 = x1y1+ . . .+xµyµ and where λsol

0 and λsol are respectively
the values of λ0 and λ for which Eqs. (2.2) and (2.3) are satisfied. Using Eqs. (2.3) and (2.5),
the parameter csol0 is given by

csol0 =

{∫

RN

exp(−〈λsol,g(a)〉)da
}−1

. (2.6)

Therefore, Eq. (2.5) can be rewritten as

pA(a) = c0(λ
sol) exp(−〈λsol,g(a)〉) , (2.7)

in which λsol is such that Eq. (2.2) is satisfied and where c0(λ) is defined by

c0(λ) =

{∫

RN

exp(−〈λ,g(a)〉) da
}−1

. (2.8)

The identification of the vector λsol of the Lagrange multipliers is the objective of this paper
and is addressed in the next Section.

3. Calculation of the Lagrange multipliers. In this section, we propose a methodology
for the calculation of λsol. We first present the general methodology for the calculation of this
vector. Then we present the Gaussian particular case for which the gradient and the Hessian
of the objective function can explicitly be calculated. The Gaussian case is useful (i) either if
the available information consists only of linear or affine transformations of statistical second-
order moments (ii) or for initializing the value of the Lagrange multipliers in the iterative
algorithm devoted to the non-Gaussian case. Finally, we present the case for a general MaxEnt
distribution for which integrals on R

N have to be estimated using an appropriate methodology.
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3.1. Objective function and methododology. Using Eqs. (2.7) and (2.2), vector λsol is
the solution in λ of the following set of µ nonlinear algebraic equations

∫

RN

g(a) c0(λ) exp(−〈λ,g(a)〉) da = f . (3.1)

A more convenient way to calculate vector λsol consists in solving the following optimization
problem (see [1, 11, 19, 6]),

λsol = arg min
λ∈Lµ⊂Rµ

Γ(λ) , (3.2)

in which the objective function Γ is written as

Γ(λ) = 〈λ,f〉 − log(c0(λ)) . (3.3)

It should be noted that the great interest of such a formulation is that the introduced objective
function Γ does not depend on the Lagrange multiplier λ0 associated with the constant of
normalization. We recall that, under the same hypotheses, the usual strictly convex objective
function (λ0,λ) �→ Γ̃(λ0,λ) is written (see for instance [15]) as Γ̃(λ0,λ) = λ0 + 〈λ,f〉 +
e−λ0 {c0(λ)}−1, which depends on the constant of normalization. Let {Aλ , λ ∈ Lµ} be a
family of random variables for which the pdf is defined, for all λ in Lµ, by

pAλ
(a) = c0(λ) exp(−〈λ,g(a)〉) . (3.4)

Then the gradient vector ∇Γ(λ) and the Hessian matrix [H(λ)] of function λ �→ Γ(λ) are
written as

∇Γ(λ) = f − E{g(Aλ)} . (3.5)

[H(λ)] = E{g(Aλ)g(Aλ)
T } − E{g(Aλ)}E{g(Aλ)}T , (3.6)

in which uT is the transpose of u. It can be noted that the Hessian matrix [H(λ)] is the
covariance matrix of the random vector g(Aλ). It is assumed that the constraints defined by
Eq. (2.2) are algebraically independent. Consequently, the Hessian matrix is positive definite
and therefore, function λ �→ Γ(λ) is strictly convex and reaches its minimum for λsol which
is such that ∇Γ(λ) = 0 for λ = λsol. It can then be deduced that the minimum of function
λ �→ Γ(λ) corresponds to the solution of Eq. (3.1). The optimization problem defined by
Eqs. (3.2) and (3.3) can be solved using any minimization algorithm. Since function Γ is
strictly convex, the Newton iterative method can be applied to the increasing function λ �→
∇Γ(λ) for searching λsol such that∇Γ(λsol) = 0. This iterative method is not unconditionally
convergent. Consequently, an under-relaxation is introduced and the iterative algorithm is
written as

λi+1 = λi − α [H(λi)]−1
∇Γ(λi) , (3.7)

in which α belongs to ]0 , 1] in order to ensure the convergence towards the solution λsol. For
α = 1 there is no under-relaxation and it is under-relaxed for 0 < α < 1. The Newton iterative
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method which is proposed will not require the calculation of the normalization constant c0(λ)
of the pdf in the Γ(λ) function defined by Eq. (3.3) (such a calculation would constitute a
difficult problem in high dimension). In fact, as we will present in Section 3.3, an algorithm
belonging to the Markov Chain Monte Carlo (MCMC) class will be used to calculate the
mathematical expectations in Eqs. (3.5) and (3.6) which will not require the calculation of
the normalization constant c0(λ) of the pdf. At each iteration i, the error is defined by

error(i) =
‖f − E{g(A

λ
i)}‖

‖f‖ =
‖∇Γ(λi)‖

‖f‖ , (3.8)

and is calculated in order to control the convergence of the algorithm. The performance of
this algorithm depends on the choice of the initial condition for which details are given in
Section 3.3.2.

3.2. Gaussian case. In this section, we consider the particular case for which the available
information leads us to a second-order centered random vector A which is Gaussian. Note
that if A was not centered, with a given mean value m, we could only consider the associated
centered random vector A−m. This case is interesting to calculate the covariance matrix of
the Gaussian centered random vector A when the µ constraints are defined by µ quadratic
forms on R

N . Since these constraints must be algebraically independent, it is assumed that
1 < µ ≤ N(N + 1)/2. It should be noted that the case µ = 1 is trivial. The available
information is then defined by the following constraints,

E{A} = 0 , (3.9)

E{1
2
〈A, [Kj ]A〉} = lj , j = 1, . . . , µ , (3.10)

in which {[Kj ]}j=1,...,µ are µ symmetric (N × N) real matrices which are assumed to be
algebraically independent. Let λm be the Lagrange parameter relative to the constraint
defined by Eq. (3.9), λ = (λ1, . . . , λµ) be the Lagrange parameter relative to the constraint
defined by Eq. (3.10). In this case, the MaxEnt pdf is written as

pA(λm,λ)(a) =
exp(−〈λm,a〉 −∑µ

j=1
1
2λj 〈a, [Kj ]a〉)∫

RN exp(−〈λm,a〉 −∑µ
j=1

1
2λj 〈a, [Kj ]a〉) da

, (3.11)

Using Eq. (3.9), it can be shown that λm = 0. Below, A(0,λ) is rewritten as Aλ. We then
have

pAλ
(a) =

exp(−∑µ
j=1

1
2λj 〈a, [Kj ]a〉)∫

RN exp(−∑µ
j=1

1
2λj 〈a, [Kj ]a〉) da

. (3.12)

Let [Kλ] =
∑µ

j=1 λj [Kj ] which is assumed to be positive definite for all λ in Lµ. In this case,
Eq. (3.12) can be rewritten as

pAλ
(a;λ) = c0(λ) exp(−

1

2
〈a, [Kλ]a〉) , (3.13)
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in which c0(λ) is the normalization constant such that

c0(λ) =

{∫

RN

exp(−1

2
〈a, [Kλ]a〉) da

}−1

= (2π)−
N
2

√
det[Kλ] . (3.14)

Equations (3.13) and (3.14) show that Aλ is effectively a real centered Gaussian random
vector for which the covariance matrix is [K(λ)]−1. For this Gaussian case, function Γ(λ),
gradient vector ∇Γ(λ) and Hessian matrix [H(λ)] can explicitly be derived. Using Eqs. (3.3)
and (3.14), we then have

Γ(λ) = 〈λ, l〉+ N

2
log(2π) − 1

2
log(det([Kλ]) . (3.15)

in which l = (l1, . . . , lµ). The gradient vector is then written as

(∇Γ(λ))i = li −
1

2
tr([Kλ]

−1[Ki]) , (3.16)

in which tr is the trace for matrices. The Hessian matrix is written as

[H(λ)]ij =
1

2
tr([Kλ]

−1[Ki][Kλ]
−1[Kj ]) . (3.17)

Finally, Eq. (3.7) allows λsol to be calculated iteratively.

3.3. General non-Gaussian case. For the Gaussian case presented in the previous section,
the integrals in high dimension involved in Eqs. (3.3), (3.5) and (3.6) have explicitly been
calculated which facilitates the identification of vector λsol of the Lagrange multipliers. In
general, for the non-Gaussian case, these integrals cannot explicitly be calculated. Due to the
high dimension, these integrals can not be discretized in R

N such as proposed in [34] in the
context of the MaxEnt methodology. In the same context, in [6, 9], the authors construct a set
of linear equation using an integrating by parts of Eq. (2.2) and, in [2], the moment problem
is solved in approximating the MaxEnt distribution on an adapted family of basis functions
(these two methods are well adapted for N = 1).

In this paper, the integrals involved in Eqs. (3.3), (3.5) and (3.6) are estimated using
the Monte Carlo simulation method [22] for which independent realizations of the random
vector Aλ are generated using an algorithm belonging to the MCMC class which is adapted
to the high dimension, as proposed in [29]. In this Section, we first introduce a generator of
independent realizations of a random vector in high dimension for which the pdf is constructed
using the MaxEnt principle. Then an algorithm for the calculation of vector λsol of the
Lagrange multipliers is presented.

3.3.1. Generator of independent realizations. The objective of this section is to provide
a generator of independent realizations of the random variable Aλ for all λ fixed in Lµ. A
generator of independent realizations for MaxEnt distribution has been proposed in [29] in
the class of the MCMC algorithms. The methodology introduced consists in constructing the
pdf of random vector Aλ as the density of the invariant measure, pAλ

(a)da, associated with
the stationary solution of a second-order nonlinear ISDE. The advantages of this generator



7

compared to the other MCMC generators such as the Metropolis-Hastings algorithm (see [12])
are: (1) The mathematical results concerning the existence and the uniqueness of an invariant
measure can be used, (2) a damping matrix can be introduced in order to rapidly reach the in-
variant measure and (3) there is no need to introduce a proposal distribution which can induce
difficulties in high dimension. In this paper, two modifications are introduced compared to the
methodology introduced in [29]. The first one concerns the introduction of a damping matrix
instead of a homogeneous damping parameter and therefore, which allows the convergence rate
to be better controlled for all the components of the random vector. The second one concerns
an optimal choice of the probability distribution of the initial condition of the ISDE which
has to be solved for each given value of the Lagrange multiplier during the iterative algorithm.

i - Construction of the ISDE

Let u �→ Φ(u,λ) be a potential function defined by

Φ(u,λ) = 〈λ,g(u)〉 . (3.18)

We then introduce the stochastic process {(U (r),V (r)), r ≥ 0} with values in R
N × R

N

satisfying, for all r ≥ 0, the following ISDE (see [13], [27])

dU(r) = V (r) dr

dV (r) = −∇uΦ(U(r),λ) dr − 1
2 [Dλ]V (r) dr + [Sλ] dW (r) ,

(3.19)

with the initial conditions

U (0) = U0 , V (0) = V 0 a.s . (3.20)

In Eq. (3.19), ∇uΦ(u,λ) is the gradient of function Φ(u,λ) with respect to u, such that

∇uΦ(u,λ) = [∇ug(u)]λ , (3.21)

in which the (N ×µ) matrix [∇ug(u)] is the gradient of function g(u) with respect to u. The
matrix [Dλ] is a symmetric positive-definite damping matrix, the lower triangular matrix [Sλ]
is such that [Dλ] = [Sλ][Sλ]

T and W = (W1, . . . ,WN ) is the normalized Wiener stochastic
process indexed by R

+. The random initial condition (U0,V 0) is a second-order random
variable independent of the Wiener stochastic process {W (r), r ≥ 0}. The probability distri-
bution of the initial condition will be discussed in the next section. Then it can be proven (see
[27, 29]) that, if u �→ Φ(u,λ) is continuous on R

N , if u �→ ‖∇uΦ(u,λ)‖ is locally bounded
on R

N (i.e. is bounded on all compact set in R
N ), and if

inf
‖u‖>R

Φ(u,λ) → +∞ ifR → +∞ , (3.22)

inf
u∈RN

Φ(u,λ) = Φmin withΦmin ∈ R , (3.23)
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∫

RN

‖∇uΦ(u,λ)‖ pAλ
(u) du < +∞ , (3.24)

then, the ISDE defined by Eqs. (3.19) and (3.20) admits an invariant measure defined by the
pdf ρλ(u,v) with respect to dudv, which is the unique solution of a steady-state Fokker-
Planck equation and which is written as

ρλ(u,v) = c0(λ) exp(−Φ(u,λ))× (2π)−N/2 exp(−1

2
‖v‖2) , (3.25)

which shows that

pAλ
(a) =

∫

RN

ρλ(a,v) dv . (3.26)

It can then be deduced that, for r → +∞, the stochastic process {(U (r),V (r)), r ≥ 0} tends to
a stationary stochastic process in probability distribution, for which the one-order marginal
probability distribution is ρλ(u,v) dudv. It can then be concluded that, for r → +∞,
the stochastic process {U(r), r ≥ 0} tends to a stationary stochastic process in probability
distribution, for which the one-order marginal probability distribution is pAλ

(a) da and we
can briefly write,

lim
r→+∞

U(r) = Aλ in probability distribution. (3.27)

In addition, for r → +∞, (1) U(r) and V (r) tend to independent random variables, (2) U(r)
and V (r) tend to be independent of the random initial conditions, (3) V (r) tends to a centered
Gaussian random vector with covariance matrix equal to the identity matrix. Therefore, using
an independent realization of the Wiener stochastic process W and an independent realization
of the initial condition (U0,V 0), an independent realization of the random vector Aλ can be
constructed as the solution of the ISDE defined by Eqs. (3.19) and (3.20), for r sufficiently
large. The value r0 of r for which the invariant measure is approximatively reached depends
on the choice of the damping matrix [Dλ] and on the probability distribution of the random
initial conditions. The damping induced by the matrix [Dλ] has to be sufficiently large in
order to rapidly kill the transient response but a too large damping introduces increasing er-
rors in the numerical integration of the ISDE. Concerning the initial conditions, the more the
probability distribution of the initial conditions is close to the invariant measure, the shorter
is the transient response. Particularly, if the probability distribution pU0,V 0(u,v) dudv is
equal to the invariant measure ρλ(u,v) dudv, then for all fixed r > 0, the probability dis-
tribution of the random vector (U(r),V (r)) is this invariant measure. The choice of the pdf
pU0,V 0 , which allows the invariant measure to be rapidly reached, is discussed in Section 3.3.2.

ii - Discretization of the ISDE

Several numerical integration schemes of an ISDE have been proposed in the literature. They
are classically divided into three types: Explicit schemes, implicit schemes and semi-implicit
schemes. A review and comparisons of the main integration schemes can be found in [4].
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For the second-order ISDE under consideration, the choice of the integration scheme depends
on the regularity of the potential function Φ(u,λ) involved in the ISDE and the required
precision. The advantage of implicit schemes is their unconditional stability with respect to
the integration step size. Nevertheless, such an implicit scheme is time consuming because
it requires to solve a nonlinear equation at each integration step. The explicit schemes only
require the evaluation of the potential Φ(u,λ) at each integration step but the stability of
such schemes depends on the integration step size. If function u �→ ∇uΦ(u,λ) is very ”stiff”
(presence of very large eigenvalues for the linearized second-order differential equation), then
a small integration step size is required to guarantee the stability of the integration scheme.
In [29], a semi-implicit integration scheme is proposed in order to avoid the resolution of an
algebraic nonlinear equation at each step size while allowing a significant increase in the time
step compared to a purely explicit scheme. The semi-implicit integration scheme, used for the
application presented in Section 4.1, is summarized below.
A semi-implicit scheme can easily be used when the potential can be written as the sum of a
positive-definite quadratic form Q(u) in u with a nonlinear function of u. In such a case, the
gradient with respect to u of the potential exhibits a linear part [Q′′]u in which the Hessian
[Q”] is a positive-definite symmetric real matrix independent of u. An implicit scheme can
then be used for the linear part while the nonlinear part is considered with an explicit scheme.
As a consequence, the equation which has to be solved at each integration step is an algebraic
linear equation and therefore, its resolution is not time consuming.
Let us then assume that, for all λ ∈ Lµ, the potential function can be written as

Φ(u,λ) =
1

2
〈u, [KλL

]u〉+ΦNL(u,λNL) , (3.28)

for which the following decomposition λ = (λL,λNL) ∈ Lµ of the Lagrange multipliers has
been introduced and where [KλL

] is a positive-definite symmetric (N × N) real matrix de-
pending on λL. Therefore, the gradient is written as

∇uΦ(u,λ) = [KλL
]u+∇uΦNL(u,λNL) . (3.29)

Let ∆rλ be the integration step size and let {rk = (k− 1)∆rλ, k = 1, . . . ,M} be the sampling
points of the interval [0, (M−1)∆rλ], M being a positive integer. The semi-implicit integration
scheme of the ISDE defined by Eq. (3.19) is then written, for k = 1, . . . ,M − 1, as

[Eλ]V k+1 = [Bλ]V
k −∆rλ[KλL

]Uk +∆rλL
k
NL + [Sλ]∆W k+1

Uk+1 = Uk + 1
2 ∆rλ (V k+1 + V k) ,

(3.30)

in which [Eλ] = [IN ] + 1
4 ∆rλ [Dλ] +

1
4 ∆r2

λ
[KλL

] and [Bλ] = [IN ]− 1
4 ∆rλ [Dλ]− 1

4 ∆r2
λ
[KλL

]

where [IN ] is the (N × N) identity matrix. The vector ∆W k+1 is a second-order Gaus-
sian centered random vector with covariance matrix equal to ∆rλ [IN ] and the random vec-
tors ∆W 1, . . . ,∆WM are mutually independent. The vector Lk

NL is defined by Lk
NL =

−{∇uΦNL(u,λNL)}u=U
k . If the gradient function ∇uΦNL(u,λNL) cannot explicitly be cal-

culated, then Lk
NL is calculated using a finite difference approximation of ∇uΦNL(u,λNL).
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The initial conditions are U1 = U 0 and V 1 = V 0.

iii - Estimation of the mathematical expectations

The integrals in high dimension involved in Eqs. (3.4), (3.5) and (3.6) are estimated using the
Monte Carlo method and the generator of independent realizations previously defined. For
ℓ = 1, . . . , ns, using ns independent realizations {∆W k+1,ℓ, k = 1, . . . ,M − 1} of the family of
random vectors {∆W k+1, k = 1, . . . ,M − 1} and ns independent realizations (U

ℓ
0,V

ℓ
0) of the

random initial conditions (U 0,V 0) (which are also independent of {∆W k+1, k = 1, . . . ,M −
1}), then the ns independent realizations UM,ℓ of the vector random UM are generated by
solving ns times, for k = 1, . . . ,M − 1, the following equations

[Eλ]V k+1,ℓ = [Bλ]V
k,ℓ −∆rλ[KλL

]U k,ℓ +∆rλL
k,ℓ
NL + [Sλ]∆W k+1,ℓ ,

Uk+1,ℓ = Uk,ℓ + 1
2 ∆rλ (V k+1,ℓ + V k,ℓ) ,

U1,ℓ = U ℓ
0 , V 1,ℓ = V ℓ

0 .

(3.31)

Then, if M is sufficiently large, using Eq. (3.27), the ns independent realizations of the random
vector Aλ are constructed such that Aℓ

λ
≃ UM,ℓ for ℓ = 1, . . . , ns. Therefore the mean value

E{g(Aλ)} and the correlation matrix E{g(Aλ)g(Aλ)
T } are estimated by

E{g(Aλ)} ≃ 1

ns

ns∑

ℓ=1

g(Aℓ
λ) , (3.32)

E{g(Aλ)g(Aλ)
T } ≃ 1

ns

ns∑

ℓ=1

g(Aℓ
λ)g(A

ℓ
λ)

T . (3.33)

As we have previously explained, we need not to calculate the normalization constant c0(λ)
for the proposed iterative algorithm. It should be noted that quantities M and ns can depend
on the current value of λ but such a dependence has been removed to simplify the notation.

3.3.2. Implementation of the iterative algorithm for the calculation of the Lagrange

multipliers. In this section, we present the implementation of the iterative algorithm presented
in Section 3.1 for the calculation of vector λsol and also, the construction of ns independent
realizations of random vector A.

(i) Concerning the initialization of the algorithm, an initial value λinit of λ has to be
provided in Lµ. A pdf of the random vector (U 0,init,V 0,init) corresponding to the random
initial condition (U0,V 0) for λ = λinit has to provided too. As explained in Section 3.3.1-i, the
pdf pU0,V 0(u0,v0) of the random initial condition has to be as close as possible to the invariant
pdf (u,v) �→ ρλ(u,v). Concerning V 0, since for all λ in Lµ and for r sufficiently large, the
random vector V (r) is Gaussian, centered, with covariance matrix equal to the identity matrix,
the pdf of V 0,init is chosen as the normalized Gaussian distribution, V 0,init ∼ N (0, [In]).
Concerning U0,init, if the potential function can be written as in Eq. (3.28) and if we set
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λNL,init = 0, then Aλinit
is a Gaussian centered random vector for which the covariance matrix

is [KλL,init
]−1. Therefore the pdf of U0,init is chosen such that U 0,init ∼ N (0, [KλL,init

]−1), and
the initial value λL,init can be identified using the methodology developed in Section 3.2
devoted to the Gaussian case. If the potential function cannot be written as in Eq. (3.28),
then U0,init = 0 almost surely can be taken. At this stage, λL,init has been identified and
λNL,init must be chosen such that (λL,init,λNL,init) is in Lµ.

(ii) At each iteration of the algorithm, the calculation of λi+1 given λi required the
calculation of the gradient and the Hessian for λi. These quantities are estimated solving the
ISDE with the pdf of the random initial condition which is chosen as the pdf of the invariant
measure constructed for λi−1 for which independent realizations are known. The algorithm
for the identification of the Lagrange multipliers is summarized in Algorithm 1.

Algorithm 1: Identification of the Lagrange multipliers

INITIALIZATION:

i = 1 ;
λi = λinit ;
error(i) = +∞ ;
for ℓ = 1, . . . , ns do

U ℓ
0 = U ℓ

0,init ;

Generate V ℓ
0 ∼ N (0, [In]) ;

LOOP:

while error(i) > ǫ do
for ℓ = 1, . . . , ns do

U1,ℓ ← U ℓ
0 ;

V 1,ℓ ← V ℓ
0 ;

Solve the ISDE → (UM,ℓ,V M,ℓ) ;
Aℓ

λ
i ← UM,ℓ ;

U ℓ
0 ← UM,ℓ ;

V ℓ
0 ← V M,ℓ ;

Estimate E{g(A
λ
i)} ≃ (1/ns)

∑ns

ℓ=1 g(A
ℓ
λ
i);

Estimate E{g(A
λ
i)g(A

λ
i)T } ≃ (1/ns)

∑ns

ℓ=1 g(A
ℓ
λ
i)g(A

ℓ
λ
i)T ;

Estimate ∇Γ(λi) = f − E{g(A
λ
i)} ;

Estimate [H(λi)] = E{g(A
λ
i)g(A

λ
i)T } − E{g(A

λ
i)}E{g(A

λ
i)}T ;

Estimate error(i+ 1) = ‖∇Γ(λi)‖ / ‖f‖ ;
λi+1 = λi − [H(λi)]−1

∇Γ(λi) ;
i ← i+ 1 ;

4. Application.

4.1. Gaussian case: Generation of physically consistent accelerograms. The applica-
tion concerns the generation of realizations of a non-stationary Gaussian centered stochas-
tic process in the framework of the generation of physically consistent accelerograms. The
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available information is constituted of second-moments of the stochastic process and other
constraints which guarantees that the generated trajectories are physically consistent.

4.1.1. Definition of the available information. A time sampling of the acceleration
stochastic process is introduced yielding a time series {A1, . . . , AN} for which the R

N -valued
random vector A = (A1, . . . , AN ) is associated with. We then have to construct the prob-
ability distribution of random vector A. As explained in Section 3.2, since random vector
A is centered, the lagrange multiplier relative to the mean vector is zero and therefore, the
available information relative to the mean vector is useless. The available information for the
random vector A is then defined as follows,

E{A2
j} = σ2

j < +∞ , ∀j = {1, . . . , N} , (4.1)

E{(
N∑

k=1

Ak)
2} = 0 , (4.2)

E{(
N∑

k=1

(N − k + 1)Ak)
2} = 0 , (4.3)

E{(
N∑

k=1

(N − k + 1)2 Ak)
2} = 0 . (4.4)

The N constraints defined by Eq. (4.1) are relative to the variance of each component Aj of
random vector A. The constraints defined by Eqs. (4.2) and (4.3) allow us to impose, for
the generated trajectories and in the mean-square sense, a zero end-velocity VN =

∑N
j=1Aj

and a zero end-displacement DN =
∑N

j=1 (N − j + 1)Aj . The constraint defined by Eq. (4.4)
implies that the integral over the time observation of the displacement process associated with
the acceleration process, is zero in the mean-square sense (in terms of earthquake engineering,
this constraint allows the rock ground motions to be eliminated in the generated trajecto-
ries). Modeling this constraint and using Eqs. (4.2) and (4.3) yield the constraint defined by
Eq. (4.4). For j = {1, . . . , N}, the matrices [Kj ] introduced in Eq. (3.10), relative to Eq. (4.1),
are such that [Kj ]kℓ = 2 δkjδℓj in which δkj is the Kronecker symbol, and lj = σ2

j . The matrix
[KN+1], relative to Eq. (4.2), is defined by [KN+1]kℓ = 2 and lN+1 = 0. The matrix [KN+2],
relative to Eq. (4.3), is defined by [KN+2]kℓ = 2 (N − k + 1) (N − ℓ+ 1) and lN+2 = 0. The
matrix [KN+3], relative to Eq. (4.4), is defined by [KN+3]kℓ = 2 (N − k+1)2 (N − ℓ+1)2 and
lN+3 = 0. Then, µ = N + 3 and the matrix [Kλ] is defined by

[Kλ] =

N∑

j=1

{λj [Kj ]}+ λN+1[KN+1] + λN+2[KN+2] + λN+3[KN+3] , (4.5)

The admissible space Lµ for the vector λ = (λ1, . . . , λµ) is defined as Lµ =]0,+∞[µ. For
p = 1, 2, 3, the matrices [KN+p] can be rewritten as [KN+p] = 2zpz

T
p in which the vectors
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zp are such that {zp}k = (N − k + 1)p−1. It can be seen that 〈a, [Kλ]a〉 = 2
∑N

j=1 λja
2
j +

2
∑3

p=1 λN+p〈a,zp〉2. For all λ in Lµ (thus ‖λ‖ �= 0) and for all vector a in R
N such that

‖a‖ �= 0, we have
∑N

j=1 λja
2
j > 0 and

∑3
p=1 λN+p〈a,zp〉2 ≥ 0, which show that 〈a, [Kλ]a〉 > 0

and therefore, [Kλ] is positive definite.

4.1.2. Application. The accelerogram is sampled into N = 1, 600 time steps. The final
time is 20 s and the time step is ∆t = 0.0125 s. The target standard deviation {σj , j =
1, . . . , N} is defined by

σj = 1.3985 (j∆t)2/16 + 0.14 , j = 1, . . . , 320 (4.6)

σj = 1.5383 , j = 321, . . . , 1280

σj = 1.3985 exp(−1.15 (j∆t) − 16) + 0.14 , j = 1281, . . . , 1600

This target standard deviation is plotted in Fig. 4.1. The methodology developed in Sec-
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Figure 4.1. Graph of function j �→ σj.

tions 3.1 and 3.2 is applied here using 30 iterations. The error function i �→ error(i) is plotted
in Fig. 4.2. Figure 4.3 shows two independent realizations of the random vector Aλsol

which
is generated using a classical generator for Gaussian random variable and which are repre-
sentative of two independent realizations of the random accelerogram. The corresponding
trajectories of the velocity times series VN and of the displacement times series DN result
from two successive numerical integrations of each realization of the random accelerogram
and are plotted in Figs. 4.4 and 4.5. As expected, it can be seen that the end velocity and
the end displacements are equal to zero.

4.2. General case: Generation of physically consistent and spectrum-compatible ac-

celerograms. With respect to the constraints defined in Section 4.1, an additional constraint
is added in order to specify the mean Velocity Response Spectrum (VRS), see [7, 30]. The
target spectrum is constructed from the European Code 8 (see [10]).
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Figure 4.2. Graph i �→ error(i) of the error function in log scale.
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Figure 4.3. Two independent realizations of the random accelerogram.

4.2.1. Available information. The random VRS is represented by a random vector S =
s(A) with values in R

κ, in which a �→ s(a) = (s1(a), . . . , sκ(a)) is a nonlinear mapping from
R
N to R

κ defined, for all k in {1, . . . , κ}, by

sk(a) = ωk max{|yk1 (a)|, . . . , |ykN (a)|} , ykj (a) = {[Bk]a}j , (4.7)

in which ωk is a given frequency and [Bk] is a family of (N ×N) matrices defined by

[Bk]ij = − ∆t

ωk

√
1− ξ2

exp(−(i− j) ξ ωk ∆t) sin((i− j)ωk ∆t) , (4.8)

in which 0 < ξ < 1 is the given damping ratio and where ∆t is the time step relative to time
series A. Then the available information relative to random vector A is defined by

E{A2
j} = σ2

j < +∞ , ∀j ∈ {1, . . . , N} , (4.9)
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Figure 4.4. Two independent realizations of the random velocity.
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Figure 4.5. Two independent realizations of the random displacement.

E{(
N∑

k=1

Ak)
2} = 0 , (4.10)

E{(
N∑

k=1

k Ak)
2} = 0 , (4.11)

E{(
N∑

k=1

k2 Ak)
2} = 0 . (4.12)

E{sk(A)} = sk , ∀k ∈ {1, . . . , κ} , (4.13)

where s = (s1, . . . , sκ) is the mean VRS which is chosen as the target. It should be noted that
a constraint relative to the zero mean value should be added. Nevertheless, using Eq. (2.5)
and remarking that the constraints defined by Eqs. (4.9) to (4.13) are even functions in A, the
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Lagrange multipliers relative to the mean value are zero and therefore this constraint is not
taken into account. Therefore, µ = N+3+κ and the function g(u) with values in R

µ is defined
by g(u) = (u21, . . . , u

2
N , (

∑N
k=1 uk)

2, (
∑N

k=1 k uk)
2, (

∑N
k=1 k

2 uk)
2, s1(u), . . . , sκ(u)). For this

application, the gradient vector ∇uΦ(u,λ) can be written as in Eq. (3.29), for which [KλL
]

is given by Eq. (4.5) in which λ is replaced by λL and for which the nonlinear part (induced
by the constraint defined by Eq. (4.13)) is written as ∇uΦNL(u,λNL) = [∇ugNL(u)]λNL in
which

[∇ugNL(u)]jk = ωk [B
k]imax(k) ,j sgn(y

k
imax(k)(u)) , (4.14)

in which sgn(α) is the sign of α, yk(u) is defined in Eq. (4.7) and where imax is a function
from {1, . . . , N} to {1, . . . , N} such that

imax(k) = arg max
j∈{1,...,N}

|ykj (u)| . (4.15)

For ‖u‖ �= 0, it should be noted that the derivative given by Eq. (4.14) holds if imax(k)
constructed using Eq. (4.15) is unique. This derivative is used for u equal to Uk,ℓ in which
Uk,ℓ is a given realization {U k,ℓ, k = 1, . . . ,M − 1} of the time series {U k, k = 1, . . . ,M − 1}.
For a given realization ℓ, the probability that there exist two solutions for Eq. (4.15) is zero.
For ‖u‖ = 0, this derivative does not exist but, since the initial condition is such that ‖u‖ �= 0,
the probability that ‖U k,ℓ‖ be equal to zero is zero.

4.2.2. Application. The sampling parameters and the standard deviation {σj , j = 1, . . . ,
N} are the same as in Section 4.1.2. Concerning the VRS, κ = 20, ξ = 0.05 and the frequencies
ωk (in rad/s) are 1.04, 1.34, 1.73, 2.23, 2.86, 3.69, 4.74, 6.11, 7.86, 10.11, 13.01, 16.74, 21.53,
27.70, 35.64, 45.86, 59.00, 75.91, 97.67 and 125.66. The target mean VRS {sk, k = 1 . . . , κ},
which is constructed following the Eurocode 8, is plotted in Fig. 4.6. For the identification
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Figure 4.6. Mean VRS k �→ sk.

of the Lagrange multipliers, the algorithm developed in Section 3.3.2 and the semi-implicit
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integration scheme are used. For the initial value λinit of the Lagrange multipliers, the non-
linear part λNL,init is zero while the linear part λL,init is the result of the identification carried
out in Section 4.1.2. As explained in Section 3.3.2, the initial value U0,init of the random initial
condition is generated such that U0,init ∼ N (0, [KλL,init

]−1). At each iteration, the time step

is ∆rλ = 2π/(β
√
2λmax), in which λmax = max{{λL}i, i = 1, . . . , N} and β = 80. At each

iteration, the damping matrix [Dλ] is a diagonal matrix such that [Dλ]ii = 2 ξito
√

2 {λL}i,
in which ξito = 0.7. For the ISDE, the number of integration steps is M = 600. At each
iteration, ns = 900 Monte Carlo simulations are carried out. The under-relaxation parameter
is α = 0.3. The error function i �→ error(i) for 30 iterations is plotted in Fig. 4.7. Figure 4.8
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Figure 4.7. Graph i �→ error(i) of the error function in log scale.

shows two independent realizations of the random vector Aλsol
which are representative of

two independent realizations of the random accelerogram. The corresponding trajectories
of the velocity times series VN and of the displacement times series DN result from two
successive numerical integrations of each realization of the random accelerogram and are
plotted in Figs. 4.9 and 4.10. As expected, it can be seen that the end-velocity and the end-
displacements are equal to zero. Figure 4.11 displays a comparison of the mean variance with
the target variance. Figure 4.12 shows a comparison of the mean VRS with the target mean
VRS. It can be seen in Figures 4.8 to 4.12 that the results are very good. Figure 4.12 also shows
the mean VRS estimated using realizations of the Gaussian accelerograms constructed in the
Section 4.1. This figure shows the influence of the probability distribution on the random
accelerogram and shows that the Gaussian modeling yields a completely different mean VRS
compared with the non-Gaussian modeling for which the constraints relative to the mean
VRS is taken into account. The confidence region of the random VRS with a probability level
Pc = 0.95 is plotted in Fig. 4.13.

5. Conclusions. We have presented a new algorithm for the identification in high stochas-
tic dimension of the Lagrange multipliers of a probability density function constructed using
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Figure 4.8. Two independent realizations of the random accelerogram.
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Figure 4.9. Two independent realizations of the random velocity.

0 500 1000 1500
−0.3

−0.2

−0.1

0

0.1

0.2

index j

di
sp

la
ce

m
en

t (
m

)

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1

0.15

index j

di
sp

la
ce

m
en

t (
m

)

Figure 4.10. Two independent realizations of the random displacement.

the MaxEnt principle under constraints defined by the available information. The high di-
mensional integrals are evaluated by simulating independent realizations of an ISDE. The
two applications show the efficiency of the proposed algorithm even in presence of strongly
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Figure 4.11. Variance: Target (thick dashed line) and estimation (thin solid line).
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Figure 4.12. Mean VRS: Target (dashed line), estimation (solid line), estimation with a Gaussian distri-
bution (mixed line).

nonlinear constraints in the available information.
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